用户名: 密码: 验证码:
LTCF无源集成铁氧体材料及器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LTCF(Low Temperature Co-fired Ferrite)材料和器件技术可以满足现代电子系统小型化、轻量化和集成化的发展要求,目前已成为最具发展潜力的无源集成技术。
     本论文主要针对LTCF无源集成铁氧体材料和器件展开研究,首先从烧结热力学理论和传质动力学理论角度分析了影响低温烧结铁氧体材料烧结性能的关键因素;然后分别采用氧化物法和溶胶-凝胶法进行了ZL120型低温烧结NiCuZn铁氧体材料的研制,通过对材料配方设计、掺杂方案以及制备工艺途径的对比实验和优化改进,研制出了高性能的低温烧结铁氧体材料,在此基础上,借助HFSS和ADS软件进行了片式电感、电容以及LC滤波器的的结构设计和性能仿真;最后,采用研制的低温烧结NiCuZn铁氧体材料并基于优化的片式器件设计结构,在LTCC工艺线上进行了片式电感和LC组合滤波器的实际研制,取得了较为满意的效果,为LTCF无源集成铁氧体材料及器件技术的研究奠定了很好的理论和实践基础。
     在低温烧结NiCuZn铁氧体材料研制过程中,本文首先研究了主配方中CuO含量对材料烧结特性、微观形貌以及电磁性能的影响,确定当主配方中CuO含量为10mol%时能较好的兼顾材料低温烧结和高电磁性能的目标要求。然后通过对比实验研究了V_2O_5、SiO_2、Bi_2O_3等低熔氧化物掺杂对NiCuZn材料烧结特性和电磁性能的影响。随后,在V_2O_5和Bi_2O_3掺杂的基础上,复合掺入WO_3和CO_2O_3以进一步提升材料的品质因数。最终确定当掺杂组合方式为1wt%Bi_2O_3+0.2wt%Co_2O_3时能获得最佳的材料电磁性能,满足ZL120型低温烧结NiCuZn铁氧体材料的研制目标要求。为了和氧化物法低温烧结铁氧体研制工艺途径加以对比,本论文还采取溶胶-凝胶法进行了ZL120型低温烧结NiCuZn铁氧体的试制研究。通过实验发现,借助溶胶-凝胶法制备超细铁氧体微粉的高表面自由能,同样可以显著的促进材料的低温烧结并获得较好的电磁性能。由于材料制备过程中未进行任何低熔氧化物的掺杂,因此材料的烧结密度和磁导率都稍低于氧化物法掺杂制备的样品,但却能够获得更高的品质因数。
     在进行LTCF无源片式器件研究过程中,本论文首先借助Ansoft-HFSS和Agilent-ADS软件对LTCC电感、电容进行三维建模和电磁场仿真。研究了片式电感模型中各个结构参数对电感性能的影响,并推导出了在特定片式电感结构参数下,其电感量与绕匝数之间的计算关系为L_(eff)=116.25×N~(1.67)nH。随后,在片式电感和电容的研究上,进行了一款LTCC复合片式器件一抗EMI滤波器的结构设计和性能仿真。最后,基于本文研制的低温烧结NiCuZn铁氧体材料,在电子科大LTCC工艺线上进行了片式电感和抗EMI滤波器的实际研制。经验证,实际制备的片式电感的感量比仿真预测值偏低一些,这主要是由于片式电感磁芯的磁导率与标样环有一定差异的缘故;而研制的0805型片式EMI滤波器的插损特性与仿真预测值也比较接近,满足了设计目标的要求。
The technology of LTCF (Low Temperature Co-fired Ferrite) materials and elements can satisfy the requirements of miniaturization, low weight and high integration developments of modern electronic systems and become the major and key technology for passive integration.
     This paper focused the theoretical investigations on low temperature co-fired ferrite and correlative elements. Firstly, the sintering and transfering kinetics of the ferrite were analyzed to give directions to density the ferrite under low sintering temperature. Then the mixed-oxide method and sol-gel method were adopted to produce the ZL120 NiCuZn ferrite. In this process, effects of compositions, procedure methods and additives on sintering behaviors and magnetic properties of the ferrite had been investigated. Then, the HFSS and ADS softwares had been adopted to optimize the structure of the multilayer chip inductor, multilayer chip capacitor and multilayer chip filter. By using the produced NiCuZn ferrite and the LTCC technical line, we developed high performance multilayer chip inductors and multilayer chip filters.
     In the process of the ferrite research, the influences of compositions on the sintering behaviors, microstructures and magnetic properties of the ferrite were first investigated. It was confirmed that 10mol% CuO content was appropriate to give attention to both low-fired characteristic and good magnetic properties of the NiCuZn ferrite. Then the influences of V_2O_5, SiO_2 and Bi_2O_3 additives on the densification behaviors and magnetic properties of the ferrite were studied. Subsequently, on the base of V_2O_5 and Bi_2O_3 additives, WO_3 and Co_2O_3 additives were also added to further improve Q-factor. Finally, the optimal additives were chosen as 1wt%Bi_2O_3 + 0.2wt%Co_2O_3 to obtain the ZL120 NiCuZn ferrite. To compare with the mixed-oxide method, then the sol-gel method was adopted to produce the ZL120 NiCuZn ferrite. It was found that nanocrystalline ferrite particles enhanced densification of the samples obviously due to high surface free energy. Furthermore, higher Q-factor could be obtained due to no sintering aids added.In the process of the LTCC elements research, the Ansoft-HFSS and Agilent-ADS softwares were adopted to design, emulate and optimize the multilayer chip inductor and capacitor firstly. Effect of model parameters on the properties of the inductor were studied, and the calculated formula between inductance (L_(eff)) and circles (N) was deducted, which was L_(eff)=116.25×N~(1.67)nH. Subsequently, based on the investigations of multilayer chip inductor and capacitor, we designed and emulated a kind of anti-EMI LTCC filter. Finally, the prepared ZL120 NiCuZn ferrite was chosen to produce the LTCC chip inductor and filter by adopting LTCC technical line. It was confirmed that the produced inductance value was lower than the forecast, which was mainly due to debasement of the permeability. The insertion loss of the LTCC filter was close to the forecast and meet the request.
引文
[1] R. L. Brown, P. W. Polinski. The integration of passive components into MCM's using advanced low-temperature cofired ceramics. Int. J.Microcirc. Electron. Package, 1993, 16: 328-338
    
    [2] A. Fathy. Design of embedded passive components in low temperature cofired ceramic on metal (LTCC-M) technology. Proc.IEEE Int. Microwave Symp, 1998: 1281-1284
    
    [3] H. Johann, G. Andriy, H. Patric. Vertical Feedthroughs for Millimeter- Wave LTCC Modules.33 rd European Microwave Conference Munich, 2003:411-414
    
    [4] C. H. Lee, A. Sutono, S. Han, et al. A compact LTCC Ku-band transmitter module withintegrated filter for satellite communication applications. Proc. IEEE Int. Microwave Symp,2001:945-948
    
    [5] B.G Choi, M.G Stubbs, C.S.A Park. Ka-band narrow bandpass filter using LTCC technology. IEEE. Microwave . Wireless. Comps. Lett, 2003, 8: 13-16
    
    [6] C.Q. Scrantom, J.C. Lawson. LTCC technology: where we are and where we're going .Technologies for Wireless Applications. IEEE MTT-S Symposium, 1999: 193-200
    
    [7] Ching-Wen Tang, Chi-Yang Chang. Using buried capacitor in LTCC-MLC balun. Electro. Lett, 2002, 10:801-803
    
    [8] Sung-Hun Sim, Chong-Yun Kan. A compact lumped-element lowpass filter using low temperature co-fired ceramic technology. J. Euro. Ceram. Soc, 2003,56: 2717-2720
    
    [9] H. T. Sawhill. Low temperature co-fireable ceramics with co-fired resistors. Int. Soc. Hybrid. Microelectronics, 1986: 473-480
    
    [10]杨立群.低温共烧陶瓷嵌入式电感与电容元件之设计模型化:[硕士学位论文],台北:台湾 国立中山大学,2003:8-13
    
    [11] W. Eurskens, W. Wersing. Design and performance of UHF band inductors, capacitors and resonators using LTCC technology for mobile communication systems. IEEE. MTT-S Inte. Microwave Symp. Digest, 1998: 1285-1288
    [12] T. Prochazka, M. Fischer. High quality LTCC resonator for voltage-controlled oscillator. IEEE. Trans. Comp. Pack. Tech, 2003,16: 591-597
    
    [13] Scrantom Steve. Manufacture of embedded integrated passive components into Low Temperature Co-fired ceramic systems. Proceedings of SPIE-The International Society for Optical Engineering, 1998: 459-466
    
    [14] Lap Kun Yeung, Ke-Li Wu. A Compact Second-Order LTCC Bandpass Filter With Two Finite Transmission Zeros. IEEE. Trans. MTT, 2003: 337-340
    
    [15] K. Schuler, Y. Venot. Innovative material modulation for multilayer LTCC antenna design at 76.5 GHz in radar and communication applications. 33rd European Microwave Conference, 2003:707-710
    [16] Wu K.H, Huang W.C, Wang GP. Effect of pH on the magnetic and dielectric properties of SiO_2/NiZn ferrite nanocomposites. Mater. Res. Bull, 2005,40: 1822-1831
    [17] Uskokovil Vuk, Drofenik Miha. A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method. Colloids & Surfaces A, 2005,266:168-174
    [18] Verma Seema, Pradhan S. D, Pasricha Renu. A Novel Low-Temperature Synthesis of Nanosized NiZn Ferrite. J. Am. Ceram. Soc, 2005, 88: 2597-2599
    [19] Yuh-Ruey Wang, Sea-Fue Wang. Liquid phase sintering of NiCuZn ferrite and its magnetic properties. Inter. J. Inorg. Mater, 2001, 3: 1189-1192
    [20] M.Pal, P.Brahma, D.Chakravorty. Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. J. Magn. Magn. Mater, 1996,152: 370-374
    [21] Sea-Fue Wang, Yuh-Ruey Wang, Thomas C.K.Yang, et al. Densification and Properties of fluxed sintered NiCuZn ferrites. J. Magn. Magn. Mater, 2000, 217: 35-43
    [22] S.H.Seo, J.H.Oh. Effect of MoO_3 Addition on Sintering Behaviors and Magnetic Properties of NiCuZn Ferrite for Multilayer Chip Inductor. IEEE. Trans. Magn, 1999,35(5): 3412-3414
    [23] Jen-Yan Hsu, Wen-Song Ko, Chi-Jen Chen. The Effects of V_2O_5 on Sintering of NiCuZn Ferrite. IEEE. Trans. Magn, 1995, 31(6): 3994-3996
    [24] T.T.Ahmed, I.Z.Rahman, M.A.Rahman. Study on the properties of the copper substituted NiZn ferrites. J. Mater. Proc. Tech, 2004, 153-154: 797-803
    [25] Weiguo Qu, XiaoHui Wang, Longtu Li. Preparation and performance of NiCuZn-Co_2Y composite ferrite material. Mater. Sci. Eng. B, 2003, 99: 274-277
    [26] Kin O. Low, Frank R. Sale. The development and analysis of property-composition diagrams on
    ??gel-derived stoichiometric NiCuZn ferrite. J. Magn. Magn. Mater, 2003,256: 221-226
    
    [27] Zhenxing Yue, Ji Zhou, Longtu Li, et al. Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method. J. Magn. Magn. Mater, 2000,208: 55-60
    
    [28]韩志全.叠层片式电感及低温烧结铁氧体的研发进展.磁性材料及器件,2004,35(6):6-10
    
    [29] J.H.Nam, H.H.Jung, J.Y.Shin, et al. The Effect of Cu Substitution on the Electrical andMagnetic Properties of NiZn Ferrites. IEEE. Trans. Magn, 1995, 31(6), 3985-3987
    
    [30] Hsiao-Miin Sung, Chi-Jen Chen, Wen-Song Ko, et al. Fine Powder Ferrite for Multilayer ChipInductors. IEEE. Trans. Magn, 1994, 30(6), 4906-4908
    
    [31] Kwang-Soo Park, Joong-Hee Nam, Jae-Hee Oh. Magnetic properties of NiCuZn ferrites withaddition of tungsten trioxide. J. Magn. Magn. Mater, 2001, 226-230: 1415-1417
    
    [32] Zhenxing Yue, Ji Zhou, Zhilun Gui, et al. Magnetic and electrical properties of low-temperaturesintered Mn-doped NiCuZn ferrites. J. Magn. Magn. Mater, 2003,264:258-263
    
    [33] J.-H. Nam, W.-G Hur, J.-H. Oh. The effect of Mn substitution on the properties of NiCuZnferrites. J. Appl. Phys, 1997,81(8): 4794-4796
    
    [34] Bo Li, Zhen-Xing Yue, Xi-Wei Qi, etc al. High Mn content NiCuZn ferrite for multiplayer chipinductor application. Mater. Sci. Eng. B, 2003,99: 252-254
    
    [35]岳振星.高性能低烧片式电感材料及相关基础问题研究:[博士后学位论文].北京:清华 大学,1999:15-24
    
    [36] Kin O.Low, Frank R.Sale. Electromagnetic properties of gel-derived NiCuZn ferrites. J. Magn.Magn. Mater, 2002, 246: 30-35
    
    [37] S.H.Hong, J.H.Park, Y.H.Choa, et al. Magnetic properties and sintering characteristics of NiZn(Ag, Cu) ferrite for LTCC applications. J. Magn. Magn. Mater, 2005, 290-291:1559-1562
    
    [38]苏桦.低温共烧NiCuZn铁氧体材料及叠层片式电感应用研究:[博士学位论文].成都:电 子科技大学,2006:23-30
    
    [39]张有纲,黄永杰,罗迪民.磁性材料.成都,电子科技大学出版社,1987:58-72
    
    [40]郝虎在.电子陶瓷材料物理.北京,中国铁道出版社,2002:23-56
    
    [41]邱碧秀,电子陶瓷材料,香港,徐氏基金会出版社,2000:45-72
    
    [42] PPT(Powder Processing and Technology) Corporation products catalog, http://www.pptechnology.com/lowtemp.pdf, 2003
    
    [43] Caltun, L. Spinu, Al. Stancu etc al. Study of the microstructure and of the permeability spectraof Ni-Zn-Cu ferrites. J. Magn. Magn. Mater, 2002, 242-245: 160-162
    
    [44] A.Bhaskar, B.Rajini Kanth, S.R.Murthy. Electrical properties of Mn added MgCuZn ferrites??prepared by microwave sintering method. J. Magn. Magn. Mater, 2004,283: 109-116
    
    [45] N.Rezlescu, E.Rezlescu, P.D.Popa etc al. Copper ions influence on the physical properties of amagnesium-zinc ferrite. J. Magn. Magn. Mater, 1998, 182:199-206
    
    [46] S-F. Wang, Y-R. Wang, Thomas C.K.Yang etc al. Effects of processing on the densification andproperties of low-fire NiCuZn ferrites. Scripta mater, 2000,43: 269-274
    
    [47] K. Kawano, N.Sakurai, S.Kusumi, et al. Magnetic permeability and microstructure of the Bi, Sioxides-doped NiZnCu ferrite composite material. J. Magn. Magn. Mater, 2006,297:26-32
    
    [48] Hongguo Zhang, Zhenwei Ma, Ji Zhou etc al. Preparation and investigation of(Ni_(0.15)Cu_(0.25)Zn_(0.6))Fe_(1.96)O_4 ferrite with very high initial permeability from self-propagatedpowders. J. Magn. Magn. Mater, 2000, 213: 304-308
    
    [49] J.Hu, M.Yan, W.Luo. Preparation of high-permeability NiZn ferrites at low sinteringtemperatures. Phys. B, 2005, 368: 251-260
    
    [50] Hua Su, Huaiwu Zhang, Xiaoli Tang etc al. High-permeability and high-curie temperatureNiCuZn ferrite. J. Magn. Magn. Mater, 2004, 283: 157-163
    
    [51] Hua Su, Huaiwu Zhang, Xiaoli Tang etc al. Effects of calcining temperature and heating rate onproperties of high-permeability NiCuZn ferrites. J. Magn. Magn. Mater, 2006,302:278-281
    
    [52] Jae Gwang Lee, Jae Yun Park, Chul Sung Kim. Growth of ultrafine cobalt ferrite particles by asol-gel method and their magnetic properties. J. Mater. Sci, 1998,33: 3965-3968
    
    [53] T.T. Ahmed, I.Z.Rahman. Study on the properties of the copper substituted NiZn ferrite. J.Mater. Proc. Tech, 2004, 797-803
    
    [54] Low, Kin O.Sale, Frank R. The development and analysis of property-composition diagrams ongel-derived stoichiometric NiCuZn ferrite. J. Magn. Magn. Materi, 2003,253:221-226
    
    [55] Kwang-Soo Park, Joong-Hee Nam, Jae-Hee Oh. Magnetic properties of NiCuZn ferrites withaddition of tungsten trioxide. J. Magn. Magn. Mater, 2001,196:1415-1417
    
    [56] Tae Young Byun, Soon Cheon Byeon, Kug Sun Hong. Factors affecting initial permeability ofCo-substituted Ni-Zn-Cu ferrites. IEEE. Trans. Magn, 1999, 35(5), 3445-3447
    
    [57] Woo Chul Kim, Sam Jin Kim, Seung Wha Lee, etc al. Growth of ultrafine NiZnCu ferrite andmagnetic properties by a sol-gel method. J. Magn. Magn. Mater, 2001, 226-230: 1418-1420
    
    [58] L.Wang, F.S.Li. Mossbaur study of nanocrystalline Ni-Zn ferrite. J. Magn. Magn. Mater, 2001,223:233-237
    
    [59] Gang Xiong, Guobao Wei, Xujie Yang, etc al. Characterization and size-dependent magneticproperties of Ba_3Co_2Fe_(24)O_(41) nanocrystals synthesized through a sol-gel method", J. Mater. Sci.,??2000,35:931-934
    
    [60] Z.H.Zhou, J.M.Xue, H.S.O.Chen, etc al. Transparent magnetic composites of ZnFe_2O_4nanoparticles in silica, J. Appl. Phys, 2001,90(8): 4169-4172
    
    [61] Jae Gwang Lee, Jae Yun Park, Chul Sung Kim. Growth of ultrafine cobalt ferrite particles by asol-gel method and their magnetic properties. J. Mater. Sci, 1998, 33: 3965-3968
    
    [62]丁子上,瓮文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,26:443-446
    
    [63] Sutono.A, Heo.D,Emery, chen Y,et al. High Q LTCC-based Passive library for wirelesssystem-on-package(SOP) module development", IEEE. Trans. Microwave. Theory. Thch, 2001:1715-1724
    
    [64] Hunt.B, Devlin.L. LTCC for RF modules. Packaging and Interconnects at Micro wave andmm-Wave Frequencies(Ref.No.2000/083). IEEE Seminar, 2000: 1-5
    
    [65] Chakaborty.S, Lim.K, Sutono.A. A 2.4-GHz radio front end in RF system-on packagetechnology. IEEE. Microwave. Magzine, 2002,32: 94-104
    
    [66] Lee C.-H., Chakraborty S,Sutono A. Broadband highly integrated LTCC front-end modulefor IEEE 802.11a WLAN applications. IEEE. MTT-S. Microwave. Symp. Digest, 2002:1045-1048
    
    [67] T.S.Horng, J.M.Wu, L.Q.Yang, et al. a novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003,51(12): 2327-2332
    
    [68] A. Fathy. Design of embedded passive components in low temperature cofired ceramic on metal (LTCC-M) technology. IEEE Int. Microwave Symp, 1998:1281-1284
    
    [69] H. Johann, G. Andriy, H. Patric. Vertical Feedthroughs for Millimeter- Wave LTCC Modules.33rd Euro. Microwave Conf. Munich, 2003: 411-414
    
    [70] C. H. Lee, A. Sutono, S. Han, et al. A compact LTCC Ku-band transmitter module withintegrated filter for satellite communication applications. IEEE Int. Microwave Symp, 2001:945-948
    
    [71]何水校.低温共烧铁氧体无源集成技术及其应用.磁性材料及器件,2003,8:29-32
    
    [72]李际勇,李刘清.NiZn铁氧体表面贴装元件生产技术要点.国际电子变压器,2004,4: 151-154
    
    [73]韩志全.叠层片式电感器中的内应力来源及其缓解措施.磁性材料及器件,2004,3:11-13
    
    [74] Axelsson, Anna-Karin, Alford, et al. Bismuth titanates candidates for high permittivity LTCC. J.??Euro. Ceram. Soc, 2006,26(11): 1933-1936
    
    [75] Birol. H., Maeder.T., Jacq. C. Investigation of interactions between co-fired LTCC components.J. Euro. Ceram. Soc, 2005,25(12): 2065-2069
    
    [76] Bian Jian-jiang, Kim Dong-Wan, Hong Kug Sun. Glass-free LTCC microwave dielectricceramics. Mater. Res. Bull., 2005,40(12): 2120-2129
    
    [77] HagymAAsi Marcel, Roosen Andreas, Karmazin Roman. Constrained sintering of dielectric andferrite LTCC tape composites. J. Euro. Ceram. Soc, 2005, 25(12): 2061-2064
    
    [78] Mori Naoya, Sugimoto Yasutaka, Harada Jun. Dielectric properties of new glass-ceramics forLTCC applied to microwave or millimeter-wave frequencies. J. Euro. Ceram. Soc, 2006,26(10-11), 1925-1928
    
    [79] Jihwan Park, Seung Hee Hong, Yongho Choa, etc al. Fabrication and magnetic properties ofLTCC NiZnCu ferrite thick films, phys. status solidi (a), 2004,201:1790-1793
    
    [80] Jian Liu, Jian-Ming Jin, Edward K, etc al. A fast, higher order three-dimensional finite-elementanalysis of microwave waveguide devices. Microwave. Optic. Tech. Letters, 2002, 32: 344-352
    
    [81] Chen W.P, Qi J.Q, Wang Y. Hydrogen-induced degradation in NiCuZn ferrite-based multilayerchip inductors. Mater. Lett., 2005, 59(13), 1636-1639
    
    [82] B.G Choi, M.G Stubbs, C.S.A Park. Ka-band narrow bandpass filter using LTCC technology.IEEE. Microwave. Wireless Comp. Lett, 2003,13-16
    
    [83] Ansoft Corporation. HFSS 9.2 users'full book. 2003:23-45
    
    [84]Agilent Technologies.ADS仿真试验与演示教程.2002:42-56
    
    [85]邱基综.多层有机封装基板上螺旋电感器之可比例伸缩宽频模型:[硕士学位论文].台北: 台湾国立中山大学,2003,45-70
    
    [86] Yu-Ting Huang, Chi-JEN. The study of magnetic circuit design for multilayer ferrite chipinductors. IEEE. Trans. Magn, 1995, 35: 4071-4073
    
    [87] J. L. Hobdell. Optimization of interdigital capacitors. IEEE.Trans. Microwave. Theory Tech.,1979, 12: 788-791
    
    [88] William Blood, Feng Ling, Thomas Myers. Library Development Process for EmbeddedCapacitors in LTCC. IEEE. Trans. Microwave. Theory Tech., 2000,48: 147-250
    
    [89] Wing-Yan Leung, Ke-Li Wu. Design and implementation of LTCC filters with enhanced stop-band characteristivs for bluetooth applications. Proceedings of APMC, 2001,1008-1011
    
    [90]魏宇哲.低温共烧陶瓷中无源滤波器的分析与设计:[硕士学位论文].南京:南京理工大??学,2004,36-52
    
    [91] Sung-Hun Sim,Chong-Yun Kan. A compact lumped-element lowpass filter using low temperature co-fired ceramic technology. J. Euro. Ceram. Soc, 2003, 23: 2717-2720
    
    [92]王锐辉,周济,崔学民.低温共烧陶瓷(LTCC)技术在材料学上的进展.无机材料学报, 2006,4:267-275
    
    [93] Masami, Nonaka. Core Filter Guard Against EMI in Microprocessors for Electronic Equipment. JEE, 1994:34-38
    
    [94]Reinhold Ludwig.RF Ciruit Design:Theory and Applications.北京:电子工业出版社,2004: 56-60
    
    [95]阿瑟.B.威廉斯.电子滤波器设计手册.北京:电子工业出版社,1986:20-46
    
    [96]张怀武,周海涛,刘颖力.抗电磁干扰材料及元器件工艺.成都:电子科技大学出版社, 2001:87-98
    
    [97] C.T.Chiu, T.S.Horng, H.L.Ma. et al. super broadband lumped models for embedded passives. Elec. Comp. Tech. Conf, 2004, 1104-1107
    
    [98] T.S.Horng, J.M.Wu, L.Q.Yang, et al. a novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth", IEEE. Trans. Microwave. Theory. Tech, 2003, 23: 327-2332
    
    [99] R. L. Remke, G. A. Burdick. Spiral inductors for hybrid and microwave applications. 24th Electron. Comp. Conf. Dig, 1974, 152-161
    
    [100] Lucero Rodolfo, Pavio Anthony. Design of an LTCC integrated tri-band direct conversion receiver front-end module. IEEE. MTT-S. Inter. Microwave Symp. Dig, 2002, 1545-1548
    
    [101] S.Albert, J.Lasker, W.R.Smith. Design of miniature multilayer on-package integrated image-reject filters. IEEE. Trans. Microwave. Theory. Tech, 2003,23: 156-162
    
    [102] Ching-Wen Tang, Chi-Yang Chang. Using buried capacitor in LTCC-MLC balun. Elec. Lett, 2002, 12:801-803

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700