用户名: 密码: 验证码:
葫芦脲[6]与聚电解质的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚电解质具有非常重要的地位,所以对聚电解质的研究一直受到人们的关注。葫芦脲[6](CB[6])是由六个甘脲通过亚甲基桥连接成的六元环,CB[6]具有一个疏水的空腔,两端各具有6个端羰基。CB[6]的疏水空腔及两端的羰基使其很容易与一些小分子,比如质子化的烷基胺,形成非常稳定的主.客体配合物。CB[6]还可以同聚电解质发生相互作用,形成新的配合物。这些配合物往往会具有与聚电解质和CB[6]本身所不同的一些特殊的性质。论文首先综述了课题在国内外的相关研究背景,概括了葫芦脲及其在聚电解质方面应用的研究成果,从而阐明了论文选题的科学意义。并围绕聚电解质与CB[6]的超分子相互作用进行了一系列理论与应用方面的研究。
     (1)通过甲基丙烯酸丁铵与CB[6]进行自组装,合成了一类侧链型配合准轮烷单体CB[6]/甲基丙烯酸丁铵(BAMACB);将准轮烷单体BAMACB与丙烯酰胺(AM)通过4,4'-偶氮二(4-氰基戊酸)引发,进行水溶液共聚,合成了一系列的共聚物。通过~1H NMR、FT-IR、元素分析、TGA、DSC等手段对这一系列共聚物进行测试分析,由核磁和元素分析结果表明,我们此系列共聚物中,BAMACB/AM结构单元的摩尔比分别为1/32.9,1/52.9,1/82.8以及1/87.8;由TGA结果我们得到,由于BAMACB大的空间位阻,破坏了酰胺基的氢键作用,而使酰胺基的降解温度降低;从DSC的结果可知,共聚物PAM/BAMACB的玻璃化转变温度T_g较不含CB[6]的共聚物明显提高,这是由于BAMACB的刚性和大的空间位阻所致。通过动态光散射研究了聚合物在不同溶液中的聚集行为,在水溶液中聚合物PAM/BAMACB分子间的相互作用占主导地位;在0.1 mol/L NaCl溶液中,存在着分子内相互作用与分子间相互作用的平衡过程,在聚合物浓度较小时,分子内收缩占主导地位,当浓度增加时,分子间聚集变得比较明显;当NaCl浓度增加到一定值时,盐的存在很大程度的抑制了聚合物发生明显的聚集。
     (2)研究了海藻酸钠(Alg)与CB[6]的相互作用,研究发现将CB[6]引入到海藻酸钠溶液中后,海藻酸钠与CB[6]可以发生很明显的相互作用。首先通过荧光、圆二色谱、透射电镜、动态光散射等方法研究了海藻酸钠稀溶液与CB[6]的相互作用。结果表明,海藻酸钠稀溶液与CB[6]相互作用后,可以形成一种类胶束结构的Alg/CB[6]纳米聚集体,这种聚集体的结构是以CB[6]进行物理交联的区域为核,电离的羧酸根离子为壳。当海藻酸钠的浓度为0.05 wt%时,可以得到粒径比较均一的纳米聚集体。通过动态光散射和透射电镜结果可知,海藻酸钠与CB[6]形成的配合物溶液中,单个纳米粒子与纳米粒子形成的聚集簇共存。当CB[6]的浓度较低时,溶液中主要存在的是单个纳米粒子,随着CB[6]浓度的增加,这些纳米粒子会变得更紧密,表面电荷会减少;而当CB[6]的浓度增加到一定程度时,纳米粒子聚集成的聚集簇的数量明显增加。对于海藻酸钠浓溶液,CB[6]可以与海藻酸钠发生配合,形成物理交联的Alg/CB[6]凝胶粒子。流变结果表明,CB[6]的量直接关系到凝胶的形成情况,只有CB[6]的量达到一定程度时,才可以形成凝胶状的弹性固体。本文通过数码相机记录了Alg/CB[6]凝胶粒子的形成过程,发现,凝胶粒子的形成过程是一个CB[6]由外向内的扩散过程。Alg/CB[6]干凝胶粒子的红外、TGA、DSC和XRD等分析结果表明,CB[6]主要是通过与海藻酸钠的羧基相互作用而形成凝胶,同时也存在着氢键等其他相互作用,由于海藻酸钠分子链G-G结构的存在,易于形成“egg-box”式的特殊结构,使得Alg/CB[6]凝胶粒子比较稳定。本论文采用5-氟脲嘧啶(5-Fu)作为模型药物,将这种凝胶粒子进行药物释放的初步研究。载药量不同的Alg/CB[6]载药凝胶粒子的释放结果表明,5-Fu载药量为5.94 wt%的Alg/CB[6]载药凝胶粒子的缓释效果较好。
     (3)通过荧光、动态光散射、透射电镜及zeta电位等多种手段,研究了羧甲基纤维素钠(CMC-Na)与CB[6]在溶液中的相互作用情况。研究结果表明,羧甲基纤维素钠的浓度、CB[6]的量、外加小分子无机盐及pH值均会对CMC-Na/CB[6]配合体系产生影响。由于CMC-Na不能与CB[6]形成类似Alg/CB[6]配合体系的“egg-box”结构,所以CB[6]与CMC-Na的结合力较海藻酸钠弱一些。在CMC-Na/CB[6]配合体系中,CMC-Na与CB[6]聚集的纳米粒子形成较慢,需要经过放置才可以形成一些不太规整的球形纳米粒子;CMC-Na的浓溶液与CB[6]相互作用后,CB[6]对CMC-Na分子链的架桥作用要弱一些,在我们的实验条件下也没有象海藻酸钠浓溶液那样,形成球形凝胶粒子,将CMC-Na/CB[6]浓溶液配合体系在室温放置后,体系会出现许多絮状结构的聚集体。
     (4)采用荧光、共振光散射、紫外吸收波谱、动态光散射等表征手段,系统研究了CB[6]与丁胺盐酸盐配合形成的准轮烷离子(CB[6]/BA)与两性聚电解质O-羧甲基壳聚糖(O-CMCS)的相互作用。分别改变pH值、盐浓度、CB[6]/BA浓度等各个条件,考察了CB[6]/BA-O-CMCS配合体系的聚集情况。结果表明在水溶液中,pH值为2.32时,CB[6]/BA只能使O-CMCS分子链发生扩张,没有使O-CMCS分子链发生进一步聚集。对于pH值为7.05和8.35的体系,CB[6]/BA充当了一个交联桥的作用,可以同时与羧基和胺基或铵离子配位,从而使O-CMCS聚集行为发生变化,当CB[6]/BA的浓度较低时,CB[6]/BA首先通过与胺基和羧基发生聚集体内的配位,使得O-CMCS聚集体收缩,当CB[6]/BA的浓度足够大时,聚集体间易团聚,从而形成更大的聚集体簇。在0.1 mol/L NaCl溶液中,CB[6]/BA准轮烷离子主要以~+NH_3CB[6]/BANa~+的形式存在。~+NH_3CB[6]/BANa~+复合离子相当于一个大环状二价阳离子,可以与两个-COO~-配位,形成一种(-COO~-)~+NH_3CB[6]/BANa~+(-COO~-)形式的配位桥,这种配位效果可以影响整个聚合物在溶液中的聚集形态。在0.1 mol/L NaCl溶液中,O-CMCS与CB[6]/BA发生配位时,存在着聚集体内部配合与聚集体间配合的竞争,当CB[6]/BA浓度较低时,容易发生聚集体内的配位,而当CB[6]/BA浓度较高时,易于发生聚集体间的配位而导致团聚,会引起O-CMCS进一步聚集成聚集体簇。
Because of fundamental importance of polyelectrolytes,polyelectrolytes have been the object of a continued interest since the early days of polymer science. Cucurbit[6]uril(CB[6]),which is a macrocycle comprising six glycoluril units interconnected with twelve methylene bridges,has a hydrophobic cavity that is accessible through two identical carbonyl-fringed portals.The polar carbonyl groups at the portals and a hydrophobic cavity allow CB[6]to form stable host-guest complex with small molecules such as protonated aminoalkanes,diaminoalkanes.Moreover, CB[6]and polyelectrolyte can interact with each other to form complex,they usually display intriguing and fascinating features,which are different from polyelectrolyte or CB[6].In this doctoral dissertation,the detailed supermolecule interaction between CB[6]and polyelectrolytes has been investigated.Brief research background of this work is introduced,in which the history and recent progress in cucurbituril and polyelectrolyte as well as the application of CB[6]in polyelectrolyte are reviewed from a worldwide angle of view.The objective and the scientific significance of this doctoral dissertation are also pointed out.
     (1) A novel complex pseudorotaxane monomer(BAMACB) by the self-assembly of the host molecule of CB[6]and guest molecule of butyl ammonium methacrylate (BAMA) was synthesized.A series of copolymers of acrylamide(AM) with complex pseudorotaxane monomer BAMACB were synthesized via conventional free radical polymerization in aqueous media using 4,4 '-azobis(4-cyanopentanoic acid) as initiator. The copolymers(PAM/BAMACB) were characterized extensively via ~1H NMR, Elementary Analysis,Fourier Transform Infrared(FT-IR),Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry(DSC).Compositional analysis by ~1H NMR spectroscopy and Elementary Analysis revealed that copolymers with the mole ratio of BAMACB/AM 1/32.9,1/52.9,1/82.8 and 1/87.8 were achieved.The results showed that the bulky steric hindrance of CB[6]can damage the hydrogen bond of the amide groups,leading to the decrease of decomposition temperature of amide groups. However,the T_g of PAM/BAMACB increased,which was the results of the enhanced rigidity and the bulky steric hindrance of side chain of PAM/BAMACB.The results of Dynamic Light Scattering(DLS) showed that the aggregation of PAM/BAMACB occured.In aqueous solutions,intermolecular aggregation is dominant;transition between the intrachain and interchain association appear in 0.1 mol/L NaCl solutions. The copolymer chains first undergo the intrachain complexation at low copolymer concentration;while in the case of a high polymer concentration,the interchain complexation becomes dominant and apparent.At higher NaCl concentration, aggregation can be suppressed by the added NaCl.
     (2) The interaction between alginate and CB[6]was investigated.The interaction between polysaccharide alginate dilute solution and CB[6]has been investigated by Static Fluorescence Spectroscopy,DLS,Transmission Electron Microscopy(TEM), Circular Dichroism(CD) and Zeta Potential.Results showed that the interactions between alginate and CB[6]lead to the formation of micelle-like nanometer-sized aggregates due to electrostatic interaction and ion-dipole interaction.Micelle-like core-shell aggregates with physical cross-link segments as core and dissociated carboxyl in alginate as shell were obtained.In our experiment,when the concentration of sodium alginate was 0.05 wt%,the uniform micelle-like aggregates were achieved.DLS and TEM results both showed that isolated and clusters coexist in the blend solutions of CB[6]and alginate.Isolated micelle-like aggregates prevailed at low CB[6] concentration and clusters were predominant with increasing CB[6]concentration due to the decrease of charges at surface of micelle-like aggregates.A novel CB[6]mediated alginate physical hydrogel bead was prepared for the first time,which is based on the electrostatic attraction and ion-dipole interaction between concentrated sodium alginate solution and CB[6].These alginate/CB[6]gel beads are useful in controlled drug delivery and other biomedical applications.The rheological results show that the gel can be obtained at given CB[6]concentration.At lower CB[6]concentration,the gel is impossible.The process of the formation of alginate/CB[6]gel beads was recorded by Digital Cameras,which suggested that the process of gellation is controlled by the diffusion of CB[6].CB[6]diffused through outer thin film into the center of the beads. The structure and thermal stability of alginate/CB[6]gel beads were studied by FT-IR, X-Ray Powder Diffraction(XRD),and TGA.The results showed that alginate/CB[6] gel beads were formed through the interaction between CB[6]and G-G chains of alginate in the form of "egg-box".The potential of alginate/CB[6]gel beads as carrier for 5-Fluorouracil(5-Fu) was studied in this paper.It was found that the optimum alginate/CB[6]gel beads of drug loading is 5.94 wt%.
     (3) The interaction between sodium carboxymethylcellulose(CMC-Na) and CB[6] was investigated by Fluorescence Spectroscopy,DLS,TEM,and Zeta Potential.The results showed that the concentration of CMC-Na,the amount of CB[6],the added salt and pH values have effect on the aggregation of CMC-Na/CB[6]systems.Because it is impossible to form the structure of "egg-box" in CMC-Na/CB[6]system,the binding force between CMC-Na and CB[6]is smaller than the system of alginate/CB[6].The formation of nano aggregates between CMC-Na and CB[6]is slow in CMC-Na/CB[6] system.Irregular nano aggregates were obtained after a long time placement.The interaction between concentrated CMC-Na solution and CB[6]could not induce the formation of gel bead.In concentrated CMC-Na solution,floccule was separated out from CMC-Na/CB[6]system and visible with naked eyes after placement.
     (4) CB[6]can complex with butyl ammonium hydrochloride(BA) to form stable pseudorotaxane(CB[6]/BA).The interaction between CB[6]-based pseudorotaxane (CB[6]/BA) and O-carboxymethyl chitosan(O-CMCS) in aqueous solution was investigated by Steady-State Fluorescence,Resonance Light Scattering(RLS), Ultraviolet Absorption Spectra(UV) and DLS.The interaction between CB[6]/BA and O-CMCS depended on pH values,the concentration of CB[6]/BA and the added salt.In aqueous solution,when pH value was 2.32,the conformations of polymer chains expanded.In the mixtted solution of O-CMCS and CB[6]/BA at pH value of 7.05 and 8.35,CB[6]/BA act as "stickers" to interact with the O-CMCS chains.At low CB[6]/BA concentration,the intra-aggregate complexation was expected to be dominant, CB[6]/BA first undergo the intra-aggregate complexation through the -NH_2 or -NH_3~+ and carboxylic groups,which might make the aggregates of O-CMCS form more compact structure.In the case of a high CB[6]/BA concentration,the inter-aggregate complexation became dominant and apparent.The inter-aggregate complex points result in the further aggregation of the O-CMCS chains,leading to larger clusters.In 0.1 mol/L NaC1 solution,Na~+ may complex with bare carbonyl of CB[6]/BA by ion-dipole interaction,leading to the appearance of ~+NH_3CB[6]/BANa~+.~+NH_3CB[6]/BANa~+ tended to complex with two -COO~- to form(-COO~-)~+NH_3CB[6]/BANa~+(~-OOC-) complex point and formation of bridges.The interaction between -COO~- and ~+NH_3CB[6]/BANa~+ can lead to the distinct conformational change of polymer chains.In 0.1 mol/L NaCl solution,interaction between O-CMCS and CB[6]/BA was dominated by either the intra-aggregate or inter-aggregate complexation.At low CB[6]/BA concentration,the intra-aggregate complexation was expected to be apparent,while in the case of high CB[6]/BA concentration,the inter-aggregate complexation became dominant and apparent.The inter-aggregate complex points resulted in the further aggregation of the O-CMCS chains.The larger clusters were obtained.
引文
[1].Behrend,R.,Meyer,E.,and Rusche,F.,Condensation products from glycoluril and formaldehyde.Liebigs Ann.Chem,1905.339,1-37.
    [2].Freeman,W.A.,Mock,W.L.,and Shih,N.Y.,Cucurbituril.Journal of the American Chemical Society,1981.103(24),7367-7368.
    [3].Day,A.,et al.,Controlling factors in the synthesis of cucurbituril and its homologues.Journal of Organic Chemistry,2001.66(24),8094-8100.
    [4].Day,A.I.,et al.,A cucurbituril-based gyroscane:A new supramolecular form.Angewandte Chemie-International Edition,2002.41(2),275-277.
    [5].Day,A.I.,Arnold,A.P.,and Blanch,J.R.,Cucurbiturils and method for synthesis.2004,Unisearch Limited,Sydney,Australia.
    [6].Kim,J.,et al.,New cucurbituril homologues:Syntheses,isolation,characterization,and X-ray crystal structures of cucurbit[n]uril(n=5,7,and 8).Journal of the American Chemical Society,2000.122(3),540-541.
    [7].Buschmann,H.J.,et al.,Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution.Journal of Solution Chemistry,1998.27(2),135-140.
    [8].Zhang,GL.,et al.,A new family of cage compounds-Cucurbit[n]urils:(Ⅱ)Influence of acidity,alkaline and alkaline-earth metal ions on solubility of cucurbit[n=5 similar to 8]urils.Chinese Journal of Inorganic Chemistry,2003.19(6),655-659.
    [9].Jansen,K.,et al.,Cucurbit[5]uril,decamethylcucurbit[5]uril and cucurbit[6]uril.Synthesis,solubility and amine complex formation.Journal of Inclusion Phenomena and Macrocyclic Chemistry,2001.39(3-4),357-363.
    [10].Buschmann,H.J.,Fink,H.,and Schollmeyer,E.1997,DE Patent 19,603,377.
    [11].毕强,et al.,水-盐酸两步法分离瓜环混合物.有机化学,2007.27(7),880-884.
    [12].Liu,S.M.,Zavalij,P.Y.,and Isaacs,L.,Cucurbit[10]uril.Journal of the American Chemical Society,2005.127(48),16798-16799.
    [13].Kim,K.,et al.,Processes of preparing glycolurils and cucurbiturils using microwave.2005.
    [14].Isaacs,L.,et al.,The inverted cucurbit[n]uril family.Journal of the American Chemical Society,2005.127(51),18000-18001.
    [15].Liu,S.M.,Kim,K.,and Isaacs,L.,Mechanism of the conversion of inverted CB[6] to CB[6]. Journal of Organic Chemistry, 2007. 72, 6840-6847.
    [16]. Huang, W.H., Zavalij, P.Y., and Isaacs, L., Chiral recognition inside a chiral cucurbituril. Angewandte Chemie-International Edition, 2007. 46, 7425-7427.
    [17]. Buschmann, H.J., Cleve, E., and Schollmeyer, E., Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorganica chimica acta, 1992. 193 (1), 93-97.
    [18]. Lagona, J., et al., The cucurbit[n]uril family. Angewandte Chemie-International Edition, 2005. 44 (31), 4844-4870.
    [19]. Buschmann, H.J., et al., Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solutioa Analytica Chimica Acta, 2001. 437 (1), 157-163.
    [20]. Lorenzo, S., et al., The first endoannular metal halide-cucurbituril: cis-SnCl_4(H_2O)_2@cucurbit[7]uril. Crystengcomm, 2001 (49), 230-236.
    [21]. Samsonenko, D.G., et al., Synthesis and crystal structure of supramolecular adducts of macrocyclic cavitand cucurbituril with chromium(III) and nickel(II) aqua complexes. Russian Journal of Coordination Chemistry, 2003. 29 (3), 166-174.
    [22]. Samsonenko, D.G., et al., Cucurbituril as a new macrocyclic ligand for complexation of lanthanide cations in aqueous solutions. European Journal of Inorganic Chemistry, 2002 (9), 2380-2388.
    [23]. Buschmann, H.J., Jansen, K., and Schollmeyer, E., Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorganic Chemistry Communications, 2003. 6 (5), 531-534.
    [24]. Sokolov, M.N., Dybtsev, D.N., and Fedin, V.P., Supramolecular compounds of cucurbituril with molybdenum and tungsten chalcogenide cluster aqua complexes. Russian Chemical Bulletin, 2003. 52 (5), 1041-1060.
    [25]. Gerasko, O.A., Samsonenko, D.G., and Fedin, V.P., Supramolecular chemistry of cucurbiturils. Uspekhi Khimii, 2002. 71 (9), 840-861.
    [26]. Yan, K., et al., Synthesis and Crystal Structure of New Supramolecular Adducts [PtCl_6] 2-with Cucurbit[7]uril:[(H_2O)_2(PtCI_6)]_3(C_(42)H_(42)N_(28)O_(14))_2.H_2O. Wuhan University Journal of Natural Sciences, 2004. 9 (1), 99-101.
    [27]. Mock, W.L. and Shih, N.Y., Host-guest binding capacity of cucurbituril. The Journal of Organic Chemistry, 1983. 48 (20), 3618-3619.
    [28]. Mock, W.L. and Shih, N.Y, Structure and selectivity in host-guest complexes of cucurbituril.The Journal of Organic Chemistry,1986.51(23),4440-4446.
    [29].Mock,W.L.and Shih,N.Y.,Organic ligand-receptor interactions between cucurbituril and alkylammonium ions.Journal of the American Chemical Society,1988.110(14),4706-4710.
    [30].Neugebauer,R.and Knoche,W.,Host-guest complexes of cucurbituril with 4-amino-4'-nitroazobenzene and 4,4'-diaminoazobenzene in acidic aqueous solutions.Journal of the Chemical Society-Perkin Transactions 2,1998(3),529-534.
    [31].韩宝航,刘育,葫芦脲:分子识别与组装.有机化学,2003.23(2),139-149.
    [32].Hoffmann,R.,et al.,Host-guest complexes of cucurbituril with the 4-methylbenzyl ammonium ion,alkali-metal cations and NH~(4+).Journal of the Chemical Society.Faraday transactions,1994.90(11),1507-1511.
    [33].Marquez,C.and Nau,W.M.,Two mechanisms of slow host-guest complexation between cucurbit[6]uril and cyclohexylmethylamine:pH-responsive supramolecular kinetics.Angewandte Chemie-International Edition,2001.40(17),3155-3160.
    [34].Dantz,D.A.,et al.,Complexation of volatile organic molecules from the gas phase with cucurbitttril and beta-cyclodextrin.Supramolecular Chemistry,1998.9(2),79-83.
    [35].El Haouaj,M.,et al.,NMR study of the reversible complexation of xenon by cucurbituril.Journal of the Chemical Society-Perkin Transactions 2,2001(5),804-807.
    [36].Buschmann,H.J.and Schollmeyer,E.,Cucurbituril and β-Cyclodextrin as Hosts for the Complexation of Organic Dyes Journal of Inclusion Phenomena and Macrocyclic Chemistry,1997.29(2),167-174.
    [37].Karcher,S.,Kommuller,A.,and Jekel,M.,Removal of reactive dyes by sorption/complexation with cucurbituril.Water Science and Technology,1999.40(4-5),425-433.
    [38].Karcher,S.,Kornmuller,A.,and Jekel,M.,Cucurbituril for water treatment.Part Ⅰ:Solubility of cucurbituril and sorption of reactive dyes.Water Research,2001.35(14),3309-3316.
    [39].Kornmuller,A.,Karcher,S.,and Jekel,M.,Cucurbituril for water treatment.Part Ⅱ:Ozonation and oxidative regeneration of cucurbituril.Water Research,2001.35(14),3317-3324.
    [40].Wagner,B.D.and MacRae,A.I.,The lattice inclusion compound of 1,8-ANS and cucurbituril:A unique fluorescent solid.Journal of Physical Chemistry B,1999.103(46),10114-10119.
    [41].Wagner,B.D.,et al.,A fluorescent host-guest complex of cucurbituril in solution:a molecular Jack O'Lantern.Canadian Journal of Chemistry-Revue Canadienne De Chimie,2001.79(7),1101-1104.
    [42].Zhao,J.Z.,et al.,Cucurbit[n]uril derivatives soluble in water and organic solvents.Angewandte Chemie-International Edition,2001.40(22),4233-4235.
    [43].Buschmann,H.J.,Jansen,K.,and Schollmeyer,E.,The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations.Thermochimica Acta,1998.317(1),95-98.
    [44].Buschmann,H.J.,Jansen,K.,and Schollmeyer,E.,Cucurbituril as host molecule for the complexation of aliphatic alcohols,acids and nitriles in aqueous solution.Thermochimica Acta,2000.346(1-2),33-36.
    [45].Buschmann,H.J.,Jansen,K.,and Schollmeyer,E.,Cucurbituril and alpha-and beta-cyclodextrins as ligands for the complexation of nonionic surfactants and polyethyleneglycols in aqueous solutions.Journal of Inclusion Phenomena and Macrocyclic Chemistry,2000.37(1-4),231-236.
    [46].Jansen,K.,et al.,Steric factors influencing the complex formation with cucurbit[6]uril.Thermochimica Acta,2002.385(1-2),177-184.
    [47].Buschmann,H.J.,Schollmeyer,E.,and Mutihac,L.,The formation of amino acid and dipeptide complexes with alpha-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry.Thermochimica Acta,2003.399(1-2),203-208.
    [48].Samsonenko,D.G.,et al.,Distortion of the cucurbituril molecule by an included 4-methylpyridinum cation.Journal of Structural Chemistry,2002.43(4),664-668.
    [49].Zhang,H.Z.,et al.,Cucurbit[6]uril pseudorotaxanes:Distinctive gas-phase dissociation and reactivity.Journal of the American Chemical Society,2003.125(31),9284-9285.
    [50].严琨,et al.,大环化学和超分子化学研究进展.2002:西北大学出版社.300-301.
    [51].刘静欣,et al.,瓜环与哌嗪衍生物主客体配合物的研究.无机化学学报,2004.20(2),139-146.
    [52].Mock,W.L.and Pierpont,J.,A cucurbituril-based molecular switch.Journal of the Chemical Society,Chemical Communications,1990(21),1509-1511.
    [53].Jun,S.I.,et al.,Rotaxane-based molecular switch with fluorescence signaling. Tetrahedron Letters,2000.41(4),471-475.
    [54].Kim,K.,et al.,A pseudorotaxane on gold:Formation of self-assembled monolayers,reversible dethreading and rethreading of the ring,and ion-gating behavior.Angewandte Chemie-International Edition,2003.42(20),2293-2296.
    [55].Jeon,W.S.,et al.,Control of the stoichiometry in host-guest complexation by redox chemistry of guests:Inclusion of methylviologen in cucurbit[8]uril.Chemical Communications,2002(17),1828-1829.
    [56].Kim,H.J.,et al.,Selective inclusion of a hetero-guest pair in a molecular host:Formation of stable charge-transfer complexes in cucurbit[8]uril.Angewandte Chemie-International Edition,2001.40(8),1526-1529.
    [57].Jeon,Y.J.,et al.,Supramolecular amphiphiles:Spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host.Angewandte Chemie-International Edition,2002.41(23),4474-4476.
    [58].Lee,J.W.,et al.,Unprecedented host-induced intramolecular charge-transfer complex formation.Chemical Communications,2002(22),2692-2693.
    [59].Choi,S.,et al.,A stable cis-stilbene derivative encapsulated in cucurbit[7]uril.Chemical Communications,2003(17),2176-2177.
    [60].Jeon,W.S.,et al.,A[2]pseudorotaxane-based molecular machine:Reversible formation of a molecular loop driven by electrochemical and photochemical stimuli.Angewandte Chemic-International Edition,2003.42(34),4097-4100.
    [61].江明,et al.,大分子自组装.2006:科学出版社.
    [62].Lee,W.F.,Aqueous-solution properties of poly(trimethyl acrylamido propylammonium iodide)[poly(TMAAI)].Journal of Applied Polymer Science,1994.52(10),1447-1458.
    [63].Vu,C.,Characterization of cationic water-soluble polyacrylamides.Journal of Applied Polymer Science,1991.42(11),2857-2869.
    [64].Liaw,D.J.,Dilute-solution properties of cationic poly(dimethyl sulfate quaternized)dimethylaminoethylaminoethyl methacrylate.Journal of Applied Polymer Science,1992.45(1),61-70.
    [65].Vishalakshi,B.,The effects of the charge-density and structure of the polymer on the dye-binding characteristics of some cationic polyelectrolytes.Journal of Polymer Science Part a-Polymer Chemistry,1995.33(3),365-371.
    [66].王景芹,et al.,烷基季铵盐改性膨润土的膨胀性.辽宁石油化工大学学报,2006.26(3),27-30.
    [67].Bratskaya,S.,Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate.Water Research,2004.38(12),2955-2961.
    [68].Kam,S.K.,The interaction of humic substances with cationic polyelectrolytes.Water Research,2001.35(15),3557-3566.
    [69].Shen,Y.H.,Removal of phenol from water by adsorption-flocculation using organobentonite.Water Research,2002.36(5),1107-1114.
    [70].Polubesova,T.,Water purification from organic pollutants by optimized micelle-clay systems.Environmental Science & Technology,2005.39(7),2343-2348.
    [71].Laor,Y.,Complexation-flocculation:A new method to determine binding coefficients of organic contaminants to dissolved humic substances.Environmental Science & Technology,1997.31(12),3558-3564.
    [72].Hankins,N.P.,Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation.Separation and Purification Technology,2006.51(1),48-56.
    [73].Rebhun,M.,Using dissolved humic acid to remove hydrophobic contaminants from water by complexation-flocculation process.Environmental Science & Technology,1998.32(7),981-986.
    [74].Porras-Rodriguez,M.,Removal of 2,4-dichlorophenoxyacetic acid from water by adsorptive micellar flocculation.Environmental Science & Technology,1999.33(18),3206-3209.
    [75].李蔚,季铵盐型阳离子抗静电剂的概况及发展趋势.国际纺织导报,2007.35(11),68-72.
    [76].Forster,S.,Structure of polyelectrolyte block copolymer micelles.Macromolecules,2002.35(10),4096-4105.
    [77].Forster,S.,Polyelectrolyte block copolymer micelles.Polyelectrolytes with Defined Molecular Architecture Ii,2004.166,173-210.
    [78].Wen,S.,Microcapsules through polymer complexation.3.Encapsulation and culture of human burkitt-lymphoma cells in vitro.Biomaterials,1995.16(4),325-335.
    [79].Liu,L.-S.,Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres.Journal of Controlled Release,1996.43(1),65-74.
    [80].Tabata,Y.,Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels.Biomaterials,1998.19(7-9),807-815.
    [81].Kakizawa,Y.,Block copolymer micelles for delivery of gene and related compounds.Advanced Drug Delivery Reviews,2002.54(2),203-222.
    [82].何曼君,陈维孝,董西侠,高分子物理.上海:复旦大学出版社,1990,137-139.
    [83].Alvarez-Parrilla,E.,et al.,Dendritic growth of a supramolecular complex.Angewandte Chemie-International Edition,2000.39(16),2856-2858.
    [84].Lee,J.W.and Kim,K.,Rotaxane dendrimers.Dendrimers Ⅴ:Functional and Hyperbranched Building Blocks,Photophysical Properties,Applications in Materials and Life Sciences,2003.228,111-140.
    [85].Lee,J.W.,et al.,Novel pseudorotaxane-terminated denddmers:Supramolecular modification of dendrimer periphery.Angewandte Chemic-International Edition,2001.40(4),746-749.
    [86].Ong,W.and Kaifer,A.E.,Molecular encapsulation by cucurbit[7]uril of the apical 4,4'-bipyridinium residue in Newkome-type dendrimers.Angewandte Chemie-International Edition,2003.42(19),2164-2167.
    [87].Tuncel,D.and Steinke,J.H.G.,Catalytically self-threading polyrotaxanes.Chemical Communications,1999(16),1509-1510.
    [88].Krasia,T.C.and Steinke,J.H.G.,Formation of oligotriazoles catalysed by cucurbituril.Chemical Communications,2002(1),22-23.
    [89].Tuncel,D.and Steinke,J.H.G.,Catalytic self-threading:A new route for the synthesis of polyrotaxanes.Macromolecules,2004.37(2),288-302.
    [90].Isobe,H.,et al.,Ternary complexes between DNA,polyamine,and cucurbituril:A modular approach to DNA-binding molecules.Angewandte Chemic-International Edition,2000.39(23),4257-4260.
    [91].Lim,Y.B.,et al.,Self-assembled ternary complex of cationic dendrimer,cucurbituril,and DNA:Noncovalent strategy in developing a gene delivery carrier.Bioconjugate Chemistry,2002.13(6),1181-1185.
    [92].Sasmal,S.,Sinha,M.K.,and Keinan,E.,Facile purification of rare cucurbiturils by affinity chromatography.Organic Letters,2004.6(8),1225-1228.
    [93].Tuncel,D.and Steinke,J.H.G.,Mainchain pseudopolyrotaxanes via post-threading with cucurbituril.Chemical Communications,2001(3),253-254.
    [94].Meschke,C.,Buschmann,H.J.,and Schollmeyer,E.,Synthesis of mono-,oligo- and polyamide-cucurbituril rotaxanes.Macromolecular Rapid Communications,1998.19(1),59-63.
    [95].Meschke,C.,Buschmann,H.J.,and Schollmeyer,E.,Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril.Polymer,1999.40(4),945-949.
    [96].Buschmann,H.J.,et al.,Synthesis of cucurbitufil-spermine-[2]rotaxanes of the amide-type.Supramolecular Chemistry,2000.11(3),225-231.
    [97].Choi,S.,et al.,Pseudopolyrotaxanes made to order:Cucurbituril threaded on polyviologen.Macromolecules,2002.35(9),3526-3531.
    [98].Tan,Y.B.,et al.,Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril.Macromolecules,2002.35(18),7161-7165.
    [99].侯昭升,et al.,侧链准聚轮烷的制备及表征-葫芦脲[6]与聚[4-乙烯基-溴(N-正丁基)吡啶季铵盐]的超分子自组装.高分子学报,2005(4),491-495.
    [100].侯昭升,et al.,葫芦脲与主链聚紫精的超分子自组装制备准聚轮烷及其性质研究.高等学校化学学报,2005.26(4),773-777.
    [101].Choi,S.W.and Ritter,H.,Lower critical solution temperature properties of N-isopropylacrylamide-based pseudopolyrotaxanes by complexation with cucurbituril[6].Macromolecular Rapid Communications,2007.28(1),101-108.
    [1].Gibson,H.W.,et al.,Macromoleculars,1997.30,3711-3727.
    [2].Gibson,H.W.and Mahan,E.J.,Rotaxanes.Cyclic Polymers,Second Edition.2000.415-560.
    [3].Takata,T.and Kihara,N.,Rotaxanes synthesized from crown ethers and sec-ammonium salts.Reviews on Heteroatom Chemistry,2000.22,197-218.
    [4].Cantrill,S.J.,Pease,A.R.,and Stoddart,J.F.,A molecular meccano kit.Journal Of the Chemical Society-Dalton Transactions,2000(21),3715-3734.
    [5].Hubin,T.J.and Busch,D.H.,Template routes to interlocked molecular structures and orderly molecular entanglements.Coordination Chemistry Reviews,2000.200,5-52.
    [6].Carlucci,L.,Ciani,G.,and Proserpio,D.M.,Polycatenation,polythreading and polyknotting in coordination network chemistry,Coordination Chemistry Reviews,2003.246,247-289.
    [7].Huang,F.H.and Gibson,H.W.,Polypseudorotaxanes and polyrotaxanes.Progress in Polymer Science,2005.30(10),982-1018.
    [8].Irina,G.,et al.,Rotaxanes and polyrotaxanes.Their synthesis and the supramolecular devices based on them.Russian Chemical Reviews,2001.70,23-44.
    [9].Molecular catenanes,rotaxanes and knots,ed.J.P.Sauvage and C.Dietrich-Buchecker.1999:Wiley-VCH,Weinheim.
    [10].Schill,G.and Boeckmann,J.,Catenanes,rotaxanes,and knots.1971:Academic Press New York.
    [11].Szejtli,J.,Osa,T.,and Lehn,J.M.,Comprehensive supramolecular chemistry Vol.3Comprehensive supramolecular chemistry.Cyclodextrins.1996:Pergamon.
    [12].Gutsche,C.D.,Calixarenes Monographs in supramolecular chemistry.1989.
    [13].Atwood,J.L.,et al.,Comprehensive supramolecular chemistry,.Volume 1,.Molecular recognition:receptors for cationic guests.1996:Pergamon.
    [14].Harada,A.,Li,J.,and Kamachi,M.,Proceedings of the Japan academy series B-Physical and Biological Sciences,1993.69,39-44.
    [15].Kamitori,S.,et al.,A novel pseudo-polyrotaxane structure composed of cyclodextrins and a straight-chain polymer:Crystal structures of inclusion complexes of beta-cyclodextrin with poly(trimethylene oxide) and poly(propylene glycol).Macromolecules,2000.33(5),1500-1502.
    [16]. Herrmann, W., Keller, B., and Wenz, G., Macromoleculars, 1997. 30, 4966-4972.
    [17]. Fujita, H., Ooya, T., and Yui, N., Thermally induced localization of cyclodextrins in a polyrotaxane consisting of beta-cyclodextrins and poly(ethylene glycol)-poly(propylene glycol) triblock copolymer. Macromolecules, 1999. 32 (8), 2534-2541.
    [18]. Harada, A., et al., Macromolecular recognition: New cyclodextrin polyrotaxanes and molecular tubes. Polymers for Advanced Technologies, 1999. 10 (1-2), 3-12.
    [19]. Hodge, P., et al., H-1 NMR spectroscopic studies of the structures of a series of pseudopolyrotaxanes formed by "threading". New Journal Of Chemistry, 2000. 24 (9), 703-709.
    [20]. Gong, C.G., et al., Main chain polyrotaxanes by threading crown ethers onto a preformed polyurethane: Preparation and properties. Macromolecules, 1998. 31 (6), 1814-1818.
    [21]. Mason, P.E., Bryant, W.S., and Gibson, H.W., Threading/dethreading exchange rates as structural probes in polypseudorotaxanes. Macromolecules, 1999. 32 (5), 1559-1569.
    [22]. Lagona, J., et al., The cucurbit[n]uril family. Angewandte Chemie-International Edition, 2005. 44 (31), 4844-4870.
    [23]. Meschke, C., Buschmann, H.J., and Schollmeyer, E., Thermochimica Acta, 1997. 43, 297-303.
    [24]. Buschmann, H.J., et al., Thermodynamic Data for Complex Formation Between Cucurbituril and Alkali and Alkaline Earth Cations in Aqueous Formic Acid Solution. Journal of Solution Chemistry, 1998. 27 (2), 135-140.
    [25]. Whang, D.M., et al., Molecular necklace: Quantitative self-assembly of a cyclic oligorotaxane from nine molecules. Journal Of the American Chemical Society, 1998. 120(19), 4899-4900.
    [26]. Lee, E.S., Heo, J.S., and Kim, K., A three-dimensional polyrotaxane network. Angewandte Chemie-International Edition, 2000. 39 (15), 2699-2701.
    [27]. Lee, J.W., Kim, K.P., and Kim, K., A kinetically controlled molecular switch based on bistable [2]rotaxane. Chemical Communications, 2001(11), 1042-1043.
    [28]. Tan, Y.B., et al., Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules, 2002. 35 (18), 7161-7165.
    [29]. Choi, S., et al., Pseudopolyrotaxanes made to order: Cucurbituril threaded on polyviologen.Macromolecules,2002.35(9),3526-3531.
    [30].Jeon,W.S.,et al.,A[2]pseudorotaxane-based molecular machine:Reversible formation of a molecular loop driven by electrochemical and photochemical stimuli.Angewandte Chemie-International Edition,2003.42(34),4097-4100.
    [31].Kim,K.,et al.,A pseudorotaxane on gold:Formation of self-assembled monolayers,reversible dethreading and rethreading of the ring,and ion-gating behavior.Angewandte Chemie-International Edition,2003.42(20),2293-2296.
    [32].Kim,K.,et al.,Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction.Chemical Communications,2004(7),848-849.
    [33].Dybtsev,D.N.,et al.,Microporous manganese formate:A simple metal-organic porous material with high framework stability and highly selective gas sorption properties.Journal Of the American Chemical Society,2004.126(1),32-33.
    [34].Buschmann,H.J.,Meschke,C.,and Schollmeyer,E.,Formation of pseudorotaxanes between cucurbituril and some 4,4'-bipyridine derivatives.Anales De Quimica-lnternational Edition,1998.94(4-5),241-243.
    [35].Meschke,C.,Buschmann,H.J.,and Schollmeyer,E.,Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril.Polymer,1999.40(4),945-949.
    [36].Buschmann,H.J.,Jansen,K.,and Schollmeyer,E.,Cucurbituril as host molecule for the complexation of aliphatic alcohols,acids and nitriles in aqueous solution.Thermochimica Acta,2000.346(1-2),33-36.
    [37].Tuncel,D.and Steinke,J.H.G.,Catalytic self-threading:A new route for the synthesis of polyrotaxanes.Macromolecules,2004.37(2),288-302.
    [38].Hou,Z.S.,et al.,Synthesis and characterization of side-chain pesodopolyrotaxanes by supramolecular self-assemibly of cucurbituril[6]and poly(4-vinyl-N-n-butypyridinium bromide).Acta Polymerica Sinica,2005(4),491-495.
    [39].Hou,Z.S.,et al.,Synthesis,characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril[6]and poly-N-1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride.Polymer,2006.47(2),742-750.
    [40].Hou,Z.S.,Tan,Y.B.,and Zhou,Q.F.,Side-chain pseudopolyrotaxanes by threading cucurbituril[6]onto quaternized poly-4-vinylpyridine derivative:Synthesis and properties.Polymer,2006.47(15),5267-5274.
    [41].Freeman,W.A.,Mock,W.L.,and Shih,N.Y.,Journal of the American Chemical Society 1981.103,7367-7368.
    [42].Debye,P.,Journal of Physical and Colloid Chemistry,1947.51,18-32.
    [43].Zimm,B.H.,Journal of Chemical Physics,1948.16,1099-1116.
    [44].Wu,J.L.,Wang,Y.M.,and Masanori,H.,Macromoleculars 1994.27,1195-1200.
    [45].Hara,M.,Wu,J.L.,and Antony,H.L.,Macromoleculars 1988.21,2214-2218.
    [46].Ikeda,Y.,et al.,Ca2+ and CU2+ induced conformational changes of sodium polymethacrylate in dilute aqueous solution.Macromolecules,1998.31(3),728-733.
    [1].Bu,H.T.,et al.,Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction.Biomacromolecules,2004.5(4),1470-1479.
    [2].Orive,G.,et al.,Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates.Biomaterials,2002.23(18),3825-3831.
    [3].Draget,K.I.,et al.,Small-angle x-ray scattering and rheological characterization of alginate gels.3.Alginic acid gels.Biomacromolecules,2003.4(6),1661-1668.
    [4].Tanaka,H.,Matsumura,M.,and Veliky,I.A.,Diffusion characteristics of substrates in Ca-alginate gel beads.BiotechnoI Bioeng,1984.26(1),53-8.
    [5].Blandino,A.,Macias,M.,and Cantero,D.,Immobilization of glucose oxidase within calcium alginate gel capsules.Process Biochemistry,2001.36(7),601-606.
    [6].Palmieri,G.,et al.,A new enzyme immobilization procedure using copper alginate gel:Application to a fungal phenol oxidase.Enzyme and Microbial Technology,1994.16(2),151-158.
    [7].Tanaka,H.and Irie,S.,Preparation of stable alginate gel beads in electrolyte solutions using Ba~(2+) and Sr~(2+).Biotechnology Techniques,1988.2(2),115-120.
    [8].Hari,P.R.,Chitosan/Calcium-Alginate Beads for Oral Delivery of Insulin.Journal of Applied Polymer Science,1996.59,1795-1801.
    [9].Arica,B.,et al.,5-fluorouracil encapsulated alginate beads for the treatment of breast cancer.International Journal of Pharmaceutics,2002.242(1-2),267-269.
    [10].Freeman,W.A.,Mock,W.L.,and Shih,N.Y.,Cucurbituril.Journal Of the American Chemical Society,1981.103,7367-7368.
    [11].Stokke,B.T.,et al.,Small-angle X-ray scattering and rheological characterization of alginate gels.1.Ca-alginate gels.Macromolecules,2000.33(5),1853-1863.
    [12].Donati,I.,et al.,Determination of the diadic composition of alginate by means of circular dichroism:a fast and accurate improved method.Carbohydrate Research,2003.338(10),1139-1142.
    [13].Ying,Q.and Chu,B.,Overlap concentration of macromolecules in solution.Macromolecules,1987.20(2),362-366.
    [14].Wang,K.T.,Iliopoulos,I.,and Audebert,R.,Viscometric behaviour of hydrophobically modified poly(sodium acrylate).Polymer Bulletin,1988.20(6),577-582.
    [15].Kalyanasundaram,K.and Thomas,J.K.,Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems.Journal of the American Chemical Society,1977.99(7),2039-2044.
    [16].Wu,D.,et al.,Interaction between proteins and cationic gemini surfactant.Biomacromolecules,2007.8(2),708-712.
    [17].Wang,X.,et al.,Interactions of cationic gemini surfactants with hydrophobically modified poly(acrylamides) studied by fluorescence and microcalorimetry.J.Phys.Chem,2005.109,12850.
    [18].Winnik,F.M.,Ringsdorf,H.,and Venzmer,J.,Interactions of surfactants with hydrophobically-modified poly(N-isopropylacrylamides).1.Fluorescence probe studies.Langmuir,1991.7(5),905-911.
    [19].Panmai,S.,et al.,Interactions between Hydrophobically Modified Polymers and Surfactants:A Fluorescence Study.Macromolecules,1992.25,1304.
    [20].Neumann,M.G.,Schmitt,C.C.,and Iamazaki,E.T.,A fluorescence study of the interactions between sodium alginate and surfactants.Carbohydrate Research,2003.338(10),1109-1113.
    [21].魏荣慧,et al.,荧光偏振光谱法探测光动力过程中癌细胞膜的流动性.光谱学与光谱分析,2005.25(11),1827-1829.
    [22].Shinitzky,M.and Barenholz,Y.,Fluidity parameters of lipid regions determined by fluorescence polarization.BBA-Reviews on Biomembranes,1978.515(4),367-394.
    [23].Shinitzky,M.and Inbar,M.,Microviscosity parameters and protein mobility in biological membranes.Biochim Biophys Acta,1976.433(1),133-49.
    [24].Gauglitz,G.and Vo-Dinh,T.,Handbook of spectroscopy.2003:Wiley-VCH,Weinheim.
    [25].Yang,J.T.,Wu,C.S.,and Martinez,H.M.,Calculation of protein conformation from circular dichroism.Methods Enzymol,1986.130,208-69.
    [26].Chen,Y.H.,Yang,J.T.,and Martinez,H.M.,Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion.Biochemistry,1972.11(22),4120-4131.
    [27].Woody,R.W.,Circular dichroism.Methods Enzymol,1995.246,34-71.
    [28].Sreeram,K.J.,Shrivastava,H.Y.,and Nair,B.U.,Studies on the nature of interaction of iron(Ⅲ) with alginates.Biochimica Et Biophysica Acta-General Subjects,2004.1670(2),121-125.
    [29].Buschmann,H.J.,et al.,Determination of complex stabilities with nearly insoluble host molecules:cucurbit[5]uril,decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution.Analytica Chimica Acta,2001.437(1),157-163.
    [30].Buschmann,H.J.,Cleve,E.,and Schollmeyer,E.,Cucurbituril as a ligand for the complexation of cations in aqueous solutions.Inorganica chimica acta,1992.193(1),93-97.
    [31].Lee,J.Y.,Cho,E.C.,and Cho,K.,Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide)micelles.Journal Of Controlled Release,2004.94(2-3),323-335.
    [32].中华人民共和国药典.2005,化学工业出版社.
    [33].Ibanez,J.P.and Umetsu,Y.,Potential ofprotonated alginate beads for heavy metals uptake.Hydrometallurgy,2002.64(2),89-99.
    [34].Lee,K.S.,et al.,Second-order nonlinear optical properties and relaxation dynamics of aligned cross-linked polyurethanes with hemicyanine-type chromophores.Journal of the Optical Society of America B,1998.15(1),393-400.
    [1].Hollabaugh,C.B.,Burt,L.H.,and Walsh,A.P.,Carboxymethylcellulose.Uses and Applications.Industrial & Engineering Chemistry,1945.37(10),943-947.
    [2].Liu,P.F.,et al.,Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels.Radiation Physics and Chemistry,2002.63(3-6),525-528.
    [3].Edali,M.,Esmail,M.N.,and Vatistas,G.H.,Rheological properties of high concentrations of carboxymethyl cellulose solutions.Journal of Applied Polymer Science,2001.79(10),1787-1801.
    [4].Yan,L.F.,Qian,F.,and Zhu,Q.S.,Interpolymer complex polyampholytic hydrogel of chitosan and carboxymethyl cellulose(CMC):synthesis and ion effect.Polymer International,2001.50(12),1370-1374.
    [5].Kadokawa,J.,Sarou,S.,and Shoda,S.,Preparation of polysaccharide-polymethacrylate hybrid materials by radical polymerization of cationic methacrylate monomer in the presence of anionic polysaccharide.Polymers for Advanced Technologies,2007.18(8),643-646.
    [6].Shaker,A.M.,Novel carboxymethyl cellulose ionotropic gels Ⅱ.Kinetics of decomposition of the manganate(Ⅵ) intermediate-novel spectrophotometric tracer of the preformed short lived hypomanganate(Ⅴ) coordination polymer sol.Journal of Colloid and Interface Science,2001.244(2),254-261.
    [7].Kapoor,S.and Gopinathan,C.,Reduction and aggregation of silver,copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose.Radiation Physics and Chemistry,1998.53(2),165-170.
    [8].Mitsumata,T.,et al.,pH-response of chitosan,kappa-carrageenan,carboxymethyl cellulose sodium salt complex hydrogels.Polymer,2003.44(23),7103-7111.
    [9].Ibanez,J.P.and Umetsu,Y.,Potential of protonated alginate beads for heavy metals uptake.Hydrometallurgy,2002.64(2),89-99.
    [10].Freeman,W.A.,Mock,W.L.,and Shih,N.Y.,Cucurbituril.Journal Of the American Chemical Society,1981.103,7367-7368.
    [11].曾晖扬,李卓美,羧甲基纤维素钠取代度测定的新方法.纤维素科学与技术,1996.4(4),38-43.
    [12].Eyler,R.W.,Klug,E.D.,and Diephuis,F.,Determination of degree of substitution of sodium carboxymethyl-cellulose.Analytical Chemistry,1947.19(1),24-27.
    [13]. Sitaramaiah, G. and Goring, D.A.I., Hydrodynamic studies on sodium carboxymethyl cellulose in aqueous solutions. Journal of Polymer Science, 1962. 58 (166), 1107-1131.
    [14]. Buschmann, H.J., et al., Determination of complex stabilities with nearly insoluble host molecules: cucurbit [5] uril, decamethylcucurbit [5] uril and cucurbit [6] uril as ligands for the complexation of some multicharged cations in aqueous solutioa Analytica Chimica Acta, 2001. 437 (1), 157-163.
    [15]. Buschmann, H.J., Cleve, E., and Schollmeyer, E., Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorganica chimica acta, 1992. 193 (1), 93-97.
    [1].王小红,马建标,甲壳素、壳聚糖及其衍生物的应用.功能高分子学报,1999.12(2),197-202.
    [2].Hirano,S.,et al.,Chitosan:a biocompatible material for oral and intravenous administrations.Progress in Biomedical Polymers,1990,283-290.
    [3].Zhu,A.,Yuan,L.,and Liao,T.,Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan.International Journal of Pharmaceutics,2008.350(1-2),361-368.
    [4].Zhu,A.P.and Fang,N.,Adhesion dynamics,morphology,and organization of 3T3fibroblast on chitosan and its derivative:The effect of O-carboxymethylation.Biomacromolecules,2005.6(5),2607-2614.
    [5].Khougaz,K.,Astafieva,I.,and Eisenberg,A.,Micellization in Block Polyelectrolyte Solutions.3.Static Light Scattering Characterization.Macromolecules,1995.28(21),7135-7147.
    [6].Angelopoulos,M.,et al.,LiCl Induced Morphological Changes In Polyaniline Base and Their Effect on the Electronic Properties of the Doped Form.Macromolecules,1996.29(8),3046-3049.
    [7].Reinecke,H.,et al.,Study of thermoreversible aggregates from chemically-modified PVCs.Macromolecules,1997.30(26),8360-8364.
    [8].Zheng,W.,et al.,Experimental evidence for hydrogen bonding in polyaniline:mechanism of aggregate formation and dependency on oxidation state.Macromolecules,1997.30(10),2953-2955.
    [9].Xu,X.and Zhang,L.,Aggregation and disaggregation of Aeromonas gum in an aqueous solution under different conditions.Journal of Polymer Science Part B Polymer Physics,2000.38(20),2644-2651.
    [10].Ding,Q.,et al.,Laser light-scattering studies of pachyman.Carbohydrate Research,1998.308(3-4),339-343.
    [11].Freeman,W.A.,Mock,W.L.,and Shih,N.Y.,Cucurbituril.Journal of the American Chemical Society,1981.103(24),7367-7368.
    [12].Zhao,Z.P.,Wang,Z.,and Wang,S.C.,Formation,charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane.Journal of Membrane Science,2003.217(1-2),151-158.
    [13].Gelamo,E.L.and Tabak,M.,Spectroscopic studies on the interaction of bovine (BSA) and human(HSA) serum albumins with ionic surfactants.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2000.56(11),2255-2271.
    [14].Ding,Y.,et al.,The effect of sodium dodecyl sulfate on the conformation of bovine serum albumin.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007.298(3),163-169.
    [15].Gauglitz,G.and Vo-Dinh,T.,Handbook of spectroscopy.2003:Wiley-VCH,Weinheim.
    [16].Pasternack,R.F.,et al.,Porphyrin assemblies on DNA as studied by a resonance light-scattering technique.Journal of the American Chemical Society,1993.115(13),5393-5399.
    [17].Pasternack,R.F.and Collings,P.J.,Resonance light scattering:a new technique for studying chromophore aggregation.Science,1995.269(5226),935-939.
    [18].Collings,P.J.,et al.,Resonance light scattering and its application in determining the size,shape,and aggregation number for supramolecular assemblies of chromophores.J.Phys.Chem.B,1999.103(40),8474-8481.
    [19].Long,Y.J.,Li,Y.F.,and Huang,C.Z.,A wide dynamic range detection of biopolymer medicines with resonance light scattering and absorption ratiometry.Analytica Chimica Acta,2005.552(1-2),175-181.
    [20].Huang,C.Z.,et al.,Adsorption of penicillin-berberine ion associates at a water/tetrachloromethane interface and determination of penicillin based on total internal-reflected resonance light scattering measurements.Analytica Chimica Acta,2005.538(1-2),337-343.
    [21].Huang,C.Z.and Li,Y.F.,Resonance light scattering technique used for biochemical and pharmaceutical analysis.Analytica Chimica Acta,2003.500(1-2),105-117.
    [22].Collings,P.J.,et al.,Resonance Light Scattering and Its Application in Determining the Size,Shape,and Aggregation Number for Supramolecular Assemblies of Chromophores.Journal Of Physical Chemistry B,1999.103,8474-8481.
    [23].Wu,J.L.,et al.,Salt-Free Polyelectrolyte Behavior of Polystyrene-Based Telechelic Ionomers in a Polar Solvent.1.Viscosity and Low-Angle Light Scattering Studies.Macromolecules,1994.27(5),1195-1200.
    [24].Niu,A.,et al.,Light-Scattering Study of a Zwitterionic Polycarboxybetaine in Aqueous Solution.Macromolecules,2000.33(9),3492-3494.
    [25].Hou,Z.S.,et al.,Synthesis,characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril[6]and poly-N1-(4-vinylbenzyl)-1, 4-diaminobutane dihydrochloride. Polymer, 2006. 47 (2), 742-750.
    [26]. Buschmann, H.J., et al., Determination of complex stabilities with nearly insoluble host molecules: cucurbit [5] uril, decamethylcucurbit [5] uril and cucurbit [6] uril as ligands for the complexation of some multicharged cations in aqueous solution. Analytica Chimica Acta, 2001. 437 (1), 157-163.
    [27]. Buschmann, H.J., Cleve, E., and Schollmeyer, E., Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorganica chimica acta, 1992. 193 (1), 93-97.
    [28]. Ikeda, Y., et al., Ca~(2+) and C_u~(2+) induced conformational changes of sodium polymethacrylate in dilute aqueous solutioa Macromolecules, 1998. 31 (3), 728-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700