用户名: 密码: 验证码:
基于断裂力学的钢筋、FRP与混凝土界面力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着混凝土锚固与加固技术的推广和应用,补强材料与混凝土界面粘结问题逐渐引起了国内外学者们的普遍关注。本论文采用断裂力学方法研究钢筋、FRP(纤维增强复合材料)与混凝土界面力学特性,主要针对钢筋-砂浆-混凝土三相介质锚固体和CFRP(碳纤维增强复合材料)布加固混凝土弯曲梁两个问题,分别进行研究。具体工作如下:
     (1)首先提出了一个计算混凝土等效断裂韧度的解析模型。利用该模型,只要测得混凝土的弹性模量和抗折强度,就可以计算临界等效裂缝长度和极限荷载,进而求得混凝土等效断裂韧度,在此基础上研究了等效断裂韧度的尺寸效应。
     (2)针对少筋混凝土三点弯曲切口梁断裂问题,采用虚拟裂缝模型以及钢筋与混凝土界面变形协调条件提出了计算极限荷载的解析方法,考虑了钢筋不屈服界面发生粘结滑移和钢筋屈服界面不发生粘结滑移两种情况。结果表明,加载过程中荷载将出现两个峰值,而对于钢筋发生屈服的情况,第二个峰值对应的是钢筋刚刚发生屈服时的荷载,该种情况下两峰值的计算结果得到了试验验证。因此采用该解析模型,只要测得混凝土的抗折强度、弹性模量以及钢筋的屈服强度,就可以计算不同缝高比的钢筋混凝土少筋梁在钢筋发生屈服时的承载力。
     (3)针对钢筋-砂浆-混凝土三相介质锚固体发生界面粘结破坏的情况,根据界面变形协调条件和砂浆层的剪切变形协调条件得到了砂浆层剪应力沿砂浆层厚度方向的分布,以及钢筋拉应力和两界面剪应力的表达式。根据两界面粘结强度、钢筋直径和砂浆层厚度判断了两界面发生粘结破坏的可能性;针对钢筋与砂浆界面发生粘结破坏和两界面均发生粘结破坏两种情况下的钢筋极限抗拔力进行研究。将界面粘结破坏过程作为剪切裂缝扩展,对锚固体不同边界约束条件下裂缝在钢筋加载端界面和自由端界面出现的可能性和先后顺序进行判断,建立了拔出荷载和裂缝长度的关系,并通过极值理论求得极限荷载和对应的临界裂缝长度。并研究了钢筋锚固长度、混凝土刚度、砂浆层厚度以及界面参数对计算结果的影响。
     (4)当锚固体破坏型式为砂浆层剪切破坏时,根据界面变形协调条件和砂浆层剪切变形协调条件,得到了钢筋拉应力和砂浆层剪应力的表达式。针对锚固体不同边界约束条件下砂浆层剪切裂缝在钢筋加载端和自由端出现的可能性和先后顺序进行判断,建立了荷载和剪切裂缝长度之间的关系,进而利用极值理论求得极限荷载和对应的临界裂缝长度。参数研究中分析了钢筋锚固长度、混凝土刚度、砂浆剪切模量和剪切断裂能对计算结果的影响。
     (5)针对锚固体中混凝土锥形破坏和界面粘结破坏均发生的情况提出了一个解析方法,研究了两种破坏之间的影响以及两种破坏出现的可能性和先后顺序,分析了不同锚固长度、混凝土刚度、砂浆层厚度和混凝土抗拉强度对锚固体破坏型式的影响。
     (6)作为问题的一个推广,还针对锚筋从灌注于钢管内的砂浆中拔出问题,利用锚筋与砂浆界面的变形协调条件和砂浆层剪切变形协调条件提出了一个计算锚筋极限抗拔力的解析模型,并得到了试验验证。因此,只需确定锚筋与砂浆界面的四个特征参数,并结合锚筋、砂浆和钢管的弹性模量,就可以计算相同结构型式不同尺寸锚固体中锚筋的极限抗拔力。
     (7)针对CFRP布加固的混凝土三点弯曲切口梁,基于虚拟裂缝模型和界面变形协调条件提出一个解析方法,研究混凝土跨中垂直裂缝和界面水平裂缝扩展共同作用对梁承载力的影响。分析结果表明,加载过程中荷载出现两个峰值,且两峰值的计算结果得到了试验验证。采用该解析模型,只需CFRP布与混凝土界面的三个特征参数、混凝土和CFRP布的弹性模量及混凝土的抗折强度,就可以计算不同初始缝高比CFRP布加固的混凝土梁的承载力。
As the techniques are widely developed and applied in fields of anchorage and rehabilitation for concrete, researchers have gradually paid more attention to bond properties between repairing materials and concrete. The present study aims at the mechanical behaviors at both the tendon-concrete and FRP (fiber-reinforced polymer) -concrete interfaces based on fracture mechanics. Two models are mainly analyzed, namely, tendon-mortar-concrete anchorage and CFRP (carbon fiber-reinforced polymer) sheet strengthened three-point bending notched beam of concrete. Details of the present study are introduced as follows.
     (1) First, an analytical model is presented to calculate the effective fracture toughness of concrete. Only if the elastic modulus and flexural tensile strength of the concrete are given, the critical effective crack length and maximum applied load can be predicted by using the proposed model. Then the size effects of the effective fracture toughness are studied.
     (2) An analytical method is proposed to predict the load carrying capacity of three-point bending notched beams of lightly reinforced concrete based on the fictitious crack model and deformation compatibility conditions at the steel bar-concrete interface. Two cases are considered. Case 1 allows interfacial debonding at the steel bar-concrete interface without yielding of the steel bar and Case 2 means the steel bar can yield without interfacial debonding. Results show that there are two peak values of the applied load during the loading stage. And the second peak value is corresponding to the initiation of steel bar yielding in Case 2. Then the calculated two peak values in Case 2 are verified with experimental results. Therefore, when the elastic modulus and flexural tensile strength of the concrete, and the yielding strength of the steel bar, are given, the loading carrying capacity can be predicted for lightly reinforced concrete beams with different ratios of initial notch length to beam height in Case 2.
     (3) When interfacial debonding failure occurs in the tendon-mortar-concrete anchorage, the variations of shear stresses along the thickness of the mortar layer are obtained based on the deformation compatibility conditions at the two interfaces and shear deformation compatibility conditions in the mortar layer. Then the expressions of tensile stress in the tendon and interfacial shear stress are yielded. The possibilities of interfacial debonding at the two interfaces are judged according to the two interfacial shear strengths, diameter of the tendon and thickness of the mortar. Only the interfacial debonding at the tendon-mortar interface and the interfacial debonding at both of the two interfaces are studied, respectively, in the present study. Moreover, the interfacial debonding is modeled as the interfacial shear crack propagation. Then the appearance possibilities and orders of the interfacial shear cracks from the loading and free ends of the tendon are judged according to different boundary conditions of the anchorage. The expressions of the pullout load with respect to the interfacial crack lengths are established and the maximum pullout load and critical crack lengths are obtained using theories of extremum. Besides, the effects of the embedment length, concrete rigidity, mortar thickness and interfacial parameters on the calculated results are discussed.
     (4) When the failure mode of the anchorage is shear failure of the mortar, the expressions of tensile stress in the tendon and shear stress in the mortar are obtained based on the deformation compatibility conditions at the interfaces and shear deformation compatibility conditions in the mortar layer. The appearance possibilities and orders of the shear cracks in the mortar from the loading and free ends of the tendon are judged according to different boundary conditions of the anchorage. Moreover, the expressions of the pullout load with respect to the shear crack lengths are established and the maximum pullout load and critical shear crack lengths are obtained using theories of extremum. The effects of the embedment length, concrete rigidity, mortar shear modulus and shear fracture energy on the calculated results are discussed.
     (5) An analytical method is presented for the anchorage by considering both the concrete cone failure and interfacial debonding. The effects of the two failure modes on each other are studied. Then the appearance possibilities and orders of the two failure modes are judged. Moreover, the effects of the embedment length, concrete rigidity, mortar thickness and concrete tensile strength on the failure modes are analyzed.
     (6) The analytical methods for the anchorage are applied to study pullout of an anchor from mortar filled steel tube. Then an analytical method is proposed to predict the maximum pullout load based on the deformation compatibility condition at the anchor-mortar interface and shear deformation compatibility condition in the mortar layer. The calculated tensile capacity is verified with experimental results. Therefore, when four interfacial parameters determining the interfacial behaviors and a few material parameters are given, the maximum pullout load can be predicted for the anchor-mortar-tube anchorage with different sizes.
     (7) An analytical method is presented to predict the loading carrying capacity of CFRP sheet strengthened three-point bending notched beams of concrete based on the fictitious crack model and deformation compatibility condition at the CFRP-concrete interface. Both the vertical crack propagation in the concrete and horizontal interfacial shear crack propagation are considered in the proposed model. Results show that there are two peak values of the applied load during the loading stage. Then the calculated two peak values are verified with experimental results. Therefore, when three interfacial parameters determining the interfacial behaviors and a few material parameters are given, the loading carrying capacity can be predicted for CFRP sheet strengthened three-point bending notched beams with different ratios of initial notch length to beam height.
引文
[1] EI-Mihilmy M, Tedesco J. Analysis of reinforced concrete beams strengthened with FRP laminates. Journal of Structural Engineering, ASCE, 2000, 126(6): 684-691.
    
    [2] McKenna J. Strengthening of reinforced concrete flexural members using externally applied steel plates and fiber composite sheets- a survey. Canadian Journal of Civil Engineering, 1994, 21 (1): 16-24.
    [3] Cook R, Collins D, Klingner R et al. Load-deflection behavior of cast-in-place and retrofit concrete anchors. ACI Structural Journal, 1992, 89(6): 639-649.
    [4] Emmons P, Vaysburd A, Thomas J. Strengthening Concrete Structures, Part I. Concrete International, 1998, 20(3): 53-58.
    [5] L' Hermite R, Bresson J. Beton arme par collage des armatures. RILEM International Symposium, Resins in Building Construction, Part 2, Paris, 1967: 172-203.
    [6] Lerchental H. Bonded sheet metal reinforcement for concrete slabs. RILEM International Symposium, Resins in Building Construction, Part 2, Paris, 1967: 165-173.
    [7] Kajfasz S. Concrete beams with external reinforcement bonded by gluing. RILEM International Symposium, Resins in Building Construction, Part 2, Paris, 1967: 142-151.
    [8] Garden H, Hollaway L, Thorne A. The strengthening and deformation behaviour of reinforced concrete beams upgraded using prestressed composite plates. Materials and Structures, 1998, 31(208): 247-258.
    [9] Garden H, Hollaway L. An experimental study of the failure modes of reinforced concrete beams strengthened with prestressed carbon composite plates. Composites, Part B: Engineering, 1998, 29(4): 411-424.
    
    [10] Hussain M, Sharif A, Basunbul I et al. Flexural behavior of precracked reinforced concrete beams strengthened externally by steel plates. ACI Structural Journal, 1995, 92(1): 14-22.
    
    [11] Jones R, Swamy R, Charif A. Plate separation and anchorage of reinforced concrete beams strengthened by epoxy-bonded plates. Structural Engineering, 1988, 66(5): 85-94.
    
    [12] Ziraba N, Baluch M, Basunbul I et al. Guidelines toward the design of RC beams with external plates. ACI Structural Journal, 1994, 91(6): 639-646.
    
    [13] Emmons P, Vaysburd A, Thomas J. Strengthening concrete structures, Part II. Concrete International, 1998, 20(4): 56-60.
    
    [14] Deniaud C, Cheng J. Shear behavior of reinforced concrete T-beams with externally bonded fiber-reinforced polymer sheets. ACI Structural Journal, 2001, 98 (3): 386-394.
    [15]Arduini M,Nanni A,Romagnolo M.Performance of decommissioned reinforced concrete girders strengthened with fiber-reinforced polymer lasinates.ACI Structural Journal,2002,99(5):652-659.
    [16]Alaee F,Karihaloo B.Fracture model for flexural failure of beams retrofitted with CARDIFRC.Journal of Engineering Mechanics,ASCE,2003,129(9):1028-1038.
    [17]贾金青,袁永博.振兴广场抗浮工程的设计与试验研究.工程力学,2001(增刊):744-747.
    [18]贾金青,宋二祥.滨海大型地下工程抗浮锚杆的设计与试验研究.岩土工程学报,2002,24(6):769-771.
    [19]王贤能,叶蓉,郑建昌等.抗浮锚杆的应用实例.地质灾害与环境保护,2001,12(1):68-71.
    [20]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型.岩土工程学报,2002,24(2):188-192.
    [21]应志民,张洁,尚岳全.锚杆荷载-位移曲线的指数函数模型研究.岩土力学,2005,26(8):1331-1334.
    [22]张洁,尚岳全,叶彬.锚杆临界锚固长度解析计算.岩石力学与工程学报,2005,24(7):1134-1138.
    [23]苏霞,李仲奎.锚杆拉拔力影响因素的数值试验研究.工程力学,2006,23(2):97-102.
    [24]魏新江,张世民,危伟.全长粘结式锚杆抗拔力计算公式的探讨.岩土工程学报,2006,28(7):902-905.
    [25]朱训国,杨庆,栾茂田.岩体锚固效应及锚杆的解析本构模型研究.岩土力学,2007,28(3):527-532.
    [26]陈棠茵,王贤能.抗浮锚杆应力-应变状态的线弹性理论分析.岩土力学,2006,27(11):2033-2036.
    [27]范宇洁,郑七振,魏林.预应力锚索锚固体的破坏机理和极限承载力研究.岩石力学与工程学报,2005,24(15):2765-2769.
    [28]柳建国,吴平,尹华刚等.压力分散型抗浮锚杆技术及其工程应用.岩石力学与工程学报,2005,24(21):3948-3953.
    [29]尤春安,战玉宝.预应力锚索锚固段的应力分布规律及分析.岩石力学与工程学报,2005,24(6):925-928.
    [30]Cook R,Doerr G,Klingner R.Bond stress model for design of adhesive anchors.ACI Structural Journal,1993,90(5):514-524.
    [31]Cook R,Kunz J,Fuchs W et al.Behavior and design of single adhesive anchors under tensile load in uncracked concrete.ACI Structural Journal,1998,95(1):9-26.
    [32]Zamora N,Cook R,Konz R et al.Behavior and design of single,headed and unheaded,grouted anchors under tensile load.ACI Structural Journal,2003,100(2):222-230.
    [33]Subramanian N,Cook R.Behaviour of grouted anchors.Indian Concrete Journal,2004,78(4):14-21.
    [34]Cook R,Konz R.Factors influencing bond strength of adhesive anchors.ACI Structural Journal,2001,98(1):76-86.
    [35]Li Y,Eligehausen R,Ozbolt J et al.Numerical analysis of quadruple fastenings with bonded anchors.ACI Structural Journal,2002,99(2):149-156.
    [36]Colak A.Parametric study of factors affecting the pull-out strength of steel rods bonded into precast concrete panels.International Journal of Adhesion and Adhesives,2001,21(6):487-493.
    [37]Sakla S,Ashour A.Prediction of tensile capacity of single adhesive anchors using neural networks.Computers and Structures,2005,83(21-22):1792-1803.
    [38]Beard M,Lowe M,Cawley P.Ultrasonic guided waves for inspection of grouted tendons and bolts.Journal of Materials in Civil Engineering,ASCE,2003,15(3):212-218.
    [39]杨松林,荣冠,朱焕春.混凝土中锚杆荷载传递机理的理论分析和现场实验.岩土力学,2001,22(1):71-74.
    [40]尤春安,高明,张利民等.锚固体应力分布的试验研究.岩土力学,2004,25(增刊):63-66.
    [41]Katz A.,Li V,Kazmer A.Bond properties of carbon fibers in cementitious matrix.Journal of Materials in Civil Engineering,ASCE,1995,7(2):125-128.
    [42]Chaallal O,Benmokrane B.Pullout and bond of glass-fiber rods embedded in concrete and cement grout.Materials and Structures,1993,26(157):167-175.
    [43]Benmokrane B,Xu H,Bekkavance E.Bond strength of cement grouted glass fiber reinforced plastic(GFRP) anchor bolts.International Journal of Rock Mechanics and Mining Sciences,1996,33(5):455-465.
    [44]Tepfers R,Lorenzis L.Bond of FRP reinforcement in concrete-a challenge.Mechanics of Composite Materials,2003,39(4):315-328.
    [45]Ozbolt J,Eligehausen R,Reinhardt H.Size effect on the concrete cone pull-out load.International Journal of Fracture,1999,95(1-4):391-404.
    [46]Ozbolt J,Eligehausen R,Periskic G,Mayer U.3D FE analysis of anchor bolts with large embedment depths.Engineering Fracture Mechanics,2007,74(1-2):168-178.
    [47]Morgan A,Niwa J,Tanabe T.Size effect analysis for pullout strength under various boundary conditions.Journal of Engineering Mechanics,ASCE,1999,125(2):165-173.
    [48]Ozbolt J,Rah K,Mestrovic D.Influence of loading rate on concrete cone failure.International Journal of Fracture,2006,139(2):239-252.
    [49]Fujikake K,Nakayama J,Sato net al.Chemically bonded anchors subjected to rapid pullout loading.ACI Materials Journal,2003,100(3):246-252.
    [50]Solomos G,Berra M.Testing of anchorages in concrete under dynamic tensile loading.Materials and Structures,2006,39(291):695-706.
    [51] Eligehausen R, Mallee R, Rehm G. Befestigungen mit Verbundankern (Fastenings with bonded anchors). Betonwerk+Fertigteil-Technik, No. 10: 682-692, No. 11: 781-785, No. 12: 825-829, Berlin, 1984 (in German).
    
    [52] Fuchs W, Eligehausen R, Breen J. Concrete capacity design approach for fastening to concrete. ACI Structural Journal, 1995, 92(1): 73-94.
    
    [53] Cook R. Behavior of chemically bonded anchors. Journal of Structural Engineering, ASCE, 1993, 119(9): 2744-2762.
    
    [54] Eligehausen R, Cook R, Appl J. Behavior and design of adhesive bonded anchors. ACI Structural Journal, 2006, 103(6): 822-831.
    [55] James R, De la Guardia C, McCreary C. Strength of epoxy-grouted anchor bolts in concrete. Journal of Structural Engineering, ASCE, 1987, 113(12): 2365-2381.
    [56] Bickel T, Shaikh A. Shear strength of adhesive anchors. PCI Journal, 2002, 47(5): 92-101.
    [57] Misra A, Chen C, Oberoi R et al. Simplified analysis method for micropile pullout behavior. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(10): 1024-1033.
    [58] Gray R. Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix. Part 1. Review of theories. Journal of Materials Science, 1984, 19(3): 861-870.
    [59] Li, Z. F. and Grubb, D. T.. Single-fiber polymer composites. Part 1. Interfacial shear strength and stress distribution in the pull-out test. Journal of Materials Science, 1994, 29(1), 189-202.
    
    [60] Hsueh C. Elastic load transfer from partially embedded axially loaded fibre to matrix. Journal of Materials Science Letters, 1988, 7(5): 497-500.
    [61] Karbhari V, Wilkins D. A theoretical model for fiber debonding incorporating both interfacial shear and frictional stresses. Scripta Metallurgica et Materialia, 1990, 24(7): 1197-1202.
    [62] Hsueh C. Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, A123(1): 1-11.
    [63] Hsueh C. Consideration of radial dependences of axial stresses in the shear-lag model for fibre pull-out. Journal of Materials Science, 1994, 29(7): 1801-1806.
    [64] Hsueh C, Becher P. Interfacial shear debonding problems in fiber-reinforced ceramic composites. Acta Materialia, 1998, 46(9): 3237-3245.
    [65] Stang H, Li Z, Shah S. Pullout problem: stress versus fracture mechanical approach. Journal of Engineering Mechanics, ASCE, 1990, 116(10): 2136-2150.
    [66] Li V, Chan Y. Determination of interfacial debond mode for fiber-reinforced cementitious composites. Journal of Engineering Mechanics, ASCE, 1994, 120(4): 707-719.
    [67] Ouyang C, Pacios A, Shah S. Pullout of inclined fibers from cementitious matrix. Journal of Engineering Mechanics, ASCE, 1994, 120(12): 2641-2659.
    [68] Morrison J, Shah S, Jenq Y. Analysis of fiber debonding and pullout in composites. Journal of Engineering Mechanics, ASCE, 1988, 114(2): 277-294.
    [69] Gao Y, Mai Y, Cotterell B. Fracture of fiber-reinforced materials. Journal of Applied Mathematics and Physics, 1988, 39(4): 550-572.
    [70] Naaman A, Namur G, Alwan J et al. Fiber pullout and bond slip. I : Analytical study. Journal of Structural Engineering, ASCE, 1991, 117(9): 2769-2790.
    [71] Naaman A, Namur G, Alwan J et al. Fiber pullout and bond slip. II: Experimental validation. Journal of Structural Engineering, ASCE, 1991, 117(9): 2791-2800.
    [72] Sujivorakul C, Waas A, Naaman A. Pullout response of a smooth fiber with an end anchorage. Journal of Engineering Mechanics, ASCE, 2000, 126(9): 986-993.
    [73] Sastry A, Phoenix S, Schwartz P. Analysis of interfacial failure in a composite microbundle pull-out experiment. Composites Science and Technology, 1993, 48(1-4): 237-251.
    [74] Zhou L, Kim J, Mai Y. On the single fibre pull-out problem: effect of loading method. Composites Science and Technology, 1992, 45(2): 153-160.
    [75] Zhang X, Liu H, Mai Y et al. On steady-state fibre pull-out I : The stress field. Composites Science and Technology, 1999, 59(15): 2179-2189.
    [76] Liu H, Zhang X, Mai Y et al. On steady-state fibre pull-out II: Computer simulation. Composites Science and Technology, 1999, 59(15): 2191-2199.
    [77] Bazant Z P, Desmorat R. Size effect in fiber or bar pullout with interface softening slip. Journal of Engineering Mechanics, ASCE, 1994, 120(9): 1945-1962.
    [78] Au C, Buyukozturk O. Debonding of FRP plated concrete: a tri-layer fracture treatment. Engineering Fracture Mechanics, 2006, 73(3): 348-365.
    [79] Saadatmanesh H, Ehsani M. RC beams strengthened with FRP plates. I : experimental study. Journal of Structural Engineering, ASCE, 1991, 117(11): 3417-3433.
    [80] Niu H, Karbhari V, Wu Z. Diagonal macro-crack induced debonding mechanisms in FRP rehabilitated concrete. Composites, Part B: Engineering, 2006, 37(7-8): 627-641.
    [81] Taljsten B. Strengthening of beams by plate bonding. Journal of Materials in Civil Engineering, ASCE, 1997, 9(4): 206-212.
    
    [82] Chen J, Teng J. Anchorage strength models for FRP and steel plates attached to concrete. Journal of Structural Engineering, ASCE, 127(7): 784-791.
    [83]Chen J,Yang Z,Holt G.FRP or steel plate-to-concrete bonded joints:effect of test methods on experimental bond strength.Steel Composites Structures,2001,1(2):231-244.
    [84]杨勇新,岳清瑞,胡云昌.碳纤维布与混凝土粘结性能的试验研究.建筑结构学报,2001,22(3):36-42.
    [85]Sharma S,Mohamed Ali M,GoldarD et al.Plate-concrete interfacial bond strength of FRP and metallic plated concrete specimens.Composites,Part B:Engineering,2006,37(1):54-63.
    [86]Ali-Ahmad M,SubramaniamK,Ghosn M.Experimental investigation and fracture analysis of debonding between concrete and FRP sheets.Journal of Engineering Mechanics,ASCE,2006,132(9):914-923.
    [87]Yao J,Teng J,Chen J.Experimental study on FRP-to-concrete bonded joints.Composites,Part B:Engineering,2005,36(2):99-113.
    [88]Toutanji H,Saxena P,Zhao Let al.Prediction of interfacial bond failure of FRP-concrete surface.Journal of Composites for Construction,ASCE,2007,11(4):427-436.
    [89]曹双寅,潘建伍,陈建飞等.外贴纤维与混凝土结合面的粘结滑移关系.建筑结构学报,2006,27(1):99-105.
    [90]郭樟根,孙伟民,曹双寅.FRP与混凝土界面黏结-滑移本构关系的试验研究.土木工程学报,2007,40(3):1-5.
    [91]Leung CKY,Pan J.Effect of concrete composition on FRP/concrete bond capacity.Proceedings of the International Symposium on Bond Behaviour of FRP in Structures(BBFS 2005),Chen和Teng(eds),2005:69-76.
    [92]Pan J,Leung CKY.Effect of concrete composition on FRP/concrete bond capacity.Journal of Composites for Construction,ASCE,2007,11(6):611-618.
    [93]Wu Z,Yuann,Kojima Y et al.Experimental and analytical studies on peeling and spalling resistance of unidirectional FRP sheets bonded to concrete.Composites Science and Technology,2005,65(7-8):1088-1097.
    [94]Dai J,Ueda T,Sato Y.Bonding characteristics of fiber-reinforced polymer sheet-concrete interfaces under dowel load.Journal of Composites for Construction,ASCE,2007,11(2):138-148.
    [95]Gao B,Kim J,Leung CKY.Effect of tapered FRP sheets on interlaminar fracture behaviour of FRP-concrete interface.Composites,Part A:Applied Science and Manufacturing,2006,37(10):1605-1612.
    [96]Gao B,Kim J,Leung CKY.Strengthening efficiency of taper ended FRP strips bonded to RC beams.Composites Science and Technology,2006,66(13):2257-2264.
    [97] Leung CKY. FRP debonding from a concrete substrate: some recent findings against conventional belief. Cement and Concrete Composites, 2006, 28(8): 742-748.
    [98] Neubauer U, Rostasy F. Bond failure of concrete fiber reinforced polymer plates at inclined cracks-experiments and fracture mechanics model. Proceedings of 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, SP-188, Farmington Hills (MI): ACI; 1999: 369-382.
    [99] Nakaba K, Toshiyuki K, Tomoki F et al. Bond behavior between fiber-reinforced polymer laminates and concrete. ACI Structural Journal, 2001, 98 (3): 359-367.
    [100] Monti M, Renzelli M, Luciani P. FRP adhesion in uncracked and cracked concrete zones. Proceedings of 6th International Symposium on FRP Reinforcement for Concrete Structures, Singapore: World Scientific Publications; 2003: 183-192.
    [101] SavioaM, Farracuti B, Mazzotti D. Non-linear bond-slip law for FRP-concrete interface. Proceedings of 6th International Symposium on FRP Reinforcement for Concrete Structures, Singapore: World Scientific Publications; 2003: 163-172.
    [102] Dai J, Ueda T. Local bond stress slip relations for FRP sheets-concrete structures. Proceedings of 6th International Symposium on FRP Reinforcement for Concrete Structures, Singapore: World Scientific Publications; 2003: 143-152.
    [103] Dai J, Ueda T, Sato Y. Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method. Journal of Composites for Construction, ASCE, 2005, 9(1): 52-62.
    [104] Ueda T, Dai J, Sato Y. A nonlinear bond stress-slip relationship for FRP sheet-concrete interface. Proceedings of International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, 2003: 113-120.
    [105] Lu X, Ye L, Teng J et al. Meso-scale finite element model for FRP sheets/plates bonded to concrete. Engineering Structures, 2005, 27(4): 564-575.
    [106] Lu X, Teng J, Ye L et al. Bond-slip models for FRP sheets/plates bonded to concrete. Engineering Structures, 2005, 27(6): 920-937.
    [107] Leung CKY, Tung W. Three-parameter model for debonding of FRP plate from concrete substrate. Journal of Engineering Mechanics, ASCE, 2006, 132(5): 509-518.
    [108] Leung CKY, Klenke M, Tung W et al. Determination of nonlinear softening behavior at FRP composite/concrete interface. Journal of Engineering Mechanics, ASCE, 2006, 132(5): 498-508.
    [109] Wu Z, Yuan H, Niu H. Stress transfer and fracture propagation in different kinds of adhesive joints. Journal of Engineering Mechanics, ASCE, 2002, 128(5): 562-573.
    [110] Yuan H, Teng J, Seracino R et al. Full-range behavior of FRP-to-concrete bonded joints. Engineering Structures, 2004, 26(5): 553-565.
    [111]Teng J,Yuan H,Chen J.FRP-to-concrete interfaces between two adjacent cracks:theoretical model for debonding failure.International Journal of Solids and Structures,2006,43(18-19):5750-5778.
    [112]Chen J,YuanH,Teng J.Debonding failure along a softening FRP-to-concrete interface between two adjacent cracks in concrete members.Engineering Structures,2007,29(2):259-270.
    [113]Wang J.Debonding of FRP-plated reinforced concrete beam,a bond-slip analysis.Ⅰ.Theoretical formulation.International Journal of Solids and Structures,2006,43(21):6649-6664.
    [114]Wang J.Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam.International Journal of Solids and Structures,2006,43(21):6630-6648.
    [115]Wang J.Cohesive-bridging zone model of FRP-concrete interface debonding.Engineering Fracture Mechanics,2007,74(17):2643-2658.
    [116]Leung CKY,Yang Y.Energy-based modeling approach for debonding of FRP plate from concrete substrate.Journal of Engineering Mechanics,ASCE,2006,132(6):583-593.
    [117]陆新征,谭壮,叶列平等.FRP布-混凝土界面粘结性能的有限元分析.工程力学,2004,21(6):46-50.
    [118]陆新征,叶列平,腾锦光等.FRP片材与混凝土粘结性能的精细有限元分析.工程力学,2006,23(5):74-82.
    [119]Lu X,Jiang J,Teng J et al.Finite element simulation of debonding in FRP-to-concrete bonded joints.Construction and Building Materials,2006,20(6):412-424.
    [120]Lu X,Teng J,Ye L et al.Intermediate crack debonding in FRP-strengthened RC beams:FE analysis and strength model.Journal of Composites for Construction,ASCE,2007,11(2):161-174.
    [121]陆新征,腾锦光,叶列平等.FRP加固混凝土梁受弯剥离破坏的有限元分析.工程力学,2006,23(6):85-93.
    [122]Niu H,Wu Z.Effects of FRP-concrete interface bond properties on the performance of RC beams strengthened in flexure with externally bonded FRP sheets.Journal of Materials in Civil Engineering,ASCE,2006,18(5):723-731.
    [123]Ali-Ahmad M,Subramaniam K,Ghosn M.Analysis of scaling and instability in FRP-concrete shear debonding for beam-strengthening applications.Journal of Engineering Mechanics,ASCE,2007,133(1):58-65.
    [124]Chen J,Pan W.Three dimensional stress distribution in FRP-to-concrete bond test specimens.Construction and Building Materials,2006,20(1-2):46-58.
    [125]Baky H,Ebead U,Neale K.Flexural and interfacial behavior of FRP-strengthened reinforced concrete beams.Journal of Composites for Construction,ASCE,2007,11(6):629-639.
    [126]Kaplan M.Crack propagation and the fracture of concrete.Journal of the Americarr Concrete Institute,1961,58(5):591-610.
    [127]Strange P,Bryant A.Experimental tests on concrete fracture.Journal of Engineering Mechanics Division,ASCE,1979,I05(2):337-342.
    [128]Hillerborg A,Modeer M,Petersson P.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and Concrete Research,1976,6:773-782.
    [129]BaZant Z P,Oh B.Crack band theory for fracture of concrete.Materials and Structures,1983,16(93):155-177.
    [130]Jenq Y,Shah S.Two parameter fracture model for concrete.Journal of Engineering Mechanics,ASCE,1985,111(10):1227-1241.
    [131]BaZant Z P,Kazemi M.Determination of fracture energy,process zone length and brittleness number from size effect,with application to rock and concrete.International Journal of Fracture,1990,44(2):111-131.
    [132]Swartz S,Go C.Validity of compliance calibration to cracked concrete beams in bending.Experimental Mechanics,1984,24(2):129-134.
    [133]Swartz S,Refai T.Influence of size on opening mode fracture parameters for precracked concrete beams in bending.Proceedings of SEM-RILEM International Conference on Fracture of Concrete and Rock,S.P.Shah and S.E.Swartz(eds),Houston,Texas,1987:242-254.
    [134]Karihaloo B,Nallathambi P.An improved effective crack model for the determination of fracture toughness of concrete.Cement and Concrete Research,1989,19(4):603-610.
    [135]Karihaloo B,Nallathambi P.Effective crack model for the determination of fracture toughness(K_(IC)~s) of concrete.Engineering Fracture Mechanics,1990,35(4/5):637-645.
    [136]徐世烺,赵国藩.混凝土结构裂缝扩展的双K断裂准则.土木工程学报,1992,25(2):32-38.
    [137]Xu S,Reinhardt H.Determination of the double-K fracture parameters in standard three-point bending notched beams.Fracture Mechanics of Concrete Structures,Proceedings FRAMCOS-3(ed.H.Mihashiand K.Rokugo),Aedificatio Publishers,Germany,1998,1:431-440.
    [138]Xu S,Reinhardt H.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part Ⅰ:experimental investigation of crack propagation.International Journal of Fracture,1999,98(2):111-149.
    [139] Xu S, Reinhardt H. Crack extension resistance and fracture properties of quasi-brittle softening materials like concrete based on the complete process of fracture. International Journal of Fracture, 1998, 92(1): 71-99.
    [140] Reinhardt H, Xu S. Crack extension resistance based on the cohesive force in concrete. Engineering Fracture Mechanics, 1999, 64(5): 563-587.
    [141] Jenq Y, Shah S. A fracture toughness criterion for concrete. Engineering Fracture Mechanics, 1985, 21(5): 1055-1069.
    [142] Xu S, Reinhardt H. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: analytical evaluating and practical measuring methods for three-point bending notched beams. International Journal of Fracture, 1999, 98(2): 151-177.
    [143] Xu S, Reinhardt H. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: compact tension specimens and wedge splitting specimens. International Journal of Fracture, 1999, 98(2): 179-193.
    [144] Xu S, Reinhardt H. A simplified method for determining double-K fracture parameters for three-point bending tests. International Journal of Fracture, 2000, 104(2): 181-209.
    [145] Xu S, Reinhardt H. Double-K parameters and the cohesive-stress-based K_R curve for the negative geometry. Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures (ed. Li et al.), USA, 2004, 1: 423-430.
    [146] Zhao Y, Xu S. Determination of double-G energy fracture criterion for concrete materials. Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures (ed. Li et al.), USA, 2004, 1: 431-438.
    [147] Navalurkar R, Hsu C. Fracture analysis of high strength concrete members. Journal of Materials in Civil Engineering, ASCE, 2001, 13(3): 185-193.
    [148] Raghu Prasad B, Bharatkumar B, Ramachandra Murthy D et al. Fracture mechanics model for analysis of plain and reinforced high-performance concrete beams. Journal of Engineering Mechanics, ASCE, 2005, 131 (8): 831-838.
    [149] Bazant Z. Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, ASCE, 1984, 110(4): 518-535.
    [150] Bazant Z, Kim J, Pfeiffer P. Nonlinear fracture properties from size effect tests. Journal of Structural Engineering, ASCE, 1986, 112(2): 289-307.
    [151] Bazant Z, Pfeiffer P. Determination of fracture energy from size effect and brittleness number. ACI Materials Journal, 1987, 84(6): 463-480.
    [152] Bazant Z, Yu Q. Size effect in fracture of concrete specimens and structures: new problems and progress. Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures (ed. Li et al.), USA, 2004, 1: 153-162.
    [153]Issa Mohsen A,Issa Mahmoud A,Islam M et al.Size effects in concrete fracture:Part Ⅰ,experimental setup and observations.International Journal of Fracture,2000,102(1):1-24.
    [154]Issa Mohsen A,Issa Mahmoud A,Islam M et al.Size effect in concrete fracture:Part Ⅱ:analysis of test results.International Journal of Fracture,2000,102(1):25-42.
    [155]Karihaloo B,Xiao Q,Abdalla H.Strength size effect in quasi-brittle structures.Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures(ed.Li et al.),USA,2004,1:163-171.
    [156]吴智敏,徐世烺,王金来.基于虚拟裂缝模型的混凝土双K断裂参数.水利学报,1999,(7):12-16.
    [157]吴智敏,徐世烺,卢喜经等.试件初始缝长对混凝土双K断裂参数的影响.水利学报,2000,(4):35-39.
    [158]吴智敏,王金来,徐世烺等.基于虚拟裂缝模型的混凝土等效断裂韧度.工程力学,2000,17(1):99-104.
    [159]吴智敏,徐世烺,王金来等.三点弯曲梁法研究砼双K断裂参数及其尺寸效应.水力发电学报,2000,(4):16-24.
    [160]Hu X,Wittmann F.Fracture energy and fracture process zone.Materials and Structures,1992,25:319-326.
    [161]Hu X.Toughness measurements from crack close to free edge.International Journal of Fracture,1997,86:L63-L68.
    [162]Hu X,Wittmann F.Size effect on toughness induced by crack close to free surface.Engineering Fracture Mechanics,2000,65(2):209-221.
    [163]Hu X.An asymptotic approach to size effect on fracture toughness and fracture energy of composites.Engineering Fracture Mechanics,2002,69(5):555-564.
    [164]Duan K,Hu X,Wittmann F.Size effect on fracture resistance and fracture energy of concrete.Materials and Structures,2003,36(256):74-80.
    [165]赵艳华,徐世烺,聂玉强.混凝土断裂能的边界效应.水利学报,2005,36(11):1320-1325.
    [166]赵艳华,聂玉强,徐世烺.混凝土断裂能的边界效应确定法.工程力学,2007,24(1):56-61.
    [167]Wu Z J,Davies J.Mechanical analysis of a cracked beam reinforced with an external FRP plate.Composite Structures,2003,62(2):139-143.
    [168]Wu Z J,Bailey C.Fracture resistance of a cracked concrete beam post-strengthened with FRP sheets.International Journal of Fracture,2005,135(1-4):35-49.
    [169]Wu Z J,Ye J.Strength and fracture resistance of FRP reinforced concrete flexural members.Cement and Concrete Composites,2003,25(2):253-261.
    [170]Alaee F,Karihaloo B.Fracture model for flexural failure of beams retrofitted with CARDIFRC.Journal of Engineering Mechanics,ASCE,2003,129(9):1028-1038.
    [171]Leung CKY.Delamination failure in concrete beams retrofitted with a bonded plate.Journal of Materials in Civil Engineering,ASCE,2001,13(2):106-113.
    [172]Reinhardt H,CornelissenH,Hordijk D.Tensile tests and failure analysis of concrete.Journal of Structural Engineering,ASCE,1986,112(11):2462-2477.
    [173]Tada H,Paris P,Irwin G.The stress analysis of cracks handbook.Paris Productions Incorporated,St.Louis,Missouri,USA,1985.
    [174]Refai T,Swartz S.Fracture Behavior of concrete beams in three-point bending considering the influence of size effects.Report No.190,Engineering Experiment Station,Kansas State University.
    [175]BaZant Z,Li,Z.Modulus of rupture:size effect due to fracture initiation in boundary layer.Journal of Structural Engineering,ASCE,1995,121(4):739-746.
    [176]Bosco C,Carpinteri A.Fracture behavior of beam cracked across reinforcement.Theoretical and Applied Fracture Mechanics,1992,17(1):61-68.
    [177]Bosco C,Carpinteri A.Fracture mechanics evaluation of minimum reinforcement in concrete structures.International Workshop on the Applications of Fracture Mechanics to Reinforced Concrete,1992,p 347.
    [178]Bosco C,Carpinteri A,Debernardi P.Minimum reinforcement in high-strength concrete.Journal of Structural Engineering,ASCE,1990,116(2):427-437.
    [179]Baluch M,Azad A,Ashmawi W.Fracture mechanics application to reinforced concrete members in flexure.International Workshop on the Applications of Fracture Mechanics to Reinforced Concrete,1992,p 413.
    [180]Ferro G,Carpinteri A,Ventura G.Minimum reinforcement in concrete structures and material/structural instability.International Journal of Fracture,2007,146(4):213-231.
    [181]Hawkins N,Hjorteset K.Minimum reinforcement requirements for concrete flexural members.International Workshop on the Applications of Fracture Mechanics to Reinforced Concrete,1992,p 379.
    [182]Azad A,Mirza M,Chan P.Fracture energy of weakly reinforced concrete beams.Fatigue and Fracture of Engineering Materials and Structures,1989,12(1):9-18.
    [183]Ruiz G,Elices M,Planas J.Experimental study of fracture of lightly reinforced concrete beams.Materials and Structures,1998,31(214):683-691.
    [184]赵晓华,薛国亚,宋启根.带裂缝钢筋混凝土板的断裂力学分析.东南大学学报,1994,24(3):8-12.
    [185]杨松林,钟平,张建民.配筋方式对堆石坝面板裂缝扩展的影响.水力发电学报,2005,24(5):45-48.
    [186]Yu R,Ruiz G.Explicit finite element modeling of static crack propagation in reinforced concrete.International Journal of Fracture,2006,141(3-4):357-372.
    [187]魏显峰,段树金,齐永顺.少筋混凝土梁三点弯曲断裂过程的数值模型.石家庄铁道学院学报,2006,19(4):56-59.
    [188]林延杰,魏显峰,齐永顺.少筋混凝土结构断裂数值模拟.建筑施工,2007,29(1):33-35.
    [189]Zhang B,Benmokrane B,Chennouf A et al.Tensile behavior of FRP tendons for prestressed grouted anchors.Journal of Composites for Construction,ASCE,2001,5(2):85-93.
    [190]Erki M,Rizkalla S.FRP reinforcements for concrete structures.Concrete International:Design and Construction,1993,15(6):48-53.
    [191]Erki M,Rizkalla S.Anchorages for FRP reinforcement.Concrete International:Design and Construction,1993,15(6):54-59.
    [192]Mckay K,Erki M.Grouted anchorages for aramid fiber reinforced plastic prestressing tendons.Canadian Journal of Civil Engineering,1993,20(6):1065-1069.
    [193]Budelmann H,Kepp B,Rostasy F.Fatigue behavior of bond-anchored unidirectional glass-FRP' s.Serviceability and Durability of Construction Materials-Proceedings of the First Materials Engineering Congress,1990:1142-1151.
    [194]Nanni A,Tomas J.Grouted anchors for carbon FRP tendon.Proceedings of the Materials Engineering Conference,1996,1:527-534.
    [195]Benmokrane B,Zhang B,Chennouf A.Tensile properties and pullout behavior of AFRP and CFRP rods for grouted anchor applications.Construction and Building Materials,2000,14(3):157-170.
    [196]Zhang B,Benmokrane B.Pullout bond properties of fiber-reinforced polymer tendons to grout.Journal of Materials in Civil Engineering,ASCE,2002,14(5):399-408.
    [197]Mochida S,Tanaka T,Yagi K.The development and application of aground anchor using new materials.Proceedings,1st International Conference on Advanced Composites-Materials in Bridges and Structures,K.W.Neale and L.Labossiere,eds.,1992:393-401.
    [198]Zhang B,Benmokrane B,Chennouf A.Prediction of tensile capacity of bond anchorages for FRP tendons.Journal of Composites for Construction,ASCE,2000,4(2):39-47.
    [199]Benmokrane B,Chennouf A.Pullout of behavior of FRP ground anchors.International SAMPE Symposium and Exhibition(Proceedings),1997,42(1):311-324.
    [200]Chennouf A,Benmokrane B.Tensile properties and pullout behavior of fiber reinforced plastic ground anchors.Proceedings,Annual Conference-Canadian Society for Civil Engineering,1997,6:141-150.
    [201]Benmokrane B.Grouted anchorages for aramid fiber reinforced plastic prestressing tendons:discussion.Canadian Journal of Civil Engineering,1994,21:713-715.
    [202]Benmokrane B,Zhang B,Chennouf A et al.Evaluation of aramid and carbon fibre reinforced polymer composite tendons for prestressed ground anchors.Canadian Journal of Civil Engineering,2000,27(5):1031-1045.
    [203]Zhang B,Benmokrane B,Ebead U.Design and evaluation of fiber-reinforced polymer bond-type anchorages and ground anchors.International Journal of Geomechanics,ASCE,2006,6(3):166-175.
    [204]Khin M,Harada T,Tokumitsu S et al.The anchorage mechanism for FRP tendons using highly expansive materials for anchoring.Proceedings,2nd International Conference on Advanced Composites-Materials in Bridges and Structures,M.EI-Badry,ed.,1996:959-964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700