用户名: 密码: 验证码:
特高压输电线的覆冰舞动及脱冰跳跃研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
架空输电线的覆冰灾害是一个国际上普遍关心的问题。随着特高压线路的建设,大跨度输电线路不断增加,电线覆冰后的舞动和脱冰跳跃易酿成很大危害,轻则相间闪络、损坏地线和导线、金具及部件,重则线路跳闸停电、断线倒塔等,从而造成重大经济损失。为了保证特高压电网的安全可靠运行,对输电线的防雪灾、冰灾提出了更高的要求,因此有必要对输电线覆冰作用下的特性进行深入的研究。
     本文对大跨越输电线路的覆冰作用进行了多方面的研究,主要包括导线非线性有限元模型的建立、初始构形的确定、覆冰导线的空气动力特性CFD仿真计算、导线的舞动分析、脱冰跳跃计算等几部分,旨在建立一套输电线在覆冰作用下的舞动及脱冰跳跃的计算方法。本文各个章节都围绕此问题展开。
     首先推导了进行输电线非线性有限元分析的两节点杆单元的参数矩阵,给出了用单根导线来等效分裂导线的计算公式,介绍了龙格—库塔法进行输电线动力分析的方法,并用FORTRAN编写了相应的计算模块。
     从单档输电线初始构形的解析方法出发,设计了考虑绝缘子滑轮调整作用的多跨连续档输电线初始构形的迭代求解流程,利用FORTRAN编写了连续档输电线线初始构形的迭代子程序。该方法难以适用于复杂的荷载、边界条件下的输电线找形要求,本文提出了在迭代求解自重作用下初始构形的基础上,建立连续档架空输电线的有限元模型,进行非线性有限元求解找形的混合找形法,该方法综合了迭代法和有限元法的优点,找形效率高、收敛速度快,可满足各种悬挂形式、档距布置和边界条件的输电线找形要求。
     利用CFX数值风洞技术对覆冰导线进行CFD数值模拟,计算了覆冰导线在各风攻角下的三分力系数。通过已建立的连续多档导线的空间有限元模型,采用龙格—库塔法编程实现了输电线舞动的数值求解,并用FORTRAN编写了相应的舞动分析模块。以汉江大跨越覆冰导线为例,进行了导线舞动的仿真计算,计算结果深化了对舞动机理的认识,为进一步研究输电线的防舞方法奠定了基础。
     对覆冰导线脱冰的起因和作用机理进行了分析,利用FORTRAN自编了覆冰导线脱冰动力响应的计算程序,并通过与某线路的试验实测结果进行对比,验证该程序的可靠性、有效性。然后用该计算程序对汉江大跨越架空导线的脱冰跳跃进行了仿真计算,总结出了一些有意义的结论。
     输电线在覆冰作用下的灾害研究是一个既十分紧迫,又相当复杂;既具有十分重要的社会经济意义,又难于迅速地拿出彻底解决办法的世界性攻关课题。希望本文的研究和分析能够为导线覆冰作用的理论研究提供一条新的思路,为导线覆冰灾害的防治提供更为有效的理论依据。
The galloping and ice-shedding of overhead transmission lines is a hard problem, which has been paid great attention to in the world. Along with the development of Ultra-high Voltage(UHV) transmission lines in China, the great span transmission line of electricity increases constantly. The harm caused by the galloping and ice-shedding of overhead conductors has been more and more serious, which can cause wear and fatigue damage to conductors, insulator strings, support hardware and tower components, even break the line and destroy the transmission tower. This result in heavy economic losses. In order to guarantee the safety and reliability of UHV electrical network, the dynamic mechanical properties of power transmission lines under the effect of icing accretion must be studied seriously.
     In this dissertation, the studies on the effect of icing accretion for long conductors of power transmission lines are performed. The research content includes: nonlinear finite element model of conductors, the determination of initial configuration of overhead lines, simulation calculation of the aerodynamic characteristics of the ice-accreted conductor, calculation and analysis of nonlinear galloping, calculation and analysis of ice-shedding. The primary task of this dissertation is attempting to explore a set of complete method that can be used for galloping analysis and ice-shedding analysis, and all sections of this dissertation are depicted on this aim.
     This dissertation derive the stiffness matrix and mass matrix of the two-node bar element according to the non-linear finite element theory at first, calculation formula for using single conductor to equal bundle conductors was put forward. Then the dynamic analysis of transmission lines were done by Runge-Kutta Method, and simulation calculation program has been compiled used FORTRAN.
     On the basis of analytical method of form-finding analysis of single-span power transmission lines, the solution flowchart of iterative computation the initial configuration of multi-span power transmission lines is given, which can consider the regulative action of suspension insulator, and a subprogram is compiled to find the initial configuration of multi-span power lines. This method can' t satisfy the application requirement of the case with more complex loads and more complex boundary condition. So a new method for form-finding analysis of cable structures is be proposed: the nonlinear finite element model of overhead conductors can be built according to the iterative solving result of initial configuration under the gravity action, then the non-linear FEM method can be used to find the configuration with complex loads and complex boundary conditions. This new method named Mixed form-finding, which integrate the advantages of iterative solving method and FEM method, has higher efficiency, rapid speed of convergence, is more concise and suits for analysis of more complex loads and complex boundary conditions.
     According to the characteristics of the crescent shape iced conductor models, numerical wind tunnel teclinology based on CFD numerical simulation is used to study the mean aerodynamic force coefficient of iced conductor at various angles of attack in this dissertation. After the space finite element model of multi-span power transmission lines are built, the Runge-Kutta Method is used to compute the galloping of power transmission lines acted by aerodynamic forces, and the corresponding program for galloping analysis is Compiled. Then the conductors of UHV Han-river long span transmission lines are token as an example, the calculation results of galloping of bundle transmission lines is obtained. The study results not only deepen the understanding of galloping mechanism, but also provide the theoretical basis for further study of prevention and cure of power transmission line galloping.
     After analyzing the mechanisms of conductor icing and ice-shedding, the computer program for calculating the dynamic response of conductors ice-shedding is developed by applying FORTRAN. Through comparing the calculation results with experiment of one transmission lines, the reliability and effectiveness of this program is verified. Then the overhead conductors ice-shedding simulation calculation of UHV Han-river long span transmission lines are done by using this program, and some meaningful conclusions are obtained
     Study the disaster of overhead transmission lines caused by ice is very important and difficult, this research has an important theoretical and engineering significance. There are no effective measures so far to solving this problem at present. This dissertation presents a new approach to solve the response of iced conductors, and provides the reference to the study of controlling the icing disaster of conductors.
引文
[1]刘振亚.我国发展特高压输电的重大意义.华东电力,2006,34(06):1
    [2]刘振亚.加快建设坚强国家电网促进中国能源可持续发展.中国电力,2006,39(09):1-3
    [3]刘庆丰.输电线路不平衡张力分析和计算.2006,26(01):93-95
    [4]王丽新.输电线路静平衡及动力响应的有限元分析[硕士学位论文].武汉:华中科技大学,2004
    [5]唐春林.覆冰过载情况下电线的允许比载和冰厚计算.华东交通大学学报,2006,23(01):102-105
    [6]Pierre McComber,Alain Paradis.A cable galloping model for thin ice accretions.Atmospheric Research,1998,46(1-2):13-25
    [7]Wang Liming,Yin Yu,Liang Xidong,Guan Zhicheng.Study on air insulator strength under conductor galloping condition by phase to phase spacer.2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2001:617-619
    [8]Kim Hwan-Seong,Byun Gi-Sig.A study on the analysis of galloping for power transmission line.IEEE International Symposium on Industrial Electronics,2001,2(2):973-978
    [9]J.H.Zhang,Y.H.Shi,G.X.Liu,B.W.Hogg.Simulation of transmission line galloping using finite element method.IEE 2nd Internationa Conference on Advances in Power System Control,Operation and Management,Hongkong,7-10Dec 1993:644-648
    [10]朱宽军,刘超群,任西春.架空输电线路舞动时导线动态张力分析.中国电力,2005,38(10):40-44
    [11]刘振亚.我国特高压试验示范工程即将开始实质性建设.电网技术,2006,30(11):T8
    [12]Anonymous.向家坝-上海特高压直流工程获发改委正式核准.电网技术,2007,(10):83
    [13]Robert I.Egbert.Estimation of Maximum Amplitudes of Conductor Galloping by Describing Function Analysis.IEEE Transactions on Power Delivery,1986,1(1):251-257
    [14]J.J.Ratkowski.Experiments with Galloping Spans.IEEE Transactions on Power Apparatus and Systems,1963,82(68):661-669
    [15]John H.G.Macdonald,Guy L.Larose.Two-degree-of-freedom inclined cable galloping--Part 2:Analysis and prevention for arbitrary frequency ratio.Journal of Wind Engineering and Industrial Aerodynamics,2008,96(3):308-326
    [16]John H.G.Macdonald,Guy L.Larose.Two-degree-of-freedom inclined cable galloping--Part 1:General formulation and solution for perfectly tuned system.Journal of Wind Engineering and Industrial Aerodynamics,2008,96(3):291-307
    [17]Renato Barbieri,Nilson Barbieri,Oswaldo Honorato de Souza Júnior.Dynamical analysis of transmission line cables.Part 3--Nonlinear theory.Mechanical Systems and Signal Processing,2007,22(4):992-1007
    [18]阎同喜.导线覆冰气象参数的分析研究.机械管理开发,2006,(05):51-52
    [19]Ping Fu,Masoud Farzaneh,Gilles Bouchard.Two-dimensional modelling of the ice accretion process on transmission line wires and conductors.377-388,2006,46(2):132-146
    [20]J.H.G.Macdonald,G.L.Larose.A unified approach to aerodynamic damping and drag/lift instabilities,and its application to dry inclined cable galloping.Journal of Fluids and Structures,2006,22(2):229-252
    [21]刘和云.架空导线覆冰与脱冰机理研究.武汉:华中科技大学,2001
    [22]郭应龙,李国兴,尤传永.输电线路舞动.北京:中国电力出版社,2002
    [23]蒋兴良,易辉,等.输电线路导线覆冰的国内外研究现状.高电压技术,2004,30(01):6-9
    [24]蒋兴良.带电导线覆冰及电场对导线覆冰的影响.高电压技术,1999,25(2):58-60
    [25]Rodolfo Claren,Giorgio Diana.Mathematical Analysis of Transmission Line Vibration.IEEE Transactions on Power Apparatus and Systems,1969.PAS-88(12):1741-1771
    [26]H.Max Irvine,T K Gaughey.Cable Structures.The MIT Press,Cambridge,Massachusetts,and London,England,1983
    [27]H.Max Irvine,T K Gaughey.The linear theory of free vibrations of a suspended cable.1974:299-315
    [28]A.Y.Shehata,A.A.EIDamatty,E.Savory.Finite element modeling of transmission line under downburst wind loading.Finite Elements in Analysis and Design,2005,42(41):71-89
    [29]H.B.Jayaraman,W.C.Kundson.A curved element for the analysis of cable structures.Compter & Structure,1981,14(5):325-333
    [30]G.Diana,S.Bnmi,E.Fossati,A.Manenti.Dynamic analysis of the transmission line cross "Lagon de Maracaibo".Wind Eng and IndusAero,1998,74(2):977-986
    [31]RYu Y.Desai,N.Popplewell,A.Shah.Finite element modelling of transmission line galloping.Compter & Structure,1995,57(3):407-420
    [32]Nilson Barbieri,Oswaldo Honorato de Souza Junior,Renato Barbieri.Dynamical analysis of transmission line cables.Part 1--linear theory.Mechanical Systems and Signal Processing,2004,18(3):659-669
    [33]Renato Barbieri,Nilson Barbieri,Oswaldo Honorato de Souza Junior.Dynamical analysis of transmission line cables.Part 3--Nonlinear theory.Mechanical Systems and Signal Processing,2008,22(4):992-1007
    [34]单圣涤,李飞云.悬索曲线理论及其应用.长沙:湖南科学技术出版社,1983
    [35]沈世钊,徐崇宝,赵臣.悬索结构设计.北京:中国建筑工业出版社,1997
    [36]彭卫,孙炳楠,唐锦春.一种用于索结构分析的悬链线单元.应用数学和力学,1999,20(3):45-48
    [37]罗绍湘 向锦武,陈鸿天.悬索结构振动分析的悬链线索元法.工程力学,1999,16(3):34-37
    [38]夏正春,李黎,史小伟.索刚结构两种找形方法的对比分析.华中科技大学学报(城市科学版),2005,22(01):66-69
    [39]夏正春.张拉膜结构的初始找形及风致振动研究[硕士学位论文].武汉:华中科技大学,2005
    [40]刘群.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究.中国电力,1997,30(9):12-16
    [41]张朝阳.多跨输电线平面振动特性的传递矩阵法分析.华中理工大学学报,1997,25(4):4-7
    [42]邵天晓.架空送电线路的电线力学计算.北京:中国电力出版社,2003
    [43]何锃.大跨越分裂导线静动特性的计算分析.武汉汽车工业大学学报,1997,25(4):16-19
    [44]何锃,赵高煜.安装防振锤的分裂导线自由振动的有限元计算.工程力学,2003,2(101):22-26
    [45]Electric Power Research Institute.Transmission line reference book:Wind-induced conductor motion,EPRI Research Project 792,Palo Alto,CA,USA,1979
    [46]P.Yu,N.Popplewell,A.H.Shah.Instability trends of inertially coupled galloping:Part Ⅱ:Periodic vibrations.Journal of Sound and Vibration,1995,183(4):679-691
    [47]M.I.Kazakevich,A.G.Vasilenko.Closed analytical solution for galloping aeroelastic self-oscillations.Journal of Wind Engineering and Industrial Aerodynamics,1996,65(1-3):353-360
    [48]蒋兴良,孙才新,王少华.输电线路导线舞动的国内外研究现状.高电压技术,2005,31(10):11-14
    [49]C.B.Gurung,H.Yamaguchi,T.Yukino.Identification of large amplitude wind-induced vibration of ice-accreted transmission lines based on field observed data.Engineering Structures,2002,24(2):179-188
    [50]O.Nigol,P.G.Buchan.Conductor Galloping Part Ⅰ.Den Hartog Mechanism IEEE Transmission on Power Apparatus and Systems,1981,100(2):699-707
    [51]O.Nigol,P.G.Buchan.Conductor Galloping-Part Ⅱ:Torsional Mechanism.IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(2):708-720
    [52]P.Yu,A.H.Shah,N.Popplewell.Inertially Coupled Galloping of Iced Conductors.Transactions of the ASME,1992,59:140-145
    [53]Y.M.Desai,Yu A.H.Shah,N.Popplewell.Perturbation-based finite element analysis of transmission line galloping.Journal of Sound and Vibration,1996,191(4):469-489
    [54] Hu Jicai, Z. Song, Ma Jianguo, Wu Shijing. Model for comprehensive simulation of overhead high voltage power transmission line galloping and protection. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2006: 190 -193
    [55] J.-L.; Jianwei Wang; Lilien. Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations. IEEE Transactions on Power Delivery, 1998,13(3): 909-916
    [56] Q. Zhang, N. Popplewell, A. H. Shah. Galloping of bundle conductor. Journal of Sound and Vibration, 2000, 234(1): 115-134
    [57] Y. M. Desai, P. Yu, N. Popplewell, A. H. Shah. Finite element modelling of transmission line galloping. Computers & Structures, 1995, 57(3): 407-420
    [58] R. Keutgen, J. L. Lilien. Benchmark cases for galloping with results obtained from wind tunnel facilities validation of a finite element model. IEEE Transactions on Power Delivery, 2000, 15(1): 367-374
    [59] T. Nojima, M. Shimizu, I. Ogi, T. Okumura, K. Nagatomi, H. Ito. Development of galloping endurance design for extra large 6-conductor bundle spacers by the experience of the full scale 500 kV test line. IEEE Transactions on Power Delivery,1997, 12(4): 1824-1829
    [60] J. L. Lilien, D. G. Havard. Galloping database on single and bundle conductors prediction of maximum amplitudes. IEEE Transactions on,Power Delivery, 2000,15(2): 670-674
    [61] J.L.Lilien, K.O.papailiou. Calculation of spacer compression for bundle lines under short-circuit. IEEE Trans on PWD, 2000, 15(2): 839-845
    [62] G. Diana, F. Cheli, A. Manenti, P. Nicolini, F. Tavano. Oscillation of bundle conductors in overhead lines due to turbulent wind. IEEE Transactions on Power Delivery, 1990, 5(4): 1910-1922
    [63] Q. Zhang, N. Popplewell, A. H. Shah. Galloping of Bundle Conductor. Journal of Sound and Vibration, 2000,234(1): 115-134
    [64] Kim Hwan-Seong, Nguyen Tuong-Long. Analysis of galloping amplitude for conductors with interphase spacers. The 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, 2004: 1020-1025
    [65] D. G. Havard, J. C. Pohlman. Five Years' Field Trials of Detuning Pendulums for Galloping Control.IEEE Transactions on Power Apparatus and Systems,1984,PAS-103(2):318-327
    [66]M.L.Lu,N.Popplewell,A.H.Shah,J.K.Chan.Hybrid Nutation Damper for Controlling Galloping Power Lines.IEEE Transactions on Power Delivery,2007,22(1):450-456
    [67]J.J.Wang.Overhead Conductor Vibrations and Control Technologies.International Conference on Power System Technology,2006:1-6
    [68]D.G.Havard,C.J.Pon,J.C.Pohlman.Galloping Control Permits Tower Head Compaction and Line Upgrading.IEEE Transactions on Power Delivery,1987,PWRD-2(3):939-946
    [69]黄河 何锃 李万平.特大覆冰导线气动力特性测试.华中科技大学学报,2001,29(08):84-86
    [70]李万平.覆冰导线群的动态气动力特性.空气动力学学报,2000,(04):413-420
    [71]赵高煜 何锃.分裂导线扭转舞动分析的动力学建模.工程力学,2001,18(02):126-134
    [72]Jacques Druez,Sylvie Louchez,Pierre McComber.Ice shedding from cables.Cold Regions Science and Technology,1995,23(4):49-54
    [73]Baenziger MT.Broken conductor loads on transmission line structures[Ph.D].University of Wisconsin,Madison,1981
    [74]A.Jamaledding,et al.Weigh-dropping Simulation of ice-shedding effects on an overhead transmission line model.Proceedings of 7th IWAIS(International Workshop on Atmospheric Icing of Structures),Canada.1996:44-48
    [75]A.Jamaledding.Simulation of ice-shedding on electrical transmission line using ADINA.Computers & Structures,1993,47(4/5):523-536
    [76]T.Kalman,M.Farzaneh,G.McClure.Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires.Computers &Structures,2007,85(7-8):375-384
    [77]M.Roshan Fekr and G.McClure.Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines.Atmospheric Research,1998,46(1-2):1-11
    [78]周迪,黄素逸.覆冰导线风动脱冰研究.长沙电力学院学报(自然科学版),2002,17(02):54-56
    [79]王黎明侯镭,朱普轩,关志成.特高压线路覆冰脱落跳跃的动力计算.1-6,2008,28(6):1-6
    [80]陈政清 杨孟钢.基于U.L.列式的两节点悬链线索元非线性有限元分析.土木工程学报,2003,36(8):63.68
    [81]王勖成.有限单元法.北京:清华大学出版社,2003
    [82][日]户川隼人.振动分析的有限元法(第二版).北京:地震工程出版社,1985
    [83]Peyrot A H,Goulois A M.Analysis of flexible transmission lines.Journal of the Structure Division,ASCE,1978,104(5):763
    [84]Jayaraman H B,Knudson W C A.A curved element for the analysis of cable structures.Computers and Structures,1981,14(3-4):325-333
    [85]聂建国,陈必磊,肖建春.悬链线单元算法的改进.力学与实践,2003,25:28-32
    [86]沈祖炎,汤荣伟,赵宪忠.基于悬索线元的索穹顶形状精确确定方法.同济大学学报(自然科学版),2006,34(1):1-6
    [87]Irvine HM.Cable Structure.Cambridge,MA,USA:MIT Press,1981
    [88]吕翼.覆冰导线气动力特性的数值模拟研究[硕士学位论文].杭州:浙江大学,2008
    [89]黄涛.大跨越高压输电线路非线性舞动理论研究[博士学位论文].武汉:华中科技大学,2007
    [90]Pierre McComber,Jacques Drues.Effect of cable twisting on atmospheric ice shedding.IWAIS,Japan.1990
    [91]Mojtaba Eskandarian.Ice shedding from overhead electrical lines by mechanical breaking:A ductile model for viscoplastic behaviour of atmospheric ice[Ph.D].Universite du Quebec a Chicoutimi(Canada),2005
    [92]刘和云.架空导线覆冰防治的理论与应用.北京:中国铁道出版社,2001
    [93]Zsolt Peter.Modelling and simulation of the ice melting process on a current-carrying conductor[Ph.D].Canada:Universite du Quebec a Chicoutimi,2006
    [94]Morgan VT,Swift DA.Jump height of overhead line conductors after the sudden release of ice loads.Proc lEE,1964,111(10):1736-1746
    [95]M.Roshan Fekr,G.McClure.Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines.Atmospheric Research,1998,46(1-2):1-11
    [96]G McClure,Lapointe,M.Modeling the structural dynamic response of overhead transmission lines.Computers & Structures,2003,81(8-11):825-834
    [97]Támás Kálmán;.Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires.Computers & Structures,2007,85(7-8):375-384
    [98]Támás Kálmán.Dynamic behavior of iced cables subjected to mechanical shocks[Ph.D].Québec,Canada:Université du Québec à Chicoutimi,2007
    [99]夏正春,李黎,陈勇,胡伟.导线脱冰跳跃数值仿真.第17届全国结构工程学术会议论文集(Ⅲ),北京:《工程力学》杂志社,2008,573-578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700