用户名: 密码: 验证码:
含咪唑基多齿配体铁、钌配合物的合成、催化性能及质子偶合电子转移反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非血红素铁氧化酶的化学模拟是近年来生物无机化学领域的研究热点之一。近年来随着生物技术、各种光谱手段及晶体学的发展,已解析出多种非血红素铁氧化酶活性中心的晶体结构。在这些结构中,都存在组氨酸,其中的咪唑环与铁配位。由此可见咪唑环类配体在非血红素铁氧化酶体系中的重要作用。迄今对非血红素铁氧化酶活性中心结构的化学模拟大多选择非环状的N_4配体与铁配位,其中吡啶环类配体广泛被应用。此外由于非血红素铁氧化酶能够利用分子氧或H_2O_2等“绿色”氧化剂,在温和条件下高效高选择性地催化烷烃、烯烃和酚等众多有机底物的氧化反应,这对于开发绿色环保氧化工艺具有重要意义。
     基于以上的研究背景,本论文采用含咪唑环类非环状N_4配体对非血红素铁氧化酶的活性中心进行了化学模拟,对配体进行化学修饰,设计合成了一系列非血红素铁氧化酶模型配合物,并研究了铁配合物对环己烷、环己烯、乙苯、苯乙烯、1-辛烯及金刚烷的催化氧化活性和选择性。所得模型配合物的晶体结构表明,模型配合物都具有六配位八面体构型,催化数据显示该类配合物对有机底物催化活性中等,催化结果低于同类含TPA(TPA=tris(2-pyridylmethyl)amine)配体的模型配合物。其中配合物[FeL~4Cl_2](ClO_4)(Fe4a,L~4=N,N-二(2-吡啶甲基)-N-(2-苯并咪唑甲基)胺)显示了较高的活性和选择性,以H_2O_2为氧化剂氧化环己烯的转化率达到83.8%,以~tBuOOH(过氧叔丁醇)为氧化剂氧化金刚烷的3°/2°达到19.9,表明在以上体系中高价态铁氧中间体为主要氧化物种。综上,苯并咪唑类配体的引入使其在非血红素铁氧化酶活性中心结构模拟上与天然酶更为接近,但是其仿生催化效果却不十分理想。
     利用所得的模型配合物[Ru(L~4)(BPY)](PF_6)_2(Ru4a)和[Ru(L~4-H)(BPY)](PF_6)(Ru4b),我们进一步研究了质子偶合电子转移反应,构建了一个质子偶合电子转移模型。NMR和MS研究发现,配体L~4中的N-H键的质子可以发生可逆的去质子化/质子化反应,并且在此过程中配合物结构没有改变。通过CV研究发现,中心金属Ru(Ⅱ/Ⅲ)的氧化还原电位从0.69V降低到0.26V,Pourbaix曲线的斜率为53.6(接近59),因此该质子偶合的氧化还原过程中包含一个电子与一个质子。此外,对质子偶合电子转移反应的动力学进行了初探,光谱电化学的研究结果表明可以采用闪光光解的方法来研究此模型的动力学;配合物Ru4a对光敏剂Ru(BPY)_3(PF_6)_2有明显的淬灭作用。
In the past decade, the research on non-heme iron oxygenases has emerged as a hot project in bioinorganic field. Several crystal structures of non-heme iron oxygenases were determined with the development of biology techniques, various spectroscopic techniques and crystallography. Crystal structure revealed that imidazole in histidine coordinates to the non-heme oxygenase active site in all proteins, which shows the ligands containing imidazole unit are important in non-heme iron oxygenases. Many non-ringed N_4 ligands were used in functional synthetic models, especially the ligands containing a pyridine moiety. Under mild conditions, the bio-inspired catalysts based on non-heme iron oxygenases can selectively and efficiently catalyze oxidation reactions of a large range of substrates such as alkanes, alkenes and phenols by using "green" oxidants. It may give a promising way to substitute present oxidation processes.
     Encouraged by these achievments, in this thesis, the work is focused on mimicking the structre of non-heme iron oxygenases using the N_4 ligands with benzimidazole unit. A series of iron complexes were synthesized as functional models of non-heme iron oxygenases, their catalytic properties for the oxidation of hydrocarbons were investigated. Crystal structures showed that all iron centers contain a distorted octahedral coordination gemometry. Catalytic results indicated that the activity of model complexes was lower than the iron complexes containing TPA (TPA = tris(2-pyridylmethyl)amine) . Fe4a exhibited high activities(83.8%) and high regioselectivities(3°/2°= 19.9). The model complex structures are close to the active site of natural enzymes, but catalytic results were not satisfactory.
     Proton coupled electron transfer (PCET) reaction was also investigated using the model complexes Ru4a and Ru4b, and a proton coupled electron transfer model was created. The NH group of the ligand L~4 readily undergoes a reversible protonation/deprotonation process, which is confirmed by spectroscopic and electrochemical evidences. The reversible protonation/deprotonation regulates the oxidation potential of the Ru~Ⅱ/Ru~Ⅲredox couple in the range of 430 mV without changing the framework of the ruthenium complex. The kinetics of the PCET was also investigated by spectroelectrochemistry and flash photolysis spectrophotometer, but Ru4a quenched the exited state of Ru(BPY)_3(PF_6)_2.
引文
[1]a) Que L Jr,Ho R Y N.Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites.Chem.Rev.,1996,96:2607-2624.
    b) Wallar B J,Lipscomb J D.Dioxygen activation by enzymes contaning binuclear non-heme iron clusters.Chem.Rev.,1996,96(7):2625-2657.
    c) Costas M,Mehn M P,Jensen M Pet al.Dioxygen activation at mononuclear nonheme iron active site:enzymes,models and intermediates.Chem.Rev.,2004,104:939-986.
    d)Tshuva E Y,Lippard S J.Synthetic models for non-heme carboxylate-bridged diiron metalloproteins:strategies and tactics.Chem.Rev.,2004,104(2):987-1012.
    [2]计亮年,黄锦汪,莫庭焕等.生物无机化学导论(第二版),广州:中山大学出版社,2001.
    [3]阎世平,刘斌,程鹏.化学通报,1998,(6):6-10.
    [4]Small F J,Ensign S.A.Alkene monooxygenase from xanthobacter strain Py_2 purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes.J.Biol.Chem.,1997,272:24913-24920.
    [5]a) Wilkins R G.Structure-function relationships of the alternative oxidase of plant mitochondria:A model of the active site.Chem.Soc.Rev.,1992,171-178.
    b) Clark P E,Webb J.Moessbauer spectroscopic studies of hemerythrin from phascolosoma lurco(syn.Phascolosoma Arcuatum).Biochemistry,1981,20:4628-4632.
    c) Maroney M J,Kurtz D M,Nocek J M et al.Proton NMR probes of the binuclear iron cluster in hemerythrin.J.Am.Chem.Soc.1986,108:6871-6879.
    d) Reem R C,McCormick J M,Richardson D E et al.Spectroscopic studies of the coupled binuclear ferric active site in methemerythrins and oxyhemerythrin:the electronic structure of each iron center and the iron-oxo and iron-peroxide bonds.J.Am.Chem.Soc.,1989,111:4688-4704.
    e) Hartman J R,Rardin R L,Chaudhuri P et al.Synthesis and characterization of(μ -hydroxo)bis(μ -acetato)diiron(Ⅱ) and(μ-oxo)bis(μ-acetato)-diiron(Ⅲ) 1,4,7-trimethyl -1,4,7-triazacyclononane complexes as models for binuclear iron centers in biology properties of the mixed valence diiron(Ⅱ,Ⅲ) species.J.Am.Chem.Soc.,1987,109:7387-7396.
    [6]a) Que L Jr.,True A E.Prog.Inorg.Chem.1990,38:97-200
    b) Kurtz D M Jr.Oxo- and hydroxo-bridged diiron complexes:a chemical perspective on a biological unit.Chem.Rev.1990,90:585-606.
    [7]a) Garbett K,Darnall D W,Klotzl Met al.Formation of a Dinitrosyl Iron Complex by NorA,a Nitric Oxide-binding Di-iron Protein from Ralstonia eutropha H16.Arch.Biochem.Biophys.,1969,103:419-434.
    b) Reem R C,Solomon E I.Spectroscopic studies of the binuclear ferrous active site of deoxyhemerythrin:coordination number and probable bridging ligands for the native and ligand-bound forms.J.Am.Chem.Soc.,1987,109:1216-1226.
    [8]Shiemke A K,Loehr T M,Sanders-Loehr J.Resonance Raman study of oxyhemerythrin and hydroxomethemerythrin.Evidence for hydrogen bonding of ligands to the iron-oxygen-iron center.J.Am.Chem.Soc.,1986,108:2437-2443.
    [9]Dawson J W,Gray H B,Hoenig H E et al.A magnetic susceptibility study of hemerythrin using an ultrasensitive magnetometer.Biochemistry,1972,11:461-465.
    [10]Armstrong W H,Pool A,Papaefthymiou G C et al.Assembly and characterization of an accurate model for the diiron center in hemerythrin.J.Am.Chem.Soc.,1984,106:3653-3667.
    [11]Vincent J B,Olivier-LilleyG Let al.Proteins containingoxo-bridged dinuclear iron centers:a bioinorganic perspective.Chem.Rev.,1990,90:1447-1467.
    [12]Ryle M J,Hausinger R P.Non-heme iron oxygenases.J.Curr.Opin.Chem.Biol.,2002,6(2):193-201.
    [13]a) Merk M,Kopp D A,Sazinsky M H st al.Dioxygen activation and methane hydroxylation by soluble methane monooxygenase:a tale of two irons and three proteins.Angew.Chem.Int.Edt.,2001,40(15):2782-2807.
    b) Wallar B J,Lipscomb J D.Dioxygen activation by enzymes containing binuclear non-heme iron clusters.Chem.Rev.,1996,96(7):2625-2657.
    c) Feig A L,Lippard S J.Reactions of non-heme iron(Ⅱ) centers with dioxygen in biology and chemistry.Chem.Rev.,1994,94(3):759-805.
    [14]沈润南,尉迟力,李树本,等.甲烷单加氧酶的催化机理.催化学报,1997,18(4):310-315.
    [15]Broadwater J A,Achim C,M(u|¨)nck E,et al.Mossbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein △~9-Desaturase.Biochemistry,1999,38:12197-12204.
    [16]Tshuva E Y,Lippard S J.Synthetic Models for Non-heme Carboxylate-Bridged Diiron Metalloproteins:Strategies and Tactics.Chem.Rev.,2004,104(2):987-1012.
    [17]a) Menage S,Brennan B A,Juarez-Garcia C,et al.Models for ircn-oxo preoteins:dioxygen binding to a diferrous complex.J.Am.Chem.Soc.,1990,112(17) 6423-6425.
    b)Ookubo T,Sugimoto H,Nagayama T,et al.cis-μ-1,2-Peroxo Diiron Complex:Structure and Reversible Oxygenation.J.Am.Chem.Soc.,1996,118(3):701-702.
    c) Kim K Lippard S J.Structure and M(o|¨+ssbauer Spectrum of a(μ-1,2-Peroxo)bis(μ-carboxylato)diiron(Ⅲ) model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle.J.Am.Chem.Soc.,1996,118(20):4914-4915.
    d) Dong Y,Zang Y,Shu Y,et al.5-Alkylresorcinols from Hakea trifurcata,that cleave DNA.J.Am.Chem.Soc.,1995,117(51):12683-12690.
    e)Kodera M,Taniike Y,Itoh M et al.A mechanistic study of the reaction between a diiron(Ⅱ)complex[Fe~(11)2(μ-OH)2(6-Me_3-TPA)_2]~((2+) and O_2 to form a diiron(Ⅲ) peroxo complex.Inorg.Chem.,2001,40(10):2220-2228.
    [18]Costas M,Rohde J-U,Stubna A et al.Experimental determination of interaction energies in a porous molecular solid.J.Am.Chem.Soc.,2001,123(51):12931-12934.
    [19]a) Dong Y,Que L Jr,Kauffmann K et al.An exchange-coupled complex with localized high-spin Fe~Ⅳ and Fe~Ⅲ sites of relevance to cluster X of escherichia coli ribonucleotide reductase.J.Am.Chem.Soc.,1995,-117:11377-11378.
    b) Zang Y,Pan G,Que L Jr.et al.First diferric compiex with an Fe_2(μ-O)(μ-OH) core structure ahd reactivity of[Fe_2(μ-O)(μ-OH)(TLA)_2](ClO_4)_3.J.Am.Chem.Soc.,1994,116:3653:3654.
    [20]Fontecave M,Menage S,Duboc-Toia C et al.Functional models of non-heme diiron enzymes.Coordin Chem Rev.,1998,178-180:1555-1572.
    [21]a) Burger R M.Cleavage of nucleic acids by bleomycin.Chem.Rev.,1998,98:1153-1169.b) Stubbe J,Kozarich J W.Mechanisms of bleomycin-induced DNA degradation.Chem.Rev.,1987,87:1107-1136.
    [22]Costas M,Mehn M P,Jensen M Pet al.Dioxygen activation at mononuclear nonheme iron active site:enzymes,models and intermediates.Chem.Rev.,2004,104:939-986.
    [23]Sugiyama M,Kumagai T,Hayashida M.The 1.6-(?) Crystal Structure of the copper(Ⅱ)-bound bleomycin complexed with the bleomycin-binding protein from bleomycin-producing Streptomyces verticillus.J.Biol.Chem.,2002.227:2311-2320.
    [24]a) Sam J W,Tang X-J,Peisach J.Electrospray Mass spectrometry of iron bleomycin:demonstration that activated bleomycin is a ferric peroxide complex.J.Am.Chem.Soc.,1994,116:5250-5256.
    b) Westre T E,Loeb K E,Zaleski J Met al.Determination of the geometric and electronic structure of activated bleomycin using X-ray absorption spectroscopy.J.Am.Chem.Soc.,1995 117:1309-1313.
    [25]Roelfes G.Models for nonheme iron containing oxidation enzymes,in:Univ.of Groningen,2000.
    [26]Riley D,Stern M,Ebner J et al.In:The Activation of Dioxygen and Homogeneous Catalytic Oxidation,New York,1993:9-30.
    [27]Lange J P.Perspectives for manufacturing methanol at fuel value.Ind.Eng.Chem.Res.,1997,36:4282-4390.
    [28]Feig A L,Lippard S J.Reactions of Non-heme iron(Ⅱ) centers with dioxygen in biology and chemistry.Chem.Rev.1994,94(3):759-805.
    [29]Groves J T,Nemo T E.Hydroxylation and epoxidation catalyzed by iron-porphine complexes.J.Am.Chem.Soc.1994,101:1032-1033.
    [30]郭灿城,刘强,张小兵 等.催化空气氧化烷烃和环烷烃的方法.CN 00113225.3.2000.
    [31]a) Brton D H R,Doller D.The selective functionalization of saturated hydrocarbons:Gif chemistry.Acc.Chem.Res.,1992,25:504-512.
    b) Barton D H R.On the mechanism of GIF reaction.Chem.Soc.Rev.,1996,25:237-239.
    c) Barton D H R.Gif chemistry:The present situation.Tetrahedron,1998,54:5805-5817.
    [32]a) Sawyer D T,Sobkowiak A.Matsushita T.Metal[MLx;M = Fe,Cu,Co,Mn]/hydroperoxide-induced activation of dioxygen for the oxygenation of hydrocarbons: oxygenated Fenton chemistry. Acc. Chem. Res., 1996, 29: 409-416.
    
    b) Sawyer D T. Metal [Fe(Ⅱ), Cu(Ⅰ), Co(Ⅱ), Mn(Ⅲ)]/hydroperoxide-induced activation of dioxygen (O_2) for the ketonization of hydrocarbons: oxygenated Fenton Chemistry. Coord. Chem. Rev., 1997, 165: 297-313.
    
    [33] a) Leising R A, Norman R E, Que L Jr. Alkane functionalization by nonporphyrin iron complexes: mechanistic insights. Inorg. Chem., 1990, 29: 2553-2555.
    
    b) Leising R A, Kim. J, Perez M A et al. Alkane functionalization at μ-oxo)diiron(Ⅲ) centers. J. Am. Chem. Soc., 1993, 115: 9524-9530.
    
    c) Menage S, Vincent J-M, Lambeaux C et al. Alkane oxidation catalyzed by μ-oxo bridged diferric complexes: an overall mechanism. J. Mol. Catal. A: Chem., 1996, 113: 61-75.
    
    [34] Goldstein S, Meyerstein D. Comments on the mechanism of the "Fenton-Like" reaction. Acc. Chem. Res., 1999, 32: 547-550.
    
    [35] Ingold K U, MacFaul P A. In: Meunier B. ed. Biomimetic Oxidations Catalyzed by Transition Metal Complexes. London: World Scientific Publishing and Imperial College Pr. 2000.
    
    [36] Russell G A. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons mechanism of the interaction of peroxy radicals. J. Am. Soc. Chem., 1957, 79: 3871-3877.
    
    [37] Costas M, Chen K, Que L Jr. Biomimetic noheme iron catalysts for alkane hydroxylation. Coord. Chem. Rev., 2000, 200-202: 517-544.
    
    [38] Guajardo R J, Hudson S E, Brown S J et al. [Fe(PMA)]~(n+) (n = 1,2): good models of iron-bleomycins and examples of mononuclear non-heme iron complexes with significant oxygen-activation capabilities. J. Am. Chem. Soc., 1993, 115: 7971-7977.
    
    [39] Roelfes G, Lubben M, Chen K et al. Iron chemistry of a pentadentate Ligand that generates a metastable Fe~Ⅲ-OOH intermediate. Inorg. Chem., 1999, 38: 1929-1936.
    
    [40] Wada A, Ogo S, Wantanabe Y et al. Synthesis and characterization of novel alkylperoxo mononuclear iron(Ⅲ) complexes with a tripodal pyridylamine ligand: a model for peroxo intermediates in reactions catalyzed by Non-Heme Iron Enzymes. Inorg. Chem., 1999, 38: 3592-3593.
    
    [41] Khenkin A M, Shilov A R. Alkane catalytic oxidation by an novel iron complex. New. J. Chem. , 1989, 13: 659-667.
    
    [42] MacFaul P A, Ingold K U, Wayer D D M et al. A putative monooxygenase mimic which functions via well-disguised free radical chemistry. J. Am. Chem. Soc., 1997, 119: 10594-10598.
    
    [43] Burger R M, Peisach J, Horwitz S B et al. Mossbauer study of iron bleomycin and its activation intermediates. J. Biol. Chem., 1993, 258: 1559-1564.
    
    [44] Groves J T, McClusky G, White R E. Aliphatic hydroxylation by highly purified liver microsamal cytochrome P-450: Evidence for a carbon radical intermediate. Biochem. Biophys. Res. Commun. , 1977, 76: 541-549.
    [45]Nesheim J C,Lipscomb J D.Large Kinetic Isotope effects in methane oxidation catalyzed by methane monooxygenase:evidence for C-H Bond Cleavage in a Reaction cycle intermediate.Biochemistry,1996,35:10240-10247.
    [46]Barton D H R,Beck A H,Taylor D K.The Fe(PA)_3 and[Fe(TPA)Cl_2]ClO_4 catalyzed oxidations of saturated hydrocarbons by hydrogen peroxide:a comparative mechanistic Study.Tetrahedron,1995,51:5245-5254.
    [47]Okuno T,Ito S,Ohba Set al.μ-oxo brideged diiron(Ⅲ) complexes and hydrogen peroxide:oxygenation and catalase-likeactivities.J.Chem.Soc.Dalton Trans.,1997:3547-3551.
    [48]Balogh-Hergovich E,Speier G,Reglier Met al.8ynthesis,structure,and catalytic activity of new μ-oxo-bridged diiron(Ⅲ) complexes.Eur.J.Inorg.Chem.,2003:1735-1740.
    [49]Kim J,Harrison R G,Kim C et al.Fe(TPA)-catalyzed alkane hydroxylation,metal-based oxidation vs radical chain autoxidation.J.Am.Chem.Soc.,1996,if8:4373-4379.
    [50]Tanase S,Foltz C,Gelder R.Control of the catalytic oxidation s mediated by an oxo-bridged non-heme diiron complex:role of additives and reaction conditions.J.Mol.Catal.A:Chem.,2005,225:161-167.
    [51]Britovsek G J,England J,White A J P.Non-heme irn(Ⅱ) complexes containing tripodal tetradentate nitrogen ligands and their application in alkane oxidation catalysis.Inog.Chem.,2005,44:8125-8134.
    [52]Chen K,Que L Jr.Evidence for the participation of a high-valent iron-oxo species in stereospecific alkane hydroxylation by a non-heme catalyst.J.Chem.Soc.,Chem.Commun.1999:1375-1376.
    [53]Fish R H,Konings M S,Oberhausen K J et al.Mechanistic aspects of alkane functionalization with iron and iron-oxygen(Fe_2O and Fe_4O_2) complexes in the presence of hydrogen peroxide.Inorg.Chem.,1991,30(15):3002-3006.
    [54]a) Kim J,Larka E,Willkinson E C et al.An alkylperoxoiron(Ⅲ) intermediate and its role in the oxidation of aliphatic C-H bonds.Angew.Chem.Int.Ed.Engl.,1995,34(18):2048-2051.
    b) Kim J,Dong Y,Larka E C et al.Electrospray ionization mass spectral characterization of transient iron species of bioinorganic relevance.Inorg.Chem.,1996,35(8):2369-2372.
    [55]Kim C,Chen K,Kim J et al.Stereospecific alkane hydroxylation with H_2O_2 catalyzed by an iron(Ⅱ)-Tris(2-pyridylmethyl)amine complex.J.Am.Chem.Soc.,1997,119:5964-5965.
    [56]Ho R Y N,Roelfes G,Feringa B L et al.Raman evidence for a weakened 0-0 bond in mononuclear low-spin iron(Ⅲ)-hydroperoxides.J.Am.Chem.Soc.,1999,121(Ⅰ):264-265.
    [57]Chen K,Que L Jr.Evidence for the participation of a high-valent iron-oxo species in stereospecific alkane hydroxylation by a non-heme catalyst.J.Chem.Soc.,Chem.Commun.1999:1375-1376.
    [58] Kojima T, Leising R A, Yan S et al. Alkane functionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. J. Am. Chem. Soc., 1993, 115: 11328-11335.
    
    [59] Britovsek G J, England J, White A J P. Non-heme irn(Ⅱ) complexes containing tripodal tetradentate nitrogen ligands and their application in alkane oxidation catalysis. Inog. Chem., 2005, 44: 8125-8134.
    
    [60] Roelfes G. Models for nonheme iron containing oxidation enzymes: [dissertation]. Groningen: Univ. of Groningen, 2000.
    
    [61] Nishida Y, Okuno T, Ito S et al. Important role of tetrahydrofuran ring in activation of hydrogen peroxide in the presence of binuclear iron (Ⅲ) complexes with Linear μ-oxo bridge. Chem. Lett., 1995: 885-887.
    
    [62] Tetard D, Verlhac J-B. Alkane hydroxylation reactions catalysed by binuclear manganese and iron complexes. J. Mol. Catal. A: Chem., 1997, 113: 223-239.
    
    [63] Balland V, Mathieu D, Pons-Y-Moll N et al. Non-heme iron polyazadentate complexes as catalysts for oxidations by H_2O_2: particular efficiency in aromatic hydroxylations and beneficial effects of a reduxing agent. J. Mol. Catal. A: Chem., 2004, 215: 81-87.
    
    [64] Britovsek G, England J, White A J P. Iron(Ⅱ), manganese(Ⅱ) and cobalt(Ⅱ) complexes containing tetradentate biphenyl-bridged ligands and their application in alkane oxidation catalysis. J. Chem. Soc. Dalton Trans., 2006: 1399-1408.
    
    [65] Costas M, Mehn M P, Jensen M P, et al. Dioxygen activation at mononuclear nonheme iron active site: enzymes, models and intermediates. Chem. Rev., 2004, 104: 939-986.
    
    [66] Shan X P, Que L Jr. High-valent nonheme iron-oxo species in biomimetic oxidations. J. Inorg. Biochem., 2006, 100: 421-433.
    
    [67] Rohde J-U, In J-H, Lim M H et al. Crystallographic and spectroscopic characterization of a nonheme Fe(Ⅳ)=O complex. Science, 2003, 299: 1037-1039.
    
    [68] a) Kaizer J, Kinker E J, Oh N Y et al. Nonheme Fe~ⅣO complexes that can oxidize the C-H bonds of cyclohexane at room temperature. J. Am. Chem. Soc., 2004, 126: 472-473.
    
    b) Jensen P, Costas M, Ho R Y N et al. High-valent nonheme iron. Two distinct iron(Ⅳ) species derived from a common iron(Ⅱ) precursor. J. Am. Chem. Soc., 2005, 127: 10512-10525.
    
    c) Martinho M, Banse F, Bartoli J-F et al. New example of a non-heme mononuclear iron(Ⅳ) oxo complex. Spectroscopic data and oxidation activity. Inorg. Chem., 2005, 44: 9592-9596.
    
    [69] Okamura M Y, Feher G. Proton transfer in reaction centers from photosynthetic bacteria. Annu. Rev. Biochem., 1992, 61: 861-896.
    
    [70] Babcock G T, Wikstrom M. Oxygen activation and the conservation of energy in cell respiration. Nature, 1992, 356: 301-309.
    [71] Babcock G T, Sauer K. Electron paramagnetic resonance signal in spinach chloroplasts: alternative spectral forms and inhibitor effects on kinetics of signal in flashing light. Biochim. Biophys. Acta, 1973, 325: 504-519.
    
    [72] Babcock G T, Sauer K. The rapid component of electron paramagnetic resonace signal : a candidate for the physiological donor to photosystem Ⅱ in spinach chloroplasts. Biochim. Biophys. Acta, 1975, 376: 329-344.
    
    [73] Blankenship R E, Babcock G T, Warden J T et al. Observation of a new EPR transient in chloroplasts that may reflect the electron donor to photosystem Ⅱ at room temperature. FEBS Lett., 1975, 51: 287-293.
    
    [74] Cukier R I., Nocera D G. Proton-coupled electron transfer. Annu. Rev. Phys. Chem., 1998, 49: 337-369.
    
    [75] Turro C, Chang C K, Leroi G. E et al. Photo-induced electron transfer mediated by a hydrogen-bonded interface. J. Am. Chem. Soc., 1992, 114: 4013-4015.
    
    [76] Kirby J. P, Roberts J A, Nocera D G. Significant effect of salt bridges on electron transfer. J. Am. Chem. Soc. 1997, 119: 9230-9236.
    
    [77] Binstead R A, Moyer B A, Meyer T J. Proton coupled electron transfer between [Ru(BPY)_2(py)OH_2]~(2+) and [Ru-(BPY)_2(py)O]~(2+): a solvent isotope effect (H_2O/D_2O) of 16.1. J. Am. Chem. Soc., 1981, 103: 2897-2899.
    
    [78] Farrer B T, Thorp H H. Driving force and isotope dependence of the kinetics of proton-coupled electron transfer in oxoruthenium(Ⅳ) polypyridyl complexes. Inorg. Chem., 1999, 38: 2497-2502.
    
    [79] Roth J P, Lovel S, Mayer J M. Intrinsic barriers for electron and hydrogen atom transfer reactions of biomimetic iron complexes. J. Am. Chem. Soc., 2000, 122: 5486-5498.
    
    [80] Marcus R A. J. Chem. Phys., 1956. 24: 966-968.
    
    [81] Marcus R A. On the theory of electron-transfer reactions Ⅵ. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys., 1965. 43: 679-701.
    
    [82] Marcus R A. Application of Marcus theory to proton transfer reactions. J. Chem. Phys., 1986. 90: 3453-3468.
    
    [83] Rehm D, Weller A. Kinetics of fluorescence quenching by electron and hydrogen-atom transfer. Isr. J. Chem., 1970. 8: 259-271.
    
    [84] Miller J R, Calcaterra L T, Closss G L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates J. Am. Chem. Soc., 1984, 106: 3047-3049.
    
    [85] Wasielewski M R, Niemezyk M P. Photoinduced electron transfer in meso-triphenyltriptycenylporphyrin-quinones. Restricting donor-acceptor distances and orientations. J. Am. Chem. Soc., 1984, 106: 5043-5045.
    [86] a) Weatherly S C, Yang I V, Armistead P A. Protoncoupled electron transfer in guanine oxidation: effects of isotope, solvent, and chemical modification, J. Phys. Chem. B, 2003, 107: 372-378.
    
    b) Chen K, Hirst J, Camba R et al. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 2000, 405: 814-817.
    
    c) Graige M S, Paddock M L, Bruce J M et al. Mechanism of proton-coupled electron transfer for quinone (QB) reduction in reaction centers of Rb sphaeroides. J. Am. Chem. Soc., 1996, 118: 9005-9016.
    
    [87] a) Kochi J K. Free Radicals. New York: Wiley, 1973.
    
    b) Fischer H. Radical Reaction Rates in Liquids. New York: Springer-Verlag, 1984.
    
    [88] a) Tommos C, Babcock G T, Oxygen production in nature: a lightdriven metalloradical enzyme process. Acc. Chem. Res., 1998, 31: 18-25.
    
    b) Westphal K L, Tommos C, Cukier R I et al. Concerted hydrogen-atom abstraction in photosynthetic water oxidation. Curr. Opin. Plant Biol., 2000, 3: 236-242.
    
    [89] Stiefel E I. Proposed molecular mechanism for the action of molybdenum in enzymes: coupled proton and electron transfer. In: Proc. Natl. Acad. Sci., U. S. A., 1973: 988-992.
    
    [90] Bordwell F G, Cheng J-P, Ji G-Z et al. Bond dissociation energies in DMSO related to the gas phase values. J. Am. Chem. Soc., 1991, 113: 9790-9795.
    
    [91] Stumm W, Morgan J J. Aquatic Chemistry. New York: Wiley, 1996.
    
    [92] Roth J P, Mayer J M. Hydrogen transfer reactivity of a ferric biimidazoline complex that models the activity of lipoxygenase enzymes. Inorg. Chem., 1999, 38: 2760-2761.
    
    [93] Roth J P, Lovell S, Mayer J M. Intrinsic barriers for electron and hydrogen atom transfer reactions of biomimetic iron complexes, J. Am. Chem. Soc., 2000, 122: 5486-5498.
    
    [94] Roth J P, Yoder J C, Won T-J et al. Application of the Marcus cross-relation to hydrogen atom transfer reactions. Science, 2001, 294: 2524-2526.
    
    [95] Lucanini M, Pedrielle P, Pedulli G F et al. Bond dissociation energies of OUH bonds in substituted phenols from equilibration studies. J. Org. Chem., 1996, 61: 9259-9263.
    
    [96] a) Depew M C, Wan J K S. Hydroquinones and semiquinones. New York: Wiley, 1988.
    
    b) Richter H W. Pulse radiolysis of 4-tert-butyl-1,2-dihydroxybenzene and 4-tert-butyl-1,2-quinone. J. Phys. Chem., 1979, 83: 1123-1129.
    
    c) Adams G E, Michael B D. Pulse radiolysis of benzoquinone and hydroquinine. Semiquinone formation by water elimination form trihydroxycyclo-hexadienyl radicals. Trans. Faraday Soc., 1967, 63: 1171-1180.
    
    [97] Arick M R, Weissman S I. Direct measurement of the rate of hydrogen-atom exchange between a phenol and its phenoxy radical. J. Am. Chem. Soc., 1968, 90: 1654-1655.
    
    [98] Jackson R A, Neill D W O. Reaction of benzyl radicals with m-deuteriotoluene. J. Chem. Soc. Chem. Comm., 1969, 1210-1211.
    [99] a) Kresge A J. What makes proton transfer fast. Acc. Chem. Res., 1975, 8: 354-360.
    b) Bell R P. The Proton in chemistry. NY: Cornell University Press, 1973.
    
    c) Kresge A J. The Brested relation-recent developments. Chem. Soc. Rev., 1973, 2: 475-503.
    
    d) Albrey W J. The application of the Marcus relation to reactions in solution. Annu. Rev. Phys. Chem., 1980, 31: 227-263.
    [100] Kristjansdottir S S, Norton J R. Agreement of proton transfer crossreaction rates between transition metals with those predicted by Marcus theory. J. Am. Chem. Soc., 1991, 113: 4366-4368.
    
    [101] Kiefer P M, Hynes J T. Nonlinear free energy relations for adiabatic proton transfer reactions in a polar environment: fixed proton donor-acceptor separation. J. Phys. Chem. A, 2002, 106: 1834-1849.
    
    [102] a) Hammes-Schiffer S. Theoretical perspectives on proton coupled electron transfer reactions. Acc. Chem. Res., 2001, 34: 273-281.
    
    b) Cukier R I. A theory that connects proton-coupled electron transfer and hydrogen-atom transfer reactions. Phys. Chem. B, 2002, 106: 1746-1757.
    
    c) Cukier R I, Nocera D G. Proton-coupled electron transfer. Annu. Rev. Phys. Chem., 1998, 49: 337-369.
    
    d) Georgievskii Y, Stuchebrukhov A A. Concerted electron and proton transfer: transition from nonadiabatic to adiabatic proton tunneling. J. Chem. Phys., 2000, 113: 10438-10450.
    
    e) Kuznetsov A M, Ulstrup J. Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem., 1999, 77: 1085-1096.
    f) Krishtalik L I. The mechanism of the proton transfer: an outline. Biochim. Biophys. Acta, 2000, 58: 6-27.
    
    [103] Schenter G K, Garrett B C, Truhlar D G. The role of collective solvent coordinates and nonequilibrium solvation in charge-transfer reactions. J. Phys. Chem. B, 2001, 105: 9672-9685.
    
    [104] a) Knapp M J, Rickert K, Klinman J P. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc., 2002, 124:3865-3874.
    
    b) Kohen A, Klinman J P. Enzyme catalysis: beyond classical paradigms. Acc. Chem. Res., 1998, 31: 397-404.
    
    c) Brazeau B J, Lipscomb J D. Kinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates. Biochemistry, 2000, 39: 13503-13515.
    
    d) Huynh M H, Meyer T J. Proton coupled electron transfer from phosphorus: a P-H/P-D kinetic isotope effect of 178. Angew. Chem. Int. Ed., 2002, 41: 1395-1398.
    
    e) Mahapatra S, Halfen J A, Tolman W B. Mechanistic study of the oxidative N-dealkylation reactions of bis(oxo) dicopper complexes. J. Am. Chem. Soc., 1996, 118: 11575-11586.
    
    f) Nagaoka S, Kuranaka A, Tsuboi H et al. Mechanism of antioxidant reaction of vitamin E: charge transfer and tunneling effect in proton transfer reaction. J. Phys. Chem., 1992, 96: 2754-2761.
    
    g) Reinaud O M, Theopold K H. Hydrogen tunneling in the activation of dioxygen by a tris(pyrazolyl)borate cobalt complex. J. Am. Chem. Soc., 1994, 116: 6979-6980.
    
    h) Farrer B T, Thorp H H. Driving force and isotope dependence of the kinetics of proton-coupled electron transfer in oxoruthenium(Ⅳ) polypyridyl complexes. Inorg. Chem., 1999, 38: 2497-2502.
    
    i) Lewis E R, Johansen E, Holman T R. "Large competitive kinetic isotope effects in human 15-lipoxygenase catalysis measured by a novel HPLC method. J. Am. Chem. Soc., 1999, 121: 1395-1396.
    
    [105] Bhakta. M N, Wimalasena K. Microsomal P-450-catalyzed N-dealkylation of N, N-dialkylanilines: evidence for a CUH abstraction mechanism. J. Am. Chem. Soc., 2002, 124: 1844-1845.
    
    [106] Eberson L. Electron transfer reactions in organic chemistry. Berlin: Springer-Verlag, 1987.
    
    [107] Kirby J P, Roberts J A, Nocera D G. Significant effect of salt bridges on electron transfer. J. Am. Chem. Soc., 1997, 119: 9230-9236.
    
    [108] a) Riley D P, Lennon P J, Neumann W L et al. Toward the rational design of superoxide dismutase mimics: mechanistic studies for the elucidation of substituent effects on the catalytic activity of macrocyclic manganese(Ⅱ) complexes. J. Am. Chem. Soc., 1997, 119: 6522-6528.
    
    b) Cabelli D E, Riley D, Rodriguez J A et al. Active oxygen in chemistry. Glasgow: Chapman & Hall, 1995.
    
    c) Maliekal J, Karapetian A, Vance C et al. Comparison and contrasts between the active site PKs of Mn-superoxide dismutase and those of Fe-superoxide dismutase. J. Am. Chem. Soc., 2002, 124: 15064-15075.
    
    [109] a) Njus D, Kelley P M. Vitamins C and E donate single hydrogen atoms in vivo. FEBS Lett., 1991, 284: 147-151.
    
    b) Njus D, Jalukar V, Zu J et al. Concerted proton-electron transfer between ascorbic acid and cytochrome b561. Am. J. Clin. Nutr. , 1991, 54: 1179-1183.
    
    c) Njus D, Kelley P M. The secretory-vesicle ascorbate-regenerating system: a chain of concerted H'/e~- transfer reactions. Biochim. Biophys. Acta, 1993, 1144: 235-238.
    
    d) Kipp H, Kelley P M, Njus D. Evidence for an essential histidine residue in the ascorbate-binding site of cytochrome b561. Biochemistry, 2001, 40: 3931-3937.
    
    e) Njus D, Wigle M, Kelley P M et al. Mechanism of ascorbic acid oxidation by cytochrome b561. Biochemistry, 2001, 40: 11905-11911.
    
    [110] Burton G W, Ingold K U. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res., 1986, 19: 194-201.
    
    [111] Yoder J C, Roth J P, Gussenhoven E M et al. Electron and hydrogen-atom self-exchange reactions of iron and cobalt coordination complexes. J. Am. Chem. Soc., 2003, 125: 2629-2640.
    
    [112] Iordanova N, Decornez H, Hammes-Schiffer S. Theoretical study of electron, proton and proton-coupled electron transfer in iron bi-imidazoline complexes. J. Am. Chem. Soc., 2001, 123: 3723-3733.
    [113] a) Protasiewicz J D, Theopold K H. A direct comparison of the rates of degenerate transfer of electrons, protons, and hydrogen atoms between metal complexes. J. Am. Chem. Soc., 1993, 115: 5559-5569.
    
    b) Song J, Bullock R M, Creutz C J et al. Intrinsic barriers to atom transfer(abstraction) processes; self-exchange rates for Cp(CO)_3MS radical/Cp(CO)_3M-X halogen couples. J. Am. Chem. Soc., 1991, 113: 9862-9864.
    
    [114] Jones J B, Taylor K, Hydroxymethylbenzimidazole carboxylic acid models of the Asp-His-Ser charge relay system of serine proteases. Can. J. Chem., 1977,55:1653-1657.
    
    [115] Yang X-P, Su C-Y, Kang B-S et Al. Studies on lanthanide complexes of the tripodal ligand bis(2-benzimidazolylmethyl)(2-pyridylmethyl)amine. Crystal structures and luminescence properties. J. Chem. Soc., Dalton Trans., 2000: 3253-3260.
    
    [116] Pascaly M, Duda M, Schweppe F et al. The systematic influence of tripodal ligands on the catechol cleaving activity of iron(Ⅲ) containing model compounds for catechol 1,2-dioxygenases. J. Chem. Soc., Dalton Trans., 2001: 828-837.
    
    [117] Britovsek G, England J, Spitzmesser S K et al. Synthesis of iron(Ⅱ), manganese(Ⅱ), cobalt(Ⅱ)and ruthenium(Ⅱ) complexes containing tridentate nitrogen ligands andd their application in the catalytic oxidation of alkanes. J. Chem. Soc., Dalton Trans., 2005: 945-955.
    
    [118] White M C, Doyle A G, Jacobsen E N. A synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H_2O_2. J. Am. Chem. Soc. 2001, 123: 7194-7195.
    
    [119] Wang XM, Wang S, Li L et al. Synthesis, structure, and catalytic activity of mononuclear iron and (μ-oxo)diiron complexes with the ligand 2,6-bis(N-methylbenzimidazol-2-yl)pyridine. Inog. Chem., 2003, 42: 7799-7808.
    
    [120] Ménage S, Vincent JM, Lambeaux C et al. Alkane oxidation catalyzed by μ-oxo bridged diferric complexes: a structure/reactivity correlation study. Inog. Chem., 1993, 32: 4766-4773.
    
    [121] Menage S, Vincent JM, Lambeaux C et al. Alkane oxidation catalyzed by μ-oxo bridged diferric complexes: an overall mechanism. J. Mol. Catal. A 1996, 113: 61-75.
    
    [122] Berg T A, Boer J W, Browne W R et al. Enhanced selectivity in no-heme iron catalysed oxidation of alkanes with peracids: evidence for involvement of Fe(Ⅳ)=O spicies. Chem. Commun. , 2004: 2550-2552.
    
    [123] Li F, Wang M, Ma CB, Gao AP, Chen HB, Sun LC. Mono- and binuclear complexes of iron(Ⅱ) and iron(Ⅲ) with an N_4O ligand: synthesis, structures and catalytic properties in alkane oxidation. J. Chem. Soc. Dalton Trans., 2006: 2427-2434.
    
    [124] Hammes B S, Kieber-Emmons M T, Sommer R et al. Modulating the reduction potential of mononuclear cobalt (Ⅱ) complexes via selective deprotonation of tris[(2-benzimidazolyl)methyl]amine. Inog. Chem., 2002, 41: 1351-1353.
    [125]Carina R F,Verzegnassi L,Williams A F.Modulation of iron reduction potential by deprotonation at a remote site.Chem.Commun.,1998,2681-2682.
    [126]Kojima T,Sakamoto T,Matsuda Y.Toward a photochemical and thermal molecular machine:reversible ligand dissociation and binding in a ruthenium(Ⅱ)-2,2'-bipyridine complex with tris(2-pyridylmethyl)amine.Inog.Chem.,2004,43:2243-2245.
    [127]Bjernemose J,Hazell A,McKenzie C J et al.Synthesis and characterization of ruthenium(Ⅱ) complexes with polypicolylamine ligands.Polyhedron,2003,22:875-885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700