用户名: 密码: 验证码:
新型混合多端直流输电系统理论及其若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于晶闸管电流源型换流器(CSC)的传统直流输电系统功率等级高、运行可靠、成本低,但仅适用于具有一定短路比的电力系统,难以向弱交流系统或无源负荷中心供电。由GTO、IGBT或IGCT等全控器件构成电压源型换流器(VSC)的直流输电系统不仅可以工作在有源逆变状态,也可以工作在无源逆变状态,具有独立控制有功功率和无功功率、提高交流系统稳定性、输出电压波形好等优点。然而,其功率等级较低、成本较为昂贵,难以应用在大规模的电力传输上。为获取最大的经济和技术效益,充分利用电压源换流器和电流源换流器各自的优点,本文对基于电压源型换流器和电流源型换流器的混合直流输电系统及其相关技术进行了研究。
     首先,采用临界换相电压降指标分析了基于晶闸管电流源型换流器的传统直流输电系统与弱交流系统连接时的运行特性,并利用STATCOM技术进行了改进。同时,也分析了电压源型直流输电系统与弱交流系统相连接时的运行特性,指出利用STATCOM技术具有扩大逆变器的运行范围,提高交流系统的电压稳定性;减小系统等值电抗,增大临界换相电压降,降低换相失败概率;动态响应速度快等优点。然而,由于基于晶闸管的逆变器只能工作在有源逆变状态,即使采用STATCOM技术,其向无源系统供电的实现仍相当困难。为此,论文提出了一种含电压源型换流器的混合双端直流输电系统,不仅可以向弱交流系统供电,也能向无源系统供电,扩大了直流输电系统的适用范围。
     其次,研究了一种基于电压源型换流器和电流源型换流器的混合多端直流输电系统,其换流器既可以是电压源型的,也可以是电流源型的,各个换流器之间以并联方式连接。为验证该直流输电模式的有效性和可行性,本文建立了一个混合三端直流输电系统仿真模型,包含一个电流源型整流器、一个电流源型逆变器和一个电压源型双向换流器,并分别设计了相应的控制策略。当电流源整流器采用定电流控制,电流源逆变器采用定电流控制,电压源双向换流器采用定直流电压控制和定交流电压控制时,混合多端直流输电系统在起动、稳态运行、交直流故障等情况下均具有良好的运行特性,不失为一种有效的直流输电模式,能够综合利用常规直流输电和轻型直流输电各自的优点,有效扩展常规直流输电系统的适用范围。
     第三,提出了一种改进的瞬时对称分量分析方法,并将其应用于序电流检测。传统对称分量法定义在频域范围内,只能用于电力系统不对称运行或不对称故障状态的稳态分析,不能用于暂态分析。传统瞬时对称分量法定义在时域范围内,但在变换过程中采用了移相因子,具有一定的延时,不能实现无延迟对称分量变换。本文采用三角函数分解法,根据电压或电流的瞬时值直接构造对应的无延时旋转相量,然后再利用旋转相量进行对称分量变换,进而无延迟地获取正序、负序和零序分量的瞬时值。将改进瞬时对称分量法用于实现一种新型序电流检测,通过对三相不对称电路序电流检测的仿真研究,结果表明了该方法的正确性。
     第四,提出了一种新型的正负序双回路、双闭环控制策略。电网三相不平衡时,故障侧交流系统将产生负序分量,进而在直流输电线路上产生2n次非特征谐波。直流非特征谐波通过直流输电网络传递至另一侧换流器,并在所连接交流系统中产生2n+1次的非特征谐波,进而影响电压源型直流输电系统的运行特性。本文利用改进瞬时对称分量法获取电压和电流的无延迟正、负序分量,并基于瞬时功率理论提出了一个正负序双回路、双闭环控制策略,可以有效地抑制电网三相不平衡时电压源型直流输电系统的谐波传递特性。
     最后,对混合多端直流输电系统的应用进行了研究。主要研究了采用双馈异步电机的风力发电系统,提出了基于内模控制原理的控制策略,并通过电压源型换流器将大型风力发电场接入并联型混合多端直流输电系统,该混合多端直流输电系统也可通过电压源型换流器向弱交流系统供电。利用PSCAD/EMTDC仿真软件,建立了一个含风力发电系统的五端混合直流输电系统,并通过仿真分析了其运行特性,验证了所提出控制策略的可行性。
Conventional HVDC system consists of line commutated current source converters based on thyristors. It has the advantages of high rated power, reliability, and low cost. However, because the conventional HVDC system connected to the weak AC power system is inclined to cause commutation failure and the voltage instability, it is only suitable for the strong AC power system. Therefore, such kind of HVDC system is difficult to supply power to the weak AC power system or passive power system. The VSC-HVDC system based on forced commutated voltage source converters, such as GTO, IGBT, IGCT, has the advantages to feed AC power systems with low short circuit power or even passive networks with no local power generation, to continuously adjust reactive power and active power independently, improve the voltage stability of the AC power system, and to supply high quality power. At present, the rated power of VSC-HVDC system is much less than that of conventional HVDC system, but its cost is much higher than that of conventional HVDC system. Therefore, it is impossible now to adopt the technology of VSC-HVDC system to transfer large power for long distance. To obtain the best economical, technical, and environmental benefits, a hybrid multi-terminal HVDC system composed of the advantages of both kinds of converter is investigated as well as its corresponding technologie and application problems.
     Firstly, by use of the parameter of critical commutating voltage reduction, the mechanism of commutation failures of conventional HVDC system connected to a weak AC system is investigated and its operation characteristics are also investigated. Comparing the influences of different reactive power compensating devices, it is found that STATCOM is the best choice to improve the operation characteristics, to reduce the probability of the commutation failures, to enlarge the operation range of the inverter, to enhance the voltage stability of the weak AC system. However, even using the STATCOM to compensate the reactive power, it is still very difficult to transfer power to passive AC power system by the conventional HVDC technology. Therefore, a new hybrid point-to-point HVDC system including a voltage source inverter is designed. It is found that this kind of HVDC system is able to supply the passive system.
     Secondly, a novel hybrid multi-terminal HVDC (MTDC) system, composed of line commutated thyristor current source converters (CSC) and GTO voltage source converters (VSC) in parallel, is proposed for the extension of the conventional HVDC system. To verify the effectiveness of the proposed system, a simulation model for the hybrid three-terminal HVDC system is developed, which consists of a VSC terminal, a CSC rectifier, and a CSC inverter. Based on the developed MTDC system, two control schemes are proposed. The performance of the HVDC system is studied by simulation under the following conditions: start-up, normal operations, and faulted conditions in the DC links as well as in the AC systems. Simulation results show that the first control scheme is more effective for the hybrid MTDC system, and such system is able to exploit the advantages of both the conventional HVDC system and the VSC-HVDC system. The results also show a new application for the conventional HVDC system.
     Thirdly, a new method to calculate the instantaneous symmetrical components in the time-domain is proposed in this paper. This provides a new way to detect the positive and negative sequence currents. Traditional symmetrical components defined in the frequency- domain is effective only for steady-state analyses of unbalanced faults and systems. Although the conventional instantaneous symmetrical component definited in time-domain can be use, time delay will be introduced. A new kind of instantaneous symmetrical component calculation methos is developed in the dissertation. The principle of the proposed method is based on the rolling phasors which are calculated by use of the three phase instantaneous variables. As a result, the positive, the negative and the zero sequence components can be obtained. Additional advantages of the proposed method include: without triangular function calculation, good real-time performance. As an example, the proposed method is used for the detection of the positive and the negative sequence current for a unbalanced three phase power system The simulation results verify the effectiveness of the proposed method.
     Fourthly, a new dual loop and dual current control scheme based on the instantaneous symmetrical components is proposed in this paper. If the VSC-HVDC system is connected to the three-phase unbalanced power system, negative sequence components will be produced in the AC power system and the 2nth orders non-characterized harmonics component in the DC line. The DC ripple will transfer to the other converter of the HVDC system, and will produce (2n+1)th orders uncharacterized harmonics in the AC power system connected to that converter. Therefore, if the unbalanced fault occurs in the AC power system, it will deteriorate the performance of VSC-HVDC system. In the proposed control scheme, sequence components without time delay are obtained from the instantaneous symmetrical components of both the voltage and the current measurements. As a result, the proposed method can be used in the real-time control especially for those cases the time delay caused by the conventional symmetrical components must be considered. Based on the result obtained, a control scheme including a compensator for the unbalanced component is developed to eliminate the harmonics transfer characteristics of VSC-HVDC system under the unbalanced faults.
     Finally, the application of hybrid multi-terminal HVDC system for large wind farm is studied. The wind power system using double fed induction generator and its control scheme based on the internal model control theory are investigated. The operation characteristics of the wind farm connected to a hybrid parallel multi-terminal HVDC system are analyzed by use of the PSCAD/EMTDC. Satisfactory results are obtained.
引文
[1]浙江大学直流输电组.直流输电[M].北京:水利电力出版社, 1982.
    [2] Prabha Kundur.电力系统稳定与控制[M].北京:中国电力出版社, 2002.
    [3]李兴源.高压直流输电运行及控制[M].北京:科学出版社, 1998.
    [4] H.Jiang and A.Ekstrom. Multiterminal HVDC Systems in Urban Areas of Large Cities[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1278-1284.
    [5] Weixing Lu, Boon Teck Ooi. Multi-terminal DC Transmission System for Wind-farms[C]. IEEE Power Engineering Society Winter Meeting, Vol.3, 28 Jan.-1 Feb. 2001: 1091-1096.
    [6] Weixing Lu, Boon-Teck Ooi. Optimal Acquisition and Aggregation of Offshore Wind Power by Multiterminal Voltage-Source HVDC[J]. IEEE Transactions on Power Delivery, 2003, 18(1): 201-206.
    [7] Weixing Lu, Boon Teck Ooi. Premium Quality Power Park Based on Multi-Terminal HVDC [J]. IEEE Transactions on Power Delivery, 2005, 20(2): 978-983.
    [8]李峰,管霖,钟杰峰,等.广东交直流混合电网的运行稳定性研究[J].电网技术,2005,29(11):1-4.
    [9]林凌雪,张尧,钟庆,宗秀红.多馈入直流输电系统中换相失败研究综述[J].电网技术,2006,30(17):40-46.
    [10]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术, 2004, 30(11): 11-12.
    [11] Vijay K. Sood. HVDC AND FACTS CONTROLLERS—Applications of Static Converters in Power Systems[M]. Kluwer Academic Publishers, 2004.
    [12] Sadek K, Pereira M et al. Capacitor Commutated Converter circuit configurations for DC Transmission[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1257-1264.
    [13] U. Axelesson, A. Holm, C. Liljegren, K. Eriksson and L. Weimers. Gotland HVDC Light Transmission—World’s First Commercial Small Scale DC Transmission[C]. CIRED Conference, Nice, France, May 1999.
    [14] U Axelsson & A Holm, C Lijegren, et al. The Gotland HVDC Light Project- Experiences from Trial and Commercial Operations[C]. CIRED Conference, Amsterdam, Netherlands, June, 2001.
    [15] F. Schettler, H. Huang, N. Christl. HVDC Transmission Systems Using VoltageSourced Converters—Design and Applications[C]. IEEE Summer Meeting 2000. SM-260 Conference Proceedings, Vol. 2: 715-720.
    [16] Gunnar Asplund, Kjell Eriksson, Ove Tollerz. HVDC Light, a Tool for Electric power transmission to distant loads[C]. VI Sepope Conference, Salvador, Brazail, May 1998.
    [17] Serge Lefebvre, William K. Wong, John Reeve, Jean-Marie Gagnon, Brad K. Johnson. Experience with Modeling MTDC Systems in Transient Stability Programs[J]. IEEE Transactions on Power Delivery, 1991, 6(1): 405-413.
    [18] Serge Lefebvre, William K. Wong, John Reeve, Michael Baker, Doug Chapman. Considerations for Modeling MTDC Systems in Transient Stability Programs[J]. IEEE transactions on Power Delivery, 1991, 6(1): 397-404
    [19] A Hammad, R Minghetti, J Hasler, D Goldsworthy. Modelling of the Pacific Intertie 4-Terminal HVDC Scheme in EMTP[C]. International Conference on AC and DC Power Transmission, London, Sep. 1991: 362-367.
    [20] A. Hammad, R. Minghetti, J. Hasler, P. Eicher, R. Bunch, D. Goldsworthy. Controls Modelling and Verification for The Pacific Intertie HVDC 4-Terminal Scheme[J]. IEEE Transactions on Power Delivery, 1993, 8(1): 367-375.
    [21] H.W. Ngan, A.K. David, K.L. Lo. Modelling of A Distributed Computer Controlled Multiterminal HVDC System for Dynamic Simulation[C]. Advances in Power System Control, Operation and Management International Conference, 5-8 Nov. 1991, Vol.2: 599-604.
    [22] H W Ngan, A K David, K L Lo. Multiterminal HVDC System Control Using A Distributed Computing Technique[C]. International Conference on AC and DC Power Transmission, London, Sep. 1991: 114-119.
    [23] J. M. Ding, X. J. Dai. Control of AC/Multiterminal DC Power systems by Differential Geometric Approach[C]. Circuits and Systems, Proceedings of the 35th Midwest Symposium, Aug. 1992: 524-527.
    [24] Naoto Nosaka, Yoshikazu Tsubota, Koji Matsukawa, Koji Sakamoto. Simulation Studies on a Control and Protection Scheme for Hybrid Multi-terminal HVDC Systems[C]. IEEE Power Engineering Society 1999 Winter Meeting, Vol.2, Feb. 1999: 1079-1084.
    [25] Santos M. A., de Oliveira J.C., de Moraes A.J., Guimaraes G.C., Po W.. Methodology for control and analysis of a series multiterminal DC system[C]. 1998 International Conference on Proceedings of Power Electronic Drives and Energy Systems for Industrial Growth, Vol. 2, 1-3 Dec. 1998: 855-860.
    [26] D. G. Chapman, E. M. Gulachenski, S. Doe, J. R. McNichol, N. J. Balu. TestExperience with Multiterminal HVDC Load Flow and Stability Programs[J]. IEEE Transactions on Power Delivery, 1988, 3(3): 1173-1181.
    [27] W.F. Long, J. Reeve, J.R. McNichol, M.S. Holland, J.P. Taisne, J. LeMay, D.J. Lorden. Application Aspects of Multiterminal DC Power Transmission[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2084-2098.
    [28]汪馥英.多端DC—AC的潮流计算[J].华中理工大学学报, 1990, 18(6): 81-86.
    [29]闫晓霞.一种多端交直流混合输电系统的潮流算法[J].电力学报, 1997, 12(2): 32-36.
    [30]陆进军,黄家裕.一种高效灵活的电力系统多端直流潮流算法[J].电力系统自动化, 2000, 24(6): 48-50.
    [31]丁奇峰,张伯明,张毅威,邓佑满.一种计算多端交直流系统潮流的新方法.中国电机工程学报. 1999, 19(9): 14-18.
    [32] Ding Qifeng, Zhang Boming. A New Approach to AC/MTDC Power Flow[C]. Int. Conf. on Advances of Power System Control, Operation and Management, Hongkong, 1997:689-694.
    [33] Ding Qifeng, Zhang Boming, Sun Hongbin. The convergence analysis of the AC/MTDC system power flow[C]. International Conference on Power System Technology, POWERCON '98, Vol. 1, 18-21 Aug. 1998: 776– 780.
    [34] De Martinis U., Gagliardi F., Losi A., Mangoni V., Rossi. F. Optimal load flow for electrical power systems with multiterminal HVDC links[J]. Generation, Transmission and Distribution, IEE Proceedings 1990, 137(2): 139-145.
    [35] Padiyar K.R., Raman V. K.. A General Method for Power Flow analysis in MTDC systems[C]. Proceedings of XVI Annual Convention and Exhibition of the IEEE In Indian, ACE '90, Jan. 22-25, 1990: 146-150.
    [36] Hanchu Zheng, Shousun Chen, Yixin Ni, Baolin Zhang. A Study of Multi-Terminal DC Modulation Control[C]. IEE International Conference on Advances in Power System Control, Operation and Management, Nov. 1991, Hong Kong: 615-620.
    [37] R. L. Lee, D. Zollman, J. F. Tang, J. C. Hsu, J. R. Hunt, R. S. burton, D. E. Fletcher. Enhancement of AC/DC System Performance by Modulation of A Proposed Multiterminal DC system in the Southwestern U.S.[J]. IEEE Transactions on Power Delivery, 1998, 3(1): 307-316.
    [38] K R Padiyar, M K Geetha. Study of Torsional Interactions in Multi-Terminal DC Systems through Small Signal Stability Analysis[C]. International Conference on AC and DC Power Transmission, London, Sep. 1991: 411-413.
    [39] Prof. P. K. Dash, A. K. Panigrahi, A. K. Mohanty. Analysis of Feasibility and Voltage Instability in Two and Multiterminal HVDC Systems[C]. International Conference on TENCON'89, Fourth IEEE Region 10, 22-24 Nov. 1989: 936-941.
    [40] R Joetten, H Ring, Th Wess. Stability and Safety Margins of a Weak Station within A Multiterminal HVDC System[C]. International Conference on AC and DC Power Transmission, London, Sep. 1991:108-113.
    [41] Boon-Teck Ooi, Xiao Wang. Boost Type PWM HVDC Transmission System [J]. IEEE Transactions on Power Delivery, 1991, 6(4): 1557-1563.
    [42] Lianxiang Tang, Boon Teck Ooi. Protection of VSC-Multi-Terminal HVDC against DC Faults[C]. IEEE 33rd Annual Power Electronics Specialists Conference, Vol.2, 23-27 Jun. 2002: 719-724.
    [43] Weixing Lu, Boon-Teck Ooi. DC Overvoltage Control during Loss of Converter in Multiterminal Voltage-Source Converter-Based HVDC (M-VSC-HVDC)[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 915-920.
    [44] Nakajima T. Operating Experiences of STATCOMs and a Three-terminal HVDC System Using Voltage Sourced Converters in Japan[C]. Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, Vol.2, 6-10 Oct. 2002: 1387-1392
    [45] Z. Zhao, M.R. Iravani. Application of GTO Voltage Source Inverter in a Hybrid HVDC Link[J]. IEEE Transactions on Power Delivery, 1994, 9(1): 369-377.
    [46] Z. Zhao, M. R. Iravani. Application of GTO Voltage-source Inverter for Tapping HVDC Power[J]. IEE Proc.-Gener. Transm. Distrib., 1994, 141(1): 19-26.
    [47] Yuan X F,Cheng Shijie.Performance analysis of a hybrid multiterminal HVDC system electrical machines and systems[C].Proceedings of the Eighth International Conference on ICEMS,Nanjing,China,2005.
    [48] Bjarne R. Andersen, Lie Xu. Hybrid HVDC System for Power Transmission to Island Networks[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1884-189.
    [49]徐政.与弱交流系统相连接的直流输电特性研究之一——直流输电的输送能力[J].电网技术, 1997, 21(1): 12-16.
    [50]徐政.与弱交流系统相连接的直流输电特性研究之二——控制方式与电压稳定性[J].电网技术, 1997, 21(3): 1-4.
    [51] O.B. Nayak, A.M. Gole, D.G. Chapman, J.B. Davies. Dynamic Performance of Static and Synchronous Compensators at an HVDC Inverter Bus in a Very Weak AC System[J]. IEEE Transactions on Power Delivery, 1994, 9(3): 1350-1358.
    [52] Y. Zhuang, R.W. Menzies, O.B. Nayak, H.M. Turanli. Dynamic Performance of a STATCON at an HVDC Inverter Feeding A Very Weak AC System[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 958-964.
    [53]周长春,徐政.与弱交流系统相连接的HVDC故障恢复特性仿真分析[J].电网技术, 2003, 27(11): 18-21.
    [54] Arne Hansen, Henrik Havemann. Decreasing the Commutation Failure Frequency in HVDC Transmission Systems[J]. IEEE Transactions on Power Delivery, 2000, 15(3): 1022-1026.
    [55] L.A.S. Pilotto, M. Szechtman, A.E. Hammad. Transient AC Voltage Related Phenomena for HVDC Schemes Connected to Weak AC Systems[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1396-1404.
    [56]王雁凌,任震.静止无功补偿器在高压直流输电中的应用[J].电网技术, 1996, 20(12): 34-37.
    [57]孙元章,王志芳,卢强.静止无功补偿器对电压稳定性的影响[J].中国电机工程学报, 1997, 17(6): 373-376.
    [58]栗春,马晓军,姜齐荣,王仲鸿.用STATCOM改善系统电压调节特性的动模实验[J].中国电机工程学报, 1999, 19(9): 46-49.
    [59]栗春,马晓军,姜齐荣,王仲鸿. STATCOM提高系统暂态稳定及阻尼的动模实验研究[J].中国电机工程学报, 1999, 19(12): 36-40.
    [60]栗春,姜齐荣,王仲鸿. STATCOM电压控制性能分析[J].中国电机工程学报, 2000, 20(8): 46-50.
    [61] Szechtman, M.; Wess, T.; Thio, C.V.. A Benchmark Model for HVDC system Studies[C]. AC and DC Power Transmission, International Conference on 17-20 Sep 1991: 374–378.
    [62] C.V. Thio, J.B. Davies, K.L. Kent. Commutation Failures in HVDC Transmission Systems[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 946-957.
    [63]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社, 2003.
    [64]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社, 2002.
    [65]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社, 2003.
    [66]胡学浩,丁功扬.全国电网互联中采用高压直流输电方式时国外经验之借鉴[J].电网技术,1998,22(5):64-67.
    [67]刘良军,柯丹,曾南超,等.多端直流输电系统模糊控制器的应用研究[J].电网技术,1998,22(9):22-26.
    [68]荆勇,洪潮,杨晋柏,等.直流调制抑制南方电网区域功率振荡的研究[J].电网技术,2005,29(20):53-56.
    [69]余涛,沈善德,任震.华中—华东多回HVDC紧急功率转移控制的研究[J].电网技术,2004,28(12):1-5.
    [70]束洪春,董俊,孙士云,等.直流调制对南方电网交直流混联输电系统暂态稳定裕度的影响[J].电网技术,2006,30(20):29-33.
    [71] Lie Xu, B. R. Andersen, P. Cartwright. VSC Transmission Operating under Unbalanced AC Conditions-Analysis and Control Design[J]. IEEE Transaction on Power Delivery, 2005, 20(1): 427-434.
    [72] Z. Huang, B. T. Ooi, L. A. Dessaint, F. D. Galiana. Exploiting Voltage Support of Voltage source HVDC[J]. IEE Proceeding-Generation, Transmission and Distribution, 2003, 150(3): 252-256.
    [73] F. Mazzoldi, J. P. Taisne, C. J. B. Martin, B. A. Rowe. Adaption of the Control Equipment to Permit 3-Terminal Operation of the HVDC Link between Sardinia, Corsica and Mainland Italy[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1269-1274.
    [74] V. K. Sood, H. L. Nakra, B. Khodabakhchian, G. Scott, Simulator Study of Hydro-Quebec MTDC Line from James Bay to New England[J]. IEEE Transactions on Power Delivery, 1998, 3(4): 1880-1886.
    [75]赵成勇,李金丰,李广凯.基于有功和无功独立调节的VSC-HVDC控制策略.电力系统自动化, 2005, 29(9): 20-24.
    [76] Iravani M R , Karimi-Ghartemani M . Online estimation of steady state and instantaneous symmetrical components[J].IEE Proc-Gener. Transm.Distrib.,2003,150(5):616-622.
    [77] Arindam Ghosh,Avinash Joshi.A new approach to load balancing and power factor correction in power distribution system[J].IEEE Transactions on Power Delivery,2000,15(1):417-421.
    [78] Gerardus C Paap.Symmetrical components in the time domain and their application to power network calculations[J].IEEE Transactions on Power System,2000,15(2):522-528.
    [79] John S Hsu.Instantaneous phasor method for obtaining instantaneous balanced fundamental components for power quality control and continuousdiagnostics[J].IEEE Transactions on Power Delivery, 1998,13(4):1494-1500.
    [80] Masoud Karimi-Ghartemani,Houshang Karimi.Analysis of symmetrical components in time-domain[C].2005 48th IEEE International Midwest Symposium on Circuits and Systems,Covington,Kentucky,USA,2005.
    [81]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用[J].中国电机工程学报,2000,20(6):17-20.
    [82]许树楷,宋强,朱永强,等.用于不平衡补偿的变压器隔离式链式D-STATCOM的研究[J].中国电机工程学报,2006,26(9):137-143.
    [83]白丹,蔡志开,彭力,等.三相逆变电源不平衡负载研究[J].电力系统自动化,2004,28(9):53-57.
    [84]赵国亮,刘宝志,肖湘宁,等.一种无时延的改进d-q变换在动态电压扰动识别中的应用[J].电网技术,2004,28(7):53-57.
    [85]张兴,季建强,张崇巍,丁明.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J] .中国电机工程学报,2005,25(13):51-56.
    [86] Pascal Rioual,HervéPouliquen,Jean-Paul Louis.Regulation of a PWM rectifier in the unbalanced network state using a generalized model[J].IEEE Transactions on Power Electronics,1996,11(3):495-502.
    [87] Hong-seok Song,Kwanghee Nam.Dual current control scheme for PWM converter under unbalanced input voltage conditions[J].IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [88] Hong-Seok Song, In-Won Joo, Kwanghee Nam. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1238-1245.
    [89] Yongsug Suh, Thomas A. Lipo. Modeling and Analysis of Instantaneous Active and Reactive Power for PWM AC/DC converter under generalized unbalanced network[J]. IEEE Transcations on Power Delivery, 2006, 21(3): 1530-1540.
    [90]陈东华,谢少军,周波.用于有源电力滤波器谐波和无功电流检测的一种改进同步参考坐标法[J].中国电机工程学报,2005,25(20): 62-67.
    [91]纪飞峰,周荔丹,姚钢,陈陈.基于同步对称分量法的静止无功补偿装置[J].中国电机工程学报,2005,25(3): 24-29.
    [92] Ana Vladan Stankovic, Thomas A. Lipo. A novel control method for input output harmaonic elimination of the PWM boost type rectifier under unbalanced operatingconditions[J]. IEEE Transations on Power Electronics, 2001, 16(5): 603-611.
    [93] Cuiqing Du, Ambra Sannino, Math H.J. Bollen. Analysis of response of VSC-based HVDC to unbalanced faults with different control systems[C]. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, 2005, Dalian, China.
    [94] M. M. de Oliveira. Power electronics for mitigation of voltage sags and improved control of AC power systems[D]. Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2000.
    [95] Luis Morán, Phoivos D. Ziogas, Geza Joos. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions[J]. IEEE Transactions on Industry Applications, 1992, 28(6): 1286-1293.
    [96] Lihua Hu, R.E. Morrison. The use of modulation theory to calculate the harmonic distortion in HVDC systems operating on an unbalanced supply[J]. IEEE Transactions on Power Systems, 1997, 12(2): 973-980.
    [97] Kadry Sadek, Marcos Pereira. Harmonic transfer in HVDC systems under unbalanced conditions[J]. IEEE Transactions on Power Systems, 1999, 14(4): 1394-1399.
    [98] Bo?tjan Bla?i?, Igor Papi?. Improved D-StaCom control for operation with unbalanced currents and voltages[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 225-233.
    [99] Cursino Brand?o Jacobina, Maurício Beltr?o de Rossiter Corrêa, Ricardo Ferreira Pinheiro, etc. Modeling and control of unbalanced three-phase systems containing PWM converters[J]. IEEE Transactions on Industry Applications, 2001, 37(6): 1807-1816.
    [100] Global Wind Energy Council. 2006 record Global wind energy[EB/OL]. Available at http://www.gwec.net/uploads/media/06-02_PR_Global_Statistics_2005.pdf.
    [101]王承煦,张源.风力发电[M].北京:中国电力出版社, 2003.
    [102]中国电力新闻网.国内单机容量最大风力发电机并网发电[EB/OL]. Available at http://www.chinapower.com.cn/newsarticle/1026/new1026307.asp.
    [103] Christian Sasse. Connecting Wind Farms to the Grid– What You Need to Know[M]. AREVA T&D Technology Centre, Stafford, UK, 2006.
    [104] Stephan Meier. Novel Voltage Source Converter Based HVDC Transmission System for Offshore Wind Farms[D]. Royal Institute of Technology, Stockholm, 2005.
    [105] Ming Yin, Gengyin Li, et al. Analysis and Control of Wind Farm Incorporated VSC-HVDC in Unbalanced Conditions[C]. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, 2005, Dalian, China.
    [106] Z. Saad-Saoud, M.L.Lisboa, et al. Application of STATCOMs to Wind Farms[J]. IEE Proc-Gener. Transm. Distrib., 1998, 145(5): 511-516.
    [107] Aishling Reidy, Rick Watson. Comparison of VSC Based HVDC and HVAC Interconnections to a Large Offshore Wind Farm[C]. 2005 IEEE Power Engineering Society General Meeting, 2005, San Francisco, United States.
    [108]叶杭冶.风力发电机组的控制技术[J].北京:机械工业出版社, 2005.
    [109] John Olav Tande. Dynamic Models of Wind Farms for Power system studies operating[EB/OL]. IEA Wind Annex XXI Seminar Presentations, 2004, London, UK. Available at http://www.energy.sintef.no/wind/main.htm.
    [110] Andreas Petersson. Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind Trubines[D]. Chalmers University of Engineering, G?teborg, Sweden, 2005.
    [111] Badrul H. Chowdhury, Srinivas Chellapilla. Double-Fed Induction Generator Control for Variable Speed Wind Power Generation[J]. Electric Power Systems Research, 2006, 76: 786-800.
    [112]刘其辉,贺益康,赵仁德.变速恒频风力发电机系统最大风能追踪控制[J].电力系统自动化, 2003, 27(20): 62-67.
    [113]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化, 2005, 29(24): 32-38.
    [114] Lennart Harnefors, Kai Pietil ?inen, Lars Gertmar. Torque-Maximizing Field-Weakening Control: Design, Analysis, and Parameter Selection[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 161-168.
    [115] G. Tapia, A. Tapia. Wind Generation Optimisation Algorithm for a Doubly Fed Induction Generator[J]. IEE Proc.-Gener. Transm. Distrib., 2005, 152(2): 253-263.
    [116]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报, 2004, 24(3): 6-11.
    [117]赵仁德,贺益康,黄科元,卞松江.变速恒频风力发电机用交流励磁电源的研究[J]. 2004,电工技术学报, 19(6): 1-6.
    [118]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报, 2005, 25(8): 90-94.
    [119]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报, 2006, 26(23): 109-114.
    [120]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制与建模仿真[J].中国电机工程学报, 2006, 26(5): 43-50.
    [121]卞松江,吕晓美,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报, 2005, 25(16): 57-62.
    [122]李晶,宋家晔,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报, 2004, 24(6): 100-105.
    [123]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化, 2006, 30(8): 21-26.
    [124] Lennart Harnefors, Hans-Peter Nee. Model-Based Current Control of AC Machines Using the Internal Model Control Method[J]. IEEE Transactions on Industry Applications, 1998, 34(1): 133-141.
    [125] P.M. Anderson, Anjan Bose. Stability Simulation of Wind Turbine Systems[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(12): 3791-3795.
    [126] A. Murdoch, R.S. Barton, et al. Control Design and Performance Analysis of A 6 Mw Wind Turbine Generator[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(5): 1340-1347.
    [127] Poul S?rensen, Anca D. Hansen, et al. Wind Farm Models and Control Strategies[M]. Ris? National Laboratory Information Service Department, Roskilde, Denmark, 2005.
    [128] Woei-Luen Chen, Yuan-Yih Hsu. Controller Design for an Induction Generator Driven by a Variable-Speed Wind Turbine[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 625-635.
    [129] R. Pena, J.C.Clare, G.M.Asher. A Doubly Fed Induction Generator Using Back-to-Back PWM Converters Supplying an Isolated Load from a Variable Speed Wind Turbine[J]. IEE Proc.-Electr. Power Appl., 1996, 143(5): 380-387.
    [130] Andreas Petersson, Torbj¨orn Thiringer, et al. Modeling and Experimental Verification of Grid Interaction of a DFIG Wind Turbine[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 878-886.
    [131] Andreas Petersson, Lennart Harmefors, Torbj¨orn Thiringer. Evaluation of Current Control Methods for Wind Trubines Using Doubly-Fed Induction Machines[J]. IEEE Transactions on Power Electronics, 2005, 20(1): 227-235.
    [132]席裕庚.预测控制[M].北京:国防工业出版社, 1993.
    [133] Fernando Briz del Blanco, Michael W. Degner, Robert D. Lorenz. Dynamic Analysis of Current Regulators for AC Motors Using Complex Vectors[J]. IEEE Transactions on Industry Applications, 1999, 35(6): 1424-1432.
    [134]杨浩,文劲宇,程时杰,潘垣.多功能柔性功率调节器运行特性的仿真研究[J].中国电机工程学报, 26(2): 19-24.
    [135]李刚,程时杰,文劲宇,潘垣.利用柔性功率调节器提高电力系统稳定性[J].中国电机工程学报, 2006, 26(23): 1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700