用户名: 密码: 验证码:
土本构关系及数值建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土是三相介质,其本构关系受许多因素的影响。由于土的本构模型是土工计算的基础,因而其本构关系及其建模方法的研究自二十世纪六十年代以来一直都受到诸多学者的重视。
     本文首先总结了影响土本构关系的各种因素,并对多种土本构模型进行了评述,指出利用神经网络对土的本构关系进行数值建模是一种比较好的方法。
     第二,对用于土本构关系数值建模的BP网络和RBF网络作了介绍。
     第三,对土本构关系的数值建模方法进行了研究,这是本文的重点工作。本文对砂土和淤泥质粘土做了室内三轴试验。其中砂土是室内配制,淤泥质粘土为原状土样。结果显示无论是配制试样还是原状试样,试验数据往往很分散。当试验数据比较有限而且比较分散时,常规方法训练出的网络要么精度较低,要么出现过拟合现象,从而影响模型的准确性。本文着重对此进行了研究。方法之一是通过插值补充训练样本,这在一定程度上可以提高精度,减少过拟合现象。但这种方法并不是总很有效,而且这种方法要求试验的应力范围必须覆盖实际工程可能的应力范围;方法之二是归一化方法。研究发现土的应力-应变关系具有归一化特征,选择合适的归一化指标对三轴试验数据进行归一化处理,以归一化数据作为训练样本对RBF网络进行训练,得到了比较理想的土的神经网络本构模型(包括非线性弹性及弹塑性模型)。这种方法能够避免网络的过拟合现象,减小噪声信号的干扰,有效降低数据的有限性和分散性造成的影响,自动实现概率寻优,而且能反映土的剪胀性和应力路径对本构关系的影响。
     神经网络用于拟合一般是将样本分为两部分,一部分用于训练网络,另一部分与网络的预测值进行比较,以验证网络的泛化性能。但这种方法用于土本构关系的建模并不十分理想,这是因为土工试验数据比较有限而且往往很分散。为此本文提出另一种判定网络训练效果的方法:(1)利用训练好的网络进行仿真,将应力-应变关系进行可视化,可视化图上应该没有过拟合现象;(2)将所有试验路径上的仿真值与试验值进行比较,大部分应该比较符合。满足了上述两点,即可保证在试验覆盖的应力范围内网络的可靠性。根据这个判定方法,本文提出的利用土应力-应变关系的归一化特征所建立的数值模型是成功的。
     第四,对神经网络有限元进行分析;推导了基于广义塑性力学的土弹塑性矩阵;将砂土在增p路径和等p路径情况下获得的神经网络本构模型分别纳入有限元程序,分别对增p路径和等p路径加载的三轴试样进行了计算,结果良好,并且显示土体有限元计算应当采用能反映应力路径影响的本构模型。
Soils are aggregates of mineral particles, and together with air and/or water in the void spaces they form three-phase systems. The constitutive relations of soils are influenced by many factors, and they are the basis of computer simulation of soil body, so many scholars have paid attention to investigation of constitutive relations of soils since 1960s.
     Many factors which influence constitutive relations of soils are summerized in this paper at first.And many constitutive models of soils are commentated.Then point out that it is a proper method to model constitutive relations by means of neural networks.
     Secondly, the neural networks of BP and RBF which can be applied for modeling constitutive relations of soil are introduced.
     Thirdly,the numerical modeling methods of constitutive relations of soil are researched,which is the major work of this paper.The triaxial tests of sand and mucky soil have been done.The sand used in triaxial test is graded one and the mucky soil is undisturbed .The test result shows that the test data are very discrete whenever the soil sample is made up or undisturbed.When the test data are discrete and the quantity of data is not enough,the neural network trained by conventional method will have lower accuracy or bring about over-fitting.These are primarily studied in this paper.One of the ways which is used to improve the precision of networks is to add new training samples by interpolation,which can take effect to a certain extend but is not always effective, moreover the stress range of the training samples should cover the possible stress range of actual engineering when the neural network models are applied in engineering;The second way is the method of normalization.Research shows that the stress-strain relationship of soil have the charactoristic of normalization. The triaxial test data are normalized by choosing proper normalization parameter. The neural networks of RBF are trained by regarding the normalized data as samples and then the ideal constitutive model of soil described by neural networks are obtained(include nonlinear elastic model and elastoplastic model). This way can reduce the interference of noise signal, avoid over-fitting of networks, lower the infuence caused by insufficiency and scatter of test data and can achieve probabilistic optimization automatically,furthermore,can reflect dilatancy and influence of stress path.
     The data samples are usually divided into two parts when neural networks are applied in fitting constitutive relations of soils.One part is used in training network,the other is used to compare with predictive value of network to test the generalization capability of network.But this method to be used in modeling constitutive relation is not very ideal because the test data of soil are usually insufficient and discrete.So another way to judge training success is given in this paper:1) There should be no overfitting by observing the visualization curved surfaces obtained from simulating;2) The simulation value on every test stress path should close to the test value.The reliability of network in the range of test stress will be guaranteed if the above-mentioned two points are satisfied.According to the way of judgement,the numerical models obtained by using normalization charactoristic of stress-strain relation of soil are successful.
     Fourthly, the FEM with constitutive model described by neural networks is analyzed;The elastroplastic matrix of soil based on generalized theory of plasticity is deduced; The neural network model of sand is brought into FEM program , then the calculation to the test sample is done and the results fit the experimental data well. Moreover the results show that the constitutive model adopted in FEM should reflect influence of stress path when soil body is computed.
引文
[1]黄文熙主编.土的工程性质.北京:水利电力出版社, 1983
    [2]黄克智,黄永刚编著.固体本构关系.北京:清华大学出版社, 1999
    [3]张学言,闫澍旺主编.岩土塑性力学基础.天津:天津大学出版社, 2004
    [4]武守信.基于B-P神经网络的混凝土软化模型.西南交通大学学报, 1993(6): 57-62
    [5]冯夏庭,王泳嘉,林韵梅.地下工程力学综合集成智能分析的理论和方法.岩土工程学报, 1997, 19(1): 30-36
    [6]吴洪词,唐晓玲.申波等.砂体本构特性的神经网络模拟.贵州工业大学学报, 1997, 26(3): 89-93
    [7]吴洪词,包太,张小彬等.土本构模型的有限元-神经网络耦合模拟.贵州工业大学学报, 1999, 28(2): 95-99
    [8]来兴平,蔡美峰,张冰川.神经网络计算在采场结构参数分析中的应用.煤炭学报, 2001, 26(3): 245-248
    [9]谭云亮,王春秋.岩石本构关系的径向基函数神经网络快速逼近模型.岩土工程学报, 2001, 23(1): 14-17
    [10]王靖涛,杨毅,张曦映.考虑应力路径的砂土的神经网络本构关系模型.岩石力学与工程学报, 2002, 21(10): 1487-1489
    [11]曾静,王靖涛.饱和粘土本构关系的神经网络模型.华中科技大学学报(自然科学版): 2002, 30(3): 68-70
    [12]曾静,王靖涛,李国成.多应力路径下饱和粘土的神经网络本构模型及其沉降分析.东南大学学报(自然科学版): 2002, 32(3A): 47-50
    [13]曾静,冯夏庭,王靖涛,盛谦.不同应力路径下砂土的神经网络模型弹塑性本构模型研究.岩土力学, 2004, 25(6): 896-900
    [14]曾静,王靖涛.土本构关系的数值建模方法.岩石力学与工程学报, 2002, 21(增2): 2336-2340
    [15]王靖涛.建立岩土本构模型的数值方法.华中科技大学学报(城市科学版): 2002, 19(1): 44-47
    [16]王靖涛.建立岩土本构模型的反问题理论及神经网络方法.第六次全国岩石力学与工程学术大会论文集, 2000: 260-263
    [17] J. Zeng and J. T. Wang. Neural Network Model for the Constitutive Relations of Soil. Wuhan University Journal of Natural Sciences, 2003, 8(1A): 86-90
    [18] J. T. Wang and M. Y. Ding. Inverse Problems in Modeling the Constitutive Relations of Rock and Soil. Proceeding of the Tenth International Conference on Computer Methods and Advances in Geomechanics, Tucson/Arizona/USA, Jan. 2001: 413-416
    [19] J. Ghaboussi and D. E. Sidarta. New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling. Computer and Geotechnics, 1998, 22(1): 29-52
    [20] R. L. Kushwaha and Z. X. Zhang. Evaluation of Factors and Current Approaches Related to Computerized Design of Tillage Tools: a Review. Journal of Terramechanics, 1998, 35: 69-86
    [21] D. E. Sidarta and J. Ghaboussi. Constitutive Modeling of Geomaterials from Nonuniform Material Tests. Computer and Geotechnics, 1998, 22(1): 53-71
    [22] N. Huber and Ch. Tsakmakis. Derermination of Constitutive Properties from Spherical Indentation Data Using Neural Networks. Part I: the Case of Pure Kinematic Hardening in Plasticity Laws. Journal of the Mechanics and Physics of Soils, 1999, 47: 1569-1588
    [23] G. W. Ellis, C. Yao, R. Zhao et al. Stress-strain Modeling of Sands Using Artificial Neural Networks. Journal of Geotechnical Engineering, 1995, 121(5): 429-435
    [24] C. H. Juang, C. J. Chen and Y-M. Tien. Appraising Cone Penetration Test Based Liquefaction Resistance Evaluation Methods: Artificial Neural Network Approach. Can. Geotech. J., 1999, 36: 443-454
    [25] S. R. Garcia, M. P. Romo and V. Taboada-Urtuzuastegui. Knowledge-Based Modeling of Sand Behavior. European Congress on Computatonal Method in Applied Sciences and Engineering, ECCOMAS Sep. 2000: 1-16
    [26] N. Huber and Ch. Tsakmakis. A Neural Network Tool for Identifying the Material Parameters for Finite Deformation Viscoplasticity Model with Static Recovery. Computer Methods in Applied Mechanics and Engineering, 2001, 191: 353-384
    [27] H. S. Shin and G. N. Pande. On Self-Learning Finite Element Codes Based onMonitored Response of Structure, Computers and Geotechnics, 2000, 27: 161-178
    [28] D. Penumadu and R. Zhao. Triaxial Compression Behavior of Sand and Gravel Using Artificial Neural Networks(ANN). Computers and Geotechnics, 1999, 24: 207-230
    [29] J. Ghaboussi, J. H. Garrett Jr. and X. Wu. Knowledge-Based Modeling of Materials Behavior with Neural Networks. Journal of Engineering Mechanics, 1991, 117(1): 132-153
    [30] E. M. R. Fairbairn, N. F. F. Ebecken, C. N. M. Paz et al. Determination of Probabilistic Parameters of Concrete: Solving the Inverse Problem by Using Artificial Neural Networks. Computers and Structures, 2000, 78: 497-503
    [31] H. G. Ni and J. Z. Wang. Prediction of Compressive Strength of Concrete by Neural Networks. Cement and Concrete Research, 2000, 30: 1245-1250
    [32] G. Sankarasubramanian and S. Rajasekaran. Constitutive Modeling of Concrete Using a New Failure Criterion. Computers & Structures, 1996, 58(5): 1003-1014
    [33] James K. Mitchell. Fundamentals of Soil Behavior. USA: John Wiley & Sons, Inc. , 1976: 176-194, 295-356
    [34]张学言.土塑性力学的建立与发展.力学进展, 1989, 19(4): 485-495
    [35]李彰明.土体力学响应的有限特征比理论研究[博士论文]
    [36]钱家欢,殷宗泽(主编).土工原理与计算.北京:中国水利电力出版社, 1996
    [37] Lings M L, Pennington D S, Nash D F T, Anisotropic Stiffness Parameters and Their Measurement in A Stiff Natural Clay [J]. Geotechnique, 2000, 50(2): 109-125
    [38] Yimsiri S, Soga K. Micromechanics-based Stress-strain Behavior of Soils at Small Strains [J]. Geotechnique, 2000, 50(2): 559-571
    [39] Hoque E, Tatsuoka F. Anisotropy in Elastic Deformation of Granular Materials [J]. Soils and Foundations, 1998, 38(1): 163-179
    [40] Jovicic V, Coop M R. The Measurement of Stiffness Anisotropy in Clay with Bender Element Tests in the Triaxial Apparatus [J]. Geotech Testing J, ASTM, 1998, 21(1): 3-10
    [41] Roesler S K. Anisotropy Shear Modulus due to Stress Anisotropy [J]. J GeotechEngng Div, ASCE, 1979, 105(7): 871-880
    [42] Nahai T, Matsuoka H. Shear Behaviors of Sand and Clay under Three-dimensional Stress Condition [J]. Soils and Foundations, 1983, 23(2): 163-179
    [43]殷宗泽,朱俊高,卢海华.土体弹塑性柔度矩阵与真三轴试验研究[A].第七届全国土力学会议论文集[C].北京:中国建筑工业出版社, 1994
    [44]殷宗泽.土的侧胀性及其对土石坝应力变形的影响[J].水利学报, 2000(7): 49-54
    [45]殷宗泽,徐志伟.土体的各向异性及近似模拟[J].岩土工程学报, 2002, 24(5): 547-551
    [46] Arthur J R F, et al. Principal Stress Rotation: A Missing Parameter [J]. J of Geotechnical Engineering, 1980, 106(4): 419-433
    [47] Miura K, et al. Deformation Behavior of Anisotropic Dense Sand under Principal Stress Axes Rotation [J]. Soils and Foundations, 1986, 26(1): 36-52
    [48] Yukio N, et al. Flow Deformation of Sands Subjected to Principal Stress Rotation [J]. Soils and Foundations, 1998, 38(2): 115-128
    [49] Chang C S, et al. Micromechanics Modeling for Stress-strain Behavior of Granular soils(I: Theory) [J]. J of Geotechnical Engineering, 1992, 118(12): 1959-1974
    [50] Chang C S, et al. Micromechanics Modeling for Stress-strain Behavior of Granular soils(II: Evaluation) [J]. J of Geotechnical Engineering, 1992, 118(12): 1975-1992
    [51] Matsuoka H. On the Significance of the“Spatial Mobilized Plane”[J]. Soils and Foundations, 1976, 16(1): 91-100
    [52] Rowe P W. The Stress-dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact [J]. Proc Roy Soc A, 1962, 269: 500-527
    [53] Matsuoka H, Sakakibara K. A Constitutive Model for Sands and Clays Evaluating Principal Stress Rotaton [J]. Soils and Foundations, 1987, 27(4): 73-89
    [54] Matsuoka H, Sun D H. Extension of Spatial Mobilized Plane (SMP) to Frictional and Cohesive Materials and Its Application to Cemented Sands [J]. Soils and Foundations, 1995, 35(4): 63-72
    [55] Marte Gutierrez. Flow Theory for Sand under Rotation of Principal Stress Direction [J]. Soils and Foundations, 1991, 31(4): 121-132
    [56]史宏彦,谢定义,汪闻韶.平面应变条件下主应力轴旋转产生的应变.岩土工程学报, 2001, 23(2): 162-166
    [57]郑颖人.岩土塑性力学的新进展——广义塑性力学.岩土工程学报, 2003, 25(1): 1-10
    [58] Jean H Prevost, Radu Popescu. Constitutive Relations for Soil Materials. \EJGE-paper\EJGE Paper 1996-09
    [59] Ortiz M. Pandolfi A. Avariational Cam-clay theory of plasticity. Computer methods in applied mechanics and engineering, 2004, 193: 2645-2666
    [60] Schofield A N, Wroth C P. Critical state soil mechanics. Londen: McGraw-Hill, 1968
    [61] Zienkiewicz O C, Chan A H C. , Pastor M, et al. Computational geomechanics with special reference to earthquake engineering. Chichester: John Wiley & Sons, 1998: 120-129
    [62] Matsuoka H, Yao Y P &Sun D A. The Cam—Clay models revised by the SMP criterion. Soils and Foundations, 1999, 39(1): 81-95
    [63]郑颖人,沈珠江.岩土塑性力学原理[M].重庆:中国人民解放军后勤工程学院, 1998: 212-218
    [64] Mroz Z. On the description of anisotropic work-hardening. J. Mech. Phys. Solids, 1967, 15: 163-175
    [65] Mroz Z, Norris V A and Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading. Int. J. Anal. Meth. Geomech. , 1978, 2: 203-221
    [66] Prevost J H. Mathematical modeling of monotonic and cyclic undrained clay behaviour. Int. J. Anal. Meth. Geomech. , 1977, 1: 195-216
    [67] Hirai H. A elastoplastic constitutive model for cyclic behaviour of sands, Int. J. Num. Anal. Meth. Geomech. , 1987, 11: 503-520
    [68] Mroz Z, Norris V A. and Zienkiewicz O C. An anisotropic critical state model for soils subjected to cyclic loads, Geotechnique, 1981, 31: 451-469
    [69] Mroz Z, Norris V A. Elastoplastic and viscoplastic constitutive models for soils with applications to cyclic loading, in Soil Mechanics–Transient and Cyclic loads,G.. N. Pande and O. C. Zienkiewicz Eds. Wiley: John Wiley & Sons, 1982: 173-271
    [70] Sangrey D A, Henkel D J. and Erig M I. The effective stress response of a saturated clay soil to repeated loading, Can. Geotech. J. , 1969, 6: 241-252
    [71] Krieg R D. A practical two-surface plasticity theory. J. Appl. Mech. Trans. ASCE, 1975, E42: 641-646
    [72] Dafalias Y F and Popov E P. A model of non-linearly hardening materials for complex loadings. Acta Mech, 1975, 21: 173-192
    [73] Dafalias Y F. and Herrmann L R. Bounding surface formulation of soil plasticity, in Soil Mechanics–Transient and Cyclic loads, G.. N. Pande and O. C. Zienkiewicz Eds. Wiley: John Wiley & Sons, 1982: 253-282
    [74] Kaliakin V N. and Dafalias Y F. Simplifacations to the bounding surface model for cohensive soils. Int. J. Num. Anal. Meth. Geomech , 1989, 13: 91-100
    [75] Bardet J P. Prediction of deformations of Hostun and Reid Bedford sands with a simple bounding surface plasticity model, in Constitutive Equations for Granular Non-cohensive Soils, A. Saada and G. Biaaanchini Eds. Balkema, 1989: 131-148
    [76] Hashiguchi K. Elastoplastic constitutive laws of granular materials, Constitutive Equationf of Soils, 9th. Int. Congr. Soil Mech. Found. Engng. , S. Murayama and A. N. Schofield Eds. Jssmfe, 1977: 73-82
    [77] Pastor M, Zienkiewicz O C and Leung K H. Simple model for transient soil loading in earthquake analysis. II Non-associateive model for sands, Int. J. Num. Anal Mech. Geomech. , 1985, 9: 477-498
    [78] Pastor M, Zienkiewicz O C. A generalized plasticity hierarchical model for sand under monotonic and cyclic loading. Proc. 2nd. Int. Conf. Numerical Modles in Geomechanics, Pande, G. N. and Van Impe, W. F. Eds. Ghent: M Jackson and Son Publ. , 1986: 131-150
    [79] Pastor M, Zienkiewicz O C and Chan A H C. Generalized Plasticity and the modeling of soil behaviour. Int. J. Num. Anal Mech. Geomech. , 1985, 9: 477-498
    [80] Darve F and Labanieh S. Incremental constitutive law for sangs and clays: simulation of monotonic and cyclic tests. Int. J. Num. Anal Mech. Geomech. ,1985, 6: 243-275
    [81] Dafalias Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity, J. Eng. Mech. ASCE, 1986, 112: 966-987
    [82] Kolymbas D. An outline of hypoplasticity, Archive of Applied Mechanics, 1991, 61: 143-151
    [83] Desrues J and Chambon R. A new rate type constitutive model for geomaterials: CloE. In: D. Kolymbas Ed. Elsevier: Modern Approaches to Plasticity, 1993: 309-324
    [84] Wang Z L, Dafalias Y F and Shen C K. Bounding surface hypoplasticity model for sand. J. Eng. Mech. ASCE, 1990, 116: 983-1001
    [85]蔡正银,李相崧.取决于材料状态的变形局部化现象.岩石力学与工程学报, 2004, 23(4): 533-538
    [86] Rudnicki J and Rice J. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the mechanics and physics of solids, 1975, 23: 371-394
    [87]饶为国,赵成刚,王哲等.一个可考虑结构性影响的土体本构模型.固体力学学报, 2002, 23(1): 34-39
    [88] Timothy Y Lai. Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity: [A Dissertation for Ph. D]. USA: Stanford University, 2002[UMI Number: 3048557]
    [89] Read H and Hegemier G. Strain softening of rock, soil and concrete– a review article. Mechanics of materials, 1984, 3: 271-294
    [90]蔡正银,李相崧.无粘性土中剪切带的形成过程.岩土工程学报, 2003, 25(2): 129-134
    [91] Bazant Z and Pijaudier-Cabot G. Nonlocal continuum damage localization instability and convergence. Journal of applied mechanics, 1988, 55: 287-293
    [92] Bazant Z and Lin L. Non-local yield limit degradation. International journal for numerical methods in engineering, 1988, 26: 1805-1823
    [93]沈珠江.现代土力学的基本问题.力学与实践, 1998, 20: 1-6
    [94]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG理论.机械强度, 1999, 21(2): 81-87
    [95]潘一山,魏建明.岩石材料应变软化尺寸效应的实验和理论研究.岩石力学与工程学报, 2002, 21(2): 215-218
    [96] Castrenze Polizzotto and Guido Borino. A thermodynamics-based formulation of gradient- dependent plasticity. Eur. I. Mech. A/Solids 17, 1998: 741-761
    [97]朱兆祥.材料本构关系理论.中国科技大学近代力学系研究生讲义, 1982: 51-59
    [98] Chang C S, Chang Y and Kabir M G. Micromechanical modeling for stress-strain of granular soils, I: Theory. ASCE J. Geotech. Engng. , 1992, 118: 1959-1974
    [99] Chang C S. Numerical and analytical modeling for granulates. Proc. The 9th Int. Conf. on Computer Methods and Advances in Geomechanics. Netherland, 1997: 105-114
    [100] Chang C S. Strain tensor and deformation for granular material. J. of Engineering Mechanics, 1990, 116(4): 790-804
    [101] Herle I and Dudehus G. Determination of parameters of a hypoplastic constitutive model from properties of grain assembles. Mech. Cohes-frict. Mater, 1999, 4: 461-486
    [102] Jensen R P, Bosscher P J, Plesha M E et al. DEM simulation of granular mediastructure interface: effects of surface roughness and particle shape. Int. J Numer Anal Geomechanics, 1999, 23: 531-547
    [103]张洪武.微观接触颗粒岩土非线性力学分析模型.岩土工程学报, 2002, 24(1): 12-15
    [104]徐丽娜(编著).神经网络控制.北京:电子工业出版社, 2003
    [105]张乃尧,阎平凡(编著).神经网络与模糊控制.北京:清华大学出版社, 2000
    [106]楼顺天,施阳(编著).基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社, 1999
    [107]陈志敏,贾立宏.夯扩桩复合地基承载力预测的BP网络研究.岩土工程学报, 2002, 24(3): 286-289
    [108]胡中雄.土力学与环境土工学.上海:同济大学出版社, 1997
    [109]陆培炎,陈韶永,熊丽珍等.水坠坝冲填土弹塑性本构方程.岩土工程学报,1984, 6(2): 23-39
    [110] Tarantola A. Inverse ProblemTheory[M]. Amsterdam: Elsevier Science Publishers, 1988
    [111] Wang J T, Ding M Y. Inverse problems and neural network approach in modeling the constitutive relations of rock and soil [A] A. A. Balkema. Proceedings of the 2001
    [112] ISRM international Symposium-2th Asian Rock Mechanics Sysposium[C]. Beijing, 2001: 471-474
    [113] Clough R. W. and Woodward R. J. , Analysis of Embankment Stresses and Deformations, J. Soil Mechanics and Foundation Div. , ASCE, 93, SM4, 1967

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700