用户名: 密码: 验证码:
酸改性SBA-15介孔材料制备、表征及催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用介孔材料的大比表面和丰富的硅羟基,采用后合成法对SBA-15进行有机或无机改性,制备了不同种类的酸改性介孔材料,以合成乙酸正丁酯的固液相催化反应为考察对象,研究了改性介孔材料的活性组分构成、制备方法和制备条件对反应收率的影响:通过X射线多晶衍射、N_2吸附-脱附、红外光谱、热重分析、NH_3-TPD吸附脱附、透射电子显微镜等分析方法对催化剂进行了表征;并将合成的催化剂应用于脂肪酸酯合成反应中,探索了改性材料的催化性能,结果表明:
     1、催化剂的制备
     以三嵌段共聚物P123(聚氧乙烯-聚氧丙烯-聚氧乙烯)为模板剂、正硅酸乙酯(TEOS)为硅源,在强酸性和水热条件下合成介孔分子筛SBA-15。以SBA-15作为载体,分别采用室温浸渍法和固体研磨法制备了SBA-15的酸性改性材料。通过单因素实验对负载型介孔分子筛的制备工艺条件进行优化,确定催化剂较佳的制备条件。
     采用浸渍法制备的镧改性SBA-15催化剂La-SO_4~(2-)/SBA-15,制备条件为:以2mol/L硫酸溶解氧化镧,配成浓度为0.03mol/L的La_2(SO_4)_3溶液浸渍SBA-15,在300℃温度下焙烧4h;采用浸渍法制备的铈改性SBA-15催化剂Ce-SO_4~(2-)/SBA-15,制备条件为:将硫酸高铈溶于0.5mol/L的硫酸中,配成0.1mol/L的Ce~(4+)溶液浸渍SBA-15,在300℃温度下焙烧3h;采用浸渍法制备的对甲苯磺酸改性SBA-15催化剂TsOH/SBA-15,制备条件为:配制0.5mol/L对甲苯磺酸乙醇溶液浸渍煅烧的主体材料SBA-15,在300℃温度下焙烧4h。
     采用固相研磨法制备镧改性SBA-15催化剂La-S_2O_8~(2-)/SBA-15和La-SO_4~(2-)/SBA-15,制备条件为:以SBA-15为载体,将活性成分La_2O_3与(NH_4)_2S_2O_8或(NH_4)_2SO_4,分别按物质量1:7或1:6的比例固相混合研磨,在300℃温度下焙烧3h;采用固相研磨法制备铈改性SBA-15催化剂Ce-S_2O_8~(2-)/SBA-15和Ce-SO_4~(2-)/SBA-15,制备条件为:以SBA-15为载体,将活性成分Ce(SO_4)_2与(NH_4)_2S_2O_8或(NH_4)_2SO_4分别按物质量1:7或1:6的比例固相混合研磨,在300℃温度下焙烧3h。实验表明,在催化剂制备过程中焙烧温度对催化剂表面酸中心的形成起到重要作用。
     2、催化剂的表征
     通过X射线多晶衍射、N_2吸附-脱附、红外光谱、热重分析、NH_3-TPD吸附脱附、透射电子显微镜等方法对合成材料的晶体结构、孔结构、骨架结构、热稳定性等进行表征。实验结果表明,所合成的固体酸催化剂具有与SBA-15相同的高度有序的介孔一维六方结构。采用浸渍法制备的改性介孔材料的BJH孔径均小于载体SBA-15的孔径,说明活性物质在载体表面负载的同时,有部分活性组分进入了孔道中;用固体研磨法制备的改性材料的BJH孔径,与载体SBA-15的孔径基本相同,说明活性组分只是对介孔材料的表面进行了修饰。采用Hammett指示剂法测定表面酸强度,结果表明,所制的改性材料的酸强度均H_0在-4.44-3.33之间,属于固体酸。NH_3-TPD测定表明,在制备的固体酸表面具有弱酸中心和中强酸中心。
     3、催化酯化反应
     将改性的酸性介孔材料应用于乙酸正丁酯和棕榈酸甲酯的酯化反应中,重点研究了酸醇物质的量比、催化剂用量和反应时间等因素对酯化反应的影响,采用正交实验确定酯化反应较优的工艺条件。实验表明所合成的固体酸催化剂具有良好的催化性能,催化剂的催化活性与固体酸表面的总酸量具有良好的对应关系,即表面酸量越大,催化剂的催化活性越高。将制备的催化剂进行5次循环重复使用,表现出较好的重复使用性能。
As a newly reported silica mesoporous material, SBA-15 has regular pore array with uniform pore diameter, high surface area and pore volume. It is chemically inert but allow irreversible surface modification by reaction of the surface silanol groups. Herein, we report the preparation of acid-modified SBA-15 mesoporous molecular sieves by post systhesis methods. Esterification of acetic acid with n-butanol was carried out over the acid-modified SBA-15 catalysts in liquid phase conditions.The effects of the factors involved in catalysts compose, catalysts preparation methods and preparation conditions had been investigated. Characterization was done by powder X-ray diffraction (XRD),transmission electron micrographs (TEM), N_2 adsorption desorption, IR, thermogravimetry analysis.The total amount of acidity on loaded catalysts was estimated by NH3-TPD. The catalytic activity of this family of mesoporous solids had been studied by catalytic tests of esterification.The results show that :
     1. The preparation of acid-modified SBA-15s
     SBA-15 mesoporous molecular sieves were prepared by hydrothermal method using triblock copolymer Pluronic P123 (EO_(20)PO_(70)EO_(20)) as templating agent and tetraethoxysilane (TEOS) as silicon source under a strong acidic condition. Mesoporous silica materials were used as a solid support. The solid acid was prepared by impregnation or solid state grinding in absence of solvent respectively. The optimum conditions of the preparation by single factors are studied.
     La-SO_4~(2-)/SBA-15 and Ce-SO_4~(2-)/SBA-15 composite materials were prepared by incipient -wetness impregnation using the calcined host material SBA-15 molecular sieve and oxidation lanthanum and sulfuric cerium in sulfuric acid media respectively. The best conditions for preparation of La-SO_4~(2-)/SBA-15 were that the concentration of impregnation La_2(SO_4)_3 0.03mol/L, calcination temperature 300℃, calcination time 4h. The best conditions for preparation of Ce-SO_4~(2-)/SBA-15 were that the concentration of impregnation Ce(SO_4)_2 0.1mol/L, calcination temperature 300℃, calcination time 3h. TsOH/SBA-15 composite materials were prepared by impregnation using the calcined host material SBA-15 molecular sieve and TsOH in alcohol media. The best conditions were that the concentration of impregnation TsOH alcohol solution 0.5mol/L, calcination temperature 300℃, calcination time 4h.
     La-S_2O_8~(2-)/SBA-15, La-SO_4~(2-)/ SBA-15, Ce-S_2O_8~(2-)/SBA-15 and Ce-SO_4~(2-)/SBA-15 composite materials were prepared by solid state grinding in absence of solvent. The best conditions for preparation of La-S_2O_8~(2-)/SBA-15 and La-SO_4~(2-)/SBA-15 were that the mole ratio of La_2O_3 to (NH_4)_2S_2O_8 or (NH_4)_2SO_4 is 1 : 7 or 1 : 6 by manually grinding the corresponding the host SBA-15,calcination temperature 300℃, calcination time 3h.The best conditions for preparation of Ce-S_2O_8~(2-)/SBA-15 and Ce-SO_4~(2-)/SBA-15 were that the mole ratio of Ce(SO_4)_2 to (NH_4)_2S_2O_8 or (NH_4)_2SO_4 is 1 : 7 or 1 : 6 by manually grinding the corresponding the host SBA-15,calcination temperature 300℃, calcination time 3h.It can be concluded that calcination temperature play an important role in the form of acid sites on the surface of catalyst during the preparation of catalysts.
     2. The characterization of acid-modified SBA-15s
     The properties of modified SBA-15 mesoporous molecular sieves were characterized by powder X-ray diffraction (XRD), transmission electron micrographs (TEM), N_2 adsorption desorption, IR, thermogravimetry analysis. The total amount of acidity of loaded catalysts was estimated by NH3-TPD. Results show that the active components have been incorporated into SBA-15 molecular sieve. The prepared catalysts keep highly ordered mesoporous two-dimensional hexagonal structure and do not change mesoporous channel structure of SBA-15 molecular sieve. The Acid strength on catalyst surface was determined by mean of Hammett indication method (-4.44     3. The catalysis performance for esterification
     The modified mesporous materials is an excellent catalyst to synthesize n-butyl acetate and methyl palmitate. Optimum conditions of esterification such as mole ratio of acid to alcohol, amount of catalyst and reaction time were studied by orthogonal experiments, it is observed that the straight correlation of the esterification behavior with the acidic properties of the catalysts. The catalytic activity increases with the rise of acid amount on the surface of catalysts.The results show that the catalysts can be recovered or regenerated for reuse.
引文
[1] J. S. Beck. J. C. Vartuli, W. J. Roth. A new family of mesoporous molecular sieves preparedwith liquid crystal templates. J. Am. Chem. Soc, 1992, 114: 10834-10843.
    
    [2] C. T. Kresge, M. E. Leonowicz, W. J. Roth. Ordered mesoporous molecular sieves synthesizedby a liquid-crystal template mechanism. Nature, 1992, 359: 710-712.
    
    [3] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of mesoporous molecular sieves byninionic polyethylene oxide surfactants. Science, 1995, 269: 1242-1244.
    
    [4] D.Zhao, Q. Huo, J. Feng. Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable mesoporous silicastructures. J. Am. Chem. Soc, 1998, 120: 6024-6036.
    
    [5] D. Zhao, J. Feng, Q. Huo. Triblock copolymer syntheses of mesoporous silica with periodic50 to 300 angstrom pores. Science, 1998, 279: 548-552.
    
    [6] R. Ryoo, S. H. Joo, S. Jun. Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation. J.Phys. Chem. B, 1999, 103: 7743-7746.
    
    [7] M. Kruk,M. Jaroniec, T. Kim, et al. Synthesis and characterization of hexagonally orderedcarbon nanopipes. Chem. Mater, 2003, 15: 2815-2823.
    
    [8] 张兆荣,索继栓,张小明等.介孔硅基分子筛研究新进展.化学进展,1999,11(1):11-20.
    
    [9] C. G. Wu, T. Bein. Microwave synthesis of molecular sieve MCM-41. Chem. Commun, 1996, 8:925-926.
    
    [10] S. E. Park, D.S.Kim, J. S. Chang. Synthesis of MCM-41 using microwave heating withethylene glycol. Catal. Today, 1998, 44: 301-308.
    
    [11] B. L. Newalkar, S. Komarneni, H. Katsuki. Rapid synthesis of mesoporous SBA-15 molecularsieve by a microwave-hydrothermal process. Chem Commun, 2000, 23: 2389-2390.
    
    [12] B.L.Newalkar, S.Komarneni, T.Turaga Uday, et al.Synthesis and characterization ofPSU-1, a novel cage-like meseporous silica. J Mater Chem, 2003, 13(7): 1710.
    
    [13] M. T. Run, S. Z. Wu, G.Wu. Ultrasonic synthesis of mesoporous molecular sieve. MicroporMesopor Mater, 2004, 74(1): 37-47.
    
    [14] X. M. Zhang, Z. R. Zhang, J. H. Suo, et al. Synthesis of mesoporous molecular sieves by noveltemplate. J.Mol. Catal, 1998, 12(1): 59-62.
    
    [15] P.D.Yang, D.Y.Zhao, D. I. Margolese , et al. Generalized syntheses of large-poremesoporous metal oxides with semi-crystalline frameworks. Nature, 1998, 396: 152-155.
    
    [16] J. N. Israelachivili. Intermolecular and surf ace forces. London: Academic Press, 1991.
    
    [17] 张兆荣,索继栓,张小明等.MCM-41中孔SiO_2分子筛合成新方法.物理化学学报,1998,14(3): 243-248.
    
    [18] 刘秀伍,李静雯,周理.介孔分子筛的合成与应用研究进展.材料导报,2006,20(2):86-90.
    
    [19] Q. S. Huo, D. I. Margolese, U. Ciesla, et al. Generalized synthesis of periodic surfactantinorganic composite-materials. Nature, 1994, 368: 317-321.
    
    [20] J. C. Vartuli, K. D. Schmitt, C. T. Kresge, et al. Development of a format ion mechanism forM41s materials. Zeolites and Related Micropor. Mater: State of the Art 1994, 53-60.
    
    [21] J.C. Vartuli, C. T. Kresge, M. E. Leonowicz, et al. Synthesis of mesoporous materialsliquid crystal templating versus intercalation of layered silicates. Chem Mater,1994, 6: 2070-2077.
    
    [22] C.Y.Chen, H. X. Li , M. E. Davis. Study on mesoporous materials. I. Synthesis andcharaterization of MCM-41. Mesopor. Mater, 1993, 2: 17-26.
    
    [23] C.Y.Chen, S. L. Burkette, H. X. Li, et al. Study on mesoporous materials. II. Synthesis andcharaterization of MCM-41. Mesopor. Mater, 1993, 2: 27-34.
    
    [24] Q.S.Huo, D. I. Margolese, U. Ciesla, et al. Organization of organic molecules withinorganic molecular species into nanocomposite biphase array. Chem Mater, 1994, 6 (8):1176-1191.
    
    [25] A. Monnier, F. Shuth , Q. Huo , et al. Cooperative formation of inorganic-organicinterfaces in the synthesis of silicate mesostructure. Science, 1993, 261: 1299-1303.
    
    [26]徐如人,庞文秦,于吉红.分子筛与多孔材料化学.北京:科学出版社,2004.
    
    [27] 詹望成,卢冠忠,王艳芹.介孔分子筛的功能化制备及催化性能研究进展.化工进展,2006, 25(1): 2.
    
    [28] Y. H. Yue, A. Gedeon, J. L. Bonardet, et al. Direct synthesis of A1-SBA-15 mesoporousmolecular sieves: characterization and catalytic activities. Chem. Commun, 1999:1967-1968.
    
    [29] Y.Li, W.H.Zhang, L.Zhang, et al. Direct synthesis of Al-SBA-15 mesoporous materialsvia hydrolysis-controlled approach. J Phys Chem B, 2004, 108: 9739-9744.
    
    [30] S. Q. Zeng, J. Blanchard, M. Breysse, et al. Post-synthesis alumination of SBA-15 inaqueous solution : A versatile tool for the preparation of acidic Al-SBA-15
    
    supports. Micropor Mesopor Mater, 2005, 85: 297-304.
    
    [31] M. Gomez-Cazalilla, J. M. Merida-Robles, A. Gurbani, et al. Characterization and acidicproperties of Al-SBA-15 materials prepared by post-synthesis alumination of alow-cost ordered mesoporous silica. Journal of Solid State Chemistry, 2007, 180:1130-1140.
    
    [32] J. A. Melero, R. V. Grieken, G. Morales. Advances in the synthesis and catalyticapplications of organosulfonic functionalized mesostructured materials. Chem.Rev. 2006, 106: 3790-3812.
    
    [33] W. M. Van Rhi jn, D. E. De Vos, B. F. Sels, et al. Postoxidative synthesis strategy for thepreparation of sulfonic-acid-modified mesostructured materials. Chem. Commun, 1998,3: 317-318.
    
    [34] 袁兴东,沈健,李国辉等.表面含磺酸基的介孔分子筛SBA-15-SO_3H的直接合成.催化学报, 24(2):83-86.
    
    [35] S. S. Reddy, B. D. Raju. V. S. Kumar, et al. Sulfonic acid functionalized mesoporous SBA-15 for selective synthesis of 4-pheny1-1, 3-dioxane. Catal. Commun, 2007, 8: 261-266.
    
    [36] L. M. Yang, Y. J. Wang, G. S. Luo, et al. Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions. Micropor Mesopor Mater, 2005, 84: 275-282.
    
    [37] 瞿庆洲,王巍,江天肃等.镧(Ⅲ)对SBA-15分子筛改性研究.无机材料学报,2004,19(5): 1212-1216.
    
    [38] D. Coutinho, A. O. Acevedo, G. R. Dieckmann, et al. Molecular imprinting of mesoporous SBA-15 with chiral ruthenium complexes. Micropor Mesopor Mater, 2002, 54: 297-302.
    
    [39]张微,徐恒泳,毕亚东等.介孔分子筛SBA-15的改性研究进展.化工进展,2007,26(2): 152-157.
    
    [40] 李春晶,张成涛,范大武等.介孔分子筛P-SBA-15催化合成油酸甲酯.精细石油化工,2007, 24(2):58-61.
    
    [41] L.N.Yang, Y. T. Qi, X. D. Yuan, et al. Directsynthesis, characterization and catalyticapplication PWO of SBA-15 containing heteropolyacid H_3PW_(12)O_(40). J. Mol. Catal. A: Chem,2005, 229: 199-205.
    
    [42] J.C.Juan, J.C.Zhang, M. A. Yarmo. 12-Tungstophosphoric acid supported on MCM-41 foresterification of fatty acid under solvent-free condition. J. Mol. Catal. A: Chem,2007, 267: 265-271.
    
    [43] W. M. Hua, Y. H. Yue, Z. Gao. Acidity enhancement of SBA mesoporous molecular sieve bymodification with SO_4~(2-)/ZrO_2.J. Mol. Catal. A: Chem, 2001, 170: 195-202.
    
    [44] 王富丽,王学丽,任涛等.SO_4~(2-)/ZrO_2/SBA-15催化丙烯和乙酸合成乙酸异丙酯的研究.工业催 化,2007,15(2):40-43.
    
    [45] D. P. Sawant, A. Vinu , J.Justus, et al. Catalytic performances of silicotungstic acid/zirconia supported SBA-15 in an esterification of benzyl alcohol with acetic acid. J. Mol. Catal. A: Chem, 2007, 276: 150-157.
    
    [46] D. P. Sawant, A. Vinu, S. P. Mirajkar, et al. Silicotungsticacid/zirconia immobilized on SBA-15 for esterifications. J. Mol. Catal. A: Chem, 2007, 271: 46-56.
    
    [47] 安甲驹,王伯英.实用精细化工词典.北京:轻工业出版社,1988.
    
    [48]化学工业出版社《化工百科全书》编辑部.化工百科全书(第二版).北京:化学工业出版社, 1998.
    
    [49]杜迎春,吴彩金.固体酸催化剂上酯化反应研究进展.工业催化,2003,11(5):30-33.
    
    [50] J. Weitkamp. Zeolites and catalysis. Solid State Ionics, 2000, 131: 175-188.
    
    [51] Y. D. Ma, Q. L Wang, H. Yan, et al. Zeolite-catalyzed esterification I. Synthesis ofacetates, benzoates and phthalates. Appl. Catal. A: Gen, 1996, 139: 51-57.
    
    [52] K. Tanaka , R. Yoshikawa , C. Ying , et al. Application of zeolitemembranes toesterification reactions. Catal. Today, 2001, 67: 121-125.
    
    [53] O. Iglesia, S. Irusta, R. Mallada, et al. Preparation and characterization of two-layeredmordenite-ZSM-5 bi-functional membranes. Micropor Mesopor Mater, 2006, 93: 318-324.
    
    [54] S. R. Kirumakki, N. Nagaraju, K.V. R. Chary. Esterification of alcohols with acetic acidover zeolites HP, HY and HZSM5. Appl. Catal. A: Gen, 2006, 299: 185-192.
    
    [55] M.Hino, K.Arata. Catalytic activity of iron oxide treated with sulfate ion fordehydration of 2-propanol and ethanol and polymerization of isobutyl vinylether. Chem. Lett. 1979, 1: 477-480.
    
    [56] M. Hino, S. Kobayashi, K. Arata. Reactions of butane and isobutane catalyzed by zirconiumoxide treated with sulfate ion solid superacid catalyst. J. Am. Chem. Soc, 1979, 101:6439-6441.
    
    [57] T. Yamaguchi. Recent progress in solid superacid. Appl. Catal, 1990, 61(1): 1-25.
    
    [58] 周海峰.固体酸催化酯化反应的研究进展.精细与专用化学品,2004,12(23):1-6.
    
    [59] 蒋平平,卢冠中.固体超强酸催化剂改性研究发展.现代化工,2002,22(7):13-17.
    
    [60] T. Lei , J. S. Xu , Y. Tang , et al.New solid superacid catalysts for n-butane isomerization. γ-Al_2O_3 or SiO_2 supported sulfated zirconia. Appl. Catal. A: Gen, 2000, 192: 181-188.
    
    [61] 林进.稀土固体超强酸SO_4~(2-)/TiO_2/La~(3+)催化合成水杨酸异丁酯.有机化学,2000,20(5):805-807.
    
    [62] 匡华,赵德建.稀土固体超强酸TiO_2/Re~(3+)/SO_4~(2-)催化合成富马酸二甲酯的研究.科技进展,2002, 9: 26-29.
    
    [63] K. Arata, H. Nakamura, M. Shouji. Friedel-Crafts acylation of toluene catalyzed by solidsuperacids. Appl. Catal. A: Gen, 2000, 197: 213-219.
    
    [64] J. Deutsch, A. Trunschke, D. Muller, et al. Acetylation and benzoylation of variousaromatic sonsulfated zirconia. J.Mol. Catal. A: Chem, 2004, 207: 51-57.
    
    [65] 任立国,仲崇民,高文艺等.SO_4~(2-)/ZrO_2固体超强酸催化剂研究(Ⅳ)-邻二甲苯与苯乙烯的烷基 化反应.抚顺石油学院学报,2002,22(14):17-19.
    
    [66] M. Hiromi, M. Hidenori, K. Yuuki, et al. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications of aldol condensation and benzoylation. Chem. Mater, 2001, 13: 3038-3042.
    
    [67] 周海峰,朱光明,秦瑞丰.固体超强酸SO_4~(2-)/TiO_2/La~(3+)催化合成二甲基丙烯酸丁二醇酯.工业催 化,2004,12(11):29-32.
    
    [68]吴仁涛,李震,周丽霞等.稀土固体超强酸SO_4~(2-)/TiO_2-CeO_2催化合成乳酸丙酯的研究.曲阜师范 大学学报,2006,32(2):93-96.
    
    [69] 郑明东,陈同云,胡克良.V(V)促进SO_4~(2-)/ZrO_2固体超强酸的制备及催化反应.高等学校化学学??报,2006,27(6):1086-1090.
    
    [70] H. Z.Ma, F.T.Chen, B.Wang, et al. Modified SO_4~(2-)/Fe_2O_3 solid superacid catalysts forelectrochemical reaction of toluene withmethanol. Journal of Hazardous Materials,2007, 145: 453-458.
    
    [71] W. Chu, J. P. Hu, Z. K. Xie, et al. Design and elaboration of new solid acids for thesynthesisof butylacetate. Catal. Today, 2004, 90: 349-353.
    
    [72] S. Furuta , H. Matsuhashi , K. Arata. Catalyticaction of sulfated tin oxideforetherif ication and esterif ication incomparison with sulfatedzirconia. Appl. Catal. A:Gen, 2004, 269: 187-191.
    
    [73] A. S. Khder , E. A. El-Sharkawy , S. A. El-Hakam , et al. Surface characterization andcatalytic activity of sulfated tin oxide catalyst. Catal. Coram, 2008, 9: 769-777.
    
    [74] 宋国新,王琳,薛华欣等.S_2O_8~(2-)和SO_4~(2-)促进ZrO_2固体超强酸正戊烷反应性能差异的研究.高等 学校化学学报,2003,24(1):131-134.
    
    [75] 陈静,孙蕊,韩梅等.MCM-41负载S_2O_8~(2-)/TiO_2固体超强酸的制备和酯化性能研究.无机化学学 报,2006,22(3):424-425.
    
    [76] 马雪旦,郭岱石,蒋淇忠等.SO_4~(2-)/TiO_2及S_2O_8~(2-)/TiO_2催化剂的制备及表征.高校化学工程学报, 2006,20(2):240-244.
    
    [77] M. N. Timofeeva. Acid catalysis by heteropoly acids. Appl. Cataly. A: Gen, 2003, 256: 19-35.
    
    [78] 吴长增.固体杂多酸(盐)催化酯化反应研究进展.许昌师专学报,2002,21(5):11-14.
    
    [79]王永杰,万永华.负载杂多酸催化合成乙二醇单烷基醚乙酸酯.石油化工,2004,33(增刊): 1617—1618.
    
    [80] 崔萍,李先红.固载杂多酸催化合成丙酸异戊酯.工业催化,2006,14(4):52-54.
    
    [81] M. J. Verhoef, P. J. Kooyman, J. A. Peters, et al. A study on the stability of MCM-41supported heteropoly acids under liquid and gas phase esterification conditions.Micropor. Mesopor. Mater, 1999, 27: 365-371.
    
    [82] L R. Pizzio, P.G.Vazquez, C. V. Caceres , et al. Supported Keggin type heteropolycompounds for ecofriendly reactions. Appl. Catal. A: Gen, 2003, 256: 125-139.
    
    [83] J.C.Juan, J.C.Zhang, M.A.Yarmo. 12-Tungstophosphoric acid supported on MCM-41 foresterification of fatty acid under solvent-free condition. J. Mol. Catal. A: Chem, 2007,267: 265-271.
    
    [84] J. Das, K. M. Parida. Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst foresterification of acetic acid using n-butanol. J. Mol. Catal. A: Chem, 2007, 264: 248-254.
    
    [85] 杨晓勇,袁兴东,亓玉台等.介孔分子筛Cs_xH_3-xPW_(12)O_(40)-SBA-15催化合成丙烯酸正丁酯.工业催 化,2004,12(10):27-29.
    
    [86] F. F. Bamoharram, M. M. Heravi, M. Roshani, et al. Effective directesterification of butanolbyeco-friendly [NaP_5W_(30)O_(110)] _(14)~-. J. Mol. Catal. A: Chem, 2007, 271: 126-130.
    
    [87] K. M. Parida, S. Mallick. Silicotungstic acid supported zirconia : An effective catalystfor esterification reaction. J.Mol.Catal. A: Chem, 2007, 275: 77-83.
    
    [88]史春风,辛明红,王润伟等.新型HPW/SiO_2复合介孔材料的合成与表征.高等学校化学学报, 2005,26(7):1198-1201.
    
    [89]张振建.阳离子交换树脂催化剂的开发和应用.现代化工,1981,5:22-27.
    
    [90]伍征华,张洁辉,夏笃伟.不同结构的磺酸型阳离子交换树脂在酯化反应中的催化作用.四川 大学学报(工程科学版),1981,(3):19-24.
    
    [91] 李善吉.强酸性树脂催化合成丙酸烯丙酯的工艺研究.日用化学工业,2004,34(4):363-365.
    
    [92] 俞善信,张鲁西.强酸性阳离子交换树脂催化合成丁二酸二丁酯.工业催化,2004,12(3): 36-37.
    
    [93]武鹄,何节玉.阳离子交换树脂催化合成丙二酸二乙酯.湖南理工学院学报(自然科学版), 2005,18(3):59-61.
    
    [94] 陈蓉娜,李秋荣,李晓博等.阳离子交换树脂催化乙酸正丁酯的合成研究.燕山大学学报,2005, 19(1):85-87.
    
    [95]彭宝祥,王光润,王金福.强酸性阳离子交换树脂催化合成乙酸异丙烯酯.精细化工,2007, 24(7):719-723.
    
    [96]霍稳周,李花伊,陈明.耐高温酸性阳离子交换树脂催化合成乙酸丁酯.石油化工,2006,35(7): 681-684.
    
    [97] F. M. B. Coutinho, R. R. Souza, A. S. Gomes. Synthesis, characterization and evaluation of sulfonic resins as catalysts. European Polymer Journal, 2004, 40: 1525-1532.
    
    [98] 黄文强,杨新林,李晨曦等.聚苯乙烯磺酸树脂与三氯化铝复合树脂的合成及其对酯化反应的 催化性能.离子交换与吸附,1997,13(2):160-168.
    
    [99]羊衍秋,宋航,付超等.用阳离子交换树脂-FeCl_3络合催化合成丁酸异戊酯的动力学研究.四 川大学学报(工程科学版),2000,32(2):36-39.
    
    [100]周晓颖.汤志刚,丁立等.阳离子交换树脂作催化剂合成乙酸乙酯的反应动力学.清华大学学 报(自然科学版),2002,42(5):629-632.
    
    [101] Y.Zhang, L.Ma. J.C.Yang. Kinetics of esterification of lactic acid with ethanolcatalyzed by cation-exchange resins. Reactive & Functional Polymers, 2004,61:101-114.
    
    [102] H. T. R. Teo, B. Saha. Heterogeneous catalysed esterification of acetic acid with isoamylalcohol: kinetic studies. J. Catal, 2004, 228: 174-182.
    
    [103] P. Delgado, M. T. Sanz, S. Beltran. Kinetic study for esterification of lactic acid withethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. ChemicalEngineering Journal, 2007, 126: 111-118.
    
    [104] P.Brunauer, P.H. Emmett, E. Teller. J. Am. Chem. Soc. 1938, 60(2): 309-319.
    
    [105] S. W. Sing. Adsorption methods for the characterization of porous materials. Coll. Int.Sci., 1998, 76-77(1): 3-11.
    
    [106]赵亮,Gayle N,Leanne B.有机改性硅的孔结构表征.河南师范大学学报(自然科学版),2005,??33(3):77-78.
    
    [107]张晔.MCM-41介孔分子筛及MCM-41/C(60)组装体系的制备、结构及其发光性质的研究:(博 士学位论文).合肥:中国科学院固体物理研究所,2000.
    
    [108]辛勤.固体催化剂研究方法.北京:科学出版社,2005.
    
    [109] F. Arenaa, R. Dariob, A. Parmaliana. A characterization study of the surface acidity of solid catalysts by temperature programmed methods. Appl. Catal. A: Gen. 1998, 170: 127-137.
    
    [110]杜建亮,刘丹,杜建舟等.Cu/SBA-15催化苯甲醇氧化制苯甲醛.石油化工高等学校学报,2006, 19(1):13-14.
    
    [111] J.A.Melero, R.V.Grieken, G.Morales, et al.Friedel Crafts acylation of aromaticcompounds over arenesulfonic containing mesostructured SBA-15 materials. Catal. Comm,2004, 5: 131-136.
    
    [112] R. V. Grieken, J. A. Melero, G.Morales, et al. Fries rearrangement of phenyl acetate oversulfonic modified mesostructured SBA-15 materials. Appl. Catal. A: Gen, 2005, 289:143-152.
    
    [113] L. M. Yang, Y. J. Wang, G. S. Luo, et al. Functionalization of SBA-15 mesoporous silica withthiol or sulfonic acid groups under the crystallization conditions. Micropor MesoporMater, 2005, 84: 275-282.
    
    [114] P. Shaha, A. V. Ramaswamyb, K. Lazarc, et al. Synthesis and characterization of tinoxide-modified mesoporous SBA-15 molecular sieves and catalytic activity intrans-esterification reaction. Appl. Catal. A: Gen, 2004, 273: 239-248.
    
    [115] Q.Y.Liu, W. L. Wu, J.Wang, et al. Characterization of 12-tungstophosphoric acidimpregnated on mesoporous silica SBA-15 and its catalytic performance inisopropylation of naphthalene with isopropanol. Micropor Mesopor Mater, 2004, 76:51-60.
    
    [116]马广伟,葛学贵,黄少云.活性元素负载中孔分子筛的合成及表征研究.应用化工,2003,32(1): 2-4.
    
    [117] W. M. Hua, Y. H. Yue, Z. Gao, et al. Acidity enhancement of SBA mesoporous molecular sieveby modification with SO_4~(2-)/ZrO_2.Mol. Catal. A: Gen, 2001, 170: 195-202.
    
    [118] M. D. Kadgaonkar, S. C. Laha, P.Kumar, et al. Cerium-containing MCM-41 materials asselective acylation and alkylation catalysts. Catal. Today, 2004, 97: 225-231.
    
    [119] S. C. Laha, P. Mukherjee, S. R. Sainkar, et al. Cerium containing MCM-41-type mesoporousmaterials and their acidic and redox catalytic properties. J. Catal, 2002,207: 213-223.
    
    [120] M. Jang, J. K. Park, W. S. Jang, et al. Lanthanum functionalized highly ordered mesoporousmedia: implications of arsenate removal. Micropor. Mesopor. Mater, 2004, 75: 159-168.
    
    [121] E. Santaceseria, D. Gelosa, P. Danise, S. Carra. Vapor-phase esterification catalyzedby decationized Y zeolites. J. Catal. 1983, 80: 427-436.
    
    [122] W. Chu, X. Yang, X. Ye. et al. Vapor phase esterification catalyzed by immobilized dodecatungstosilicic acid (SiW_(12)) on activated carbon. J.Appl. Catal. A: Gen. 1996, 145: 125-140.
    
    [123] S. L Barbosa, M. J. Dabdoub, G. R. Hurtado et al. Solvent free esterification reactions using Lewis acids in solid phase catalysis. J. Appl. Catal. A: Gen. 2006, 313: 146 - 150.
    
    [124]李建伟.L酸催化酯化反应机理的探索.工业催化.2006,14(增刊):337-338.
    
    [125] S. K. Samantaray , K. Parida. SO_4~(2-)/TiO_2-SiO_2 mixed oxide catalyst, 3. An eco-friendly catalyst for esterification of acetic acid. Catal. Lett. 2003, 78(2): 381-387.
    
    [126]杨艳,卢缜楠,李春等.面向21世纪的生物能源.化工进展,2003,22(1):8-12.
    
    [127] M. P. Dorado. Exhaust emissions from a diesel engine fueled with transetenfied waste olive oil. Fuel, 2003, 82: 1300-1315.
    
    [128]李玉芹,曾虹燕.植物油脂肪酸甲酯-生物柴油作替代燃料的意义.应用化工,2005,34(8): 464-466.
    
    [129]吴玉秀,李永丹,张全忠等.用于菜籽油酯交换过程的Mg-Al复合氧化物催化剂.石油化 工,2003,32(9):800-804.
    
    [130]孟鑫,辛忠.KF/CaO催化剂催化大豆油酯交换反应制备生物柴油.石油化工,2005,34(3): 282-286.
    
    [131] U. Schuchardt, R. M. Vargas, G. Gelbard. Transesterification of soybean oil catalyzed by alkylguanidine heterogenized on different substituted polystyrenes. J. Mol. Catal. A: Chem, 1996, 109: 37-44.
    
    [132]曹宏远,曹维良,张敬畅.固体酸Zr(SO_4)_2.4H_2O催化制备生物柴油.北京化工大学学报,2005, 32(6):61-63.
    
    [133] S. L. Barbosa, M. J. Dabdoub, G. R. Hurtado, et al. Solvent free esterification reactions using Lewis acids in solid phase catalysis. Applied Catalysis A: General, 2006, 313: 146-150.
    
    [134]吴芹,陈和,韩明汉等.B酸离子液体催化棉籽油酯交换制备生物柴油.石油化工,2006,35(6): 583-586.
    
    [135]王学伟,常杰,吕鹏梅等.固定化脂肪酶催化制备生物柴油.石油化工,2005,34(9):855-858.
    
    [136] J. Gangadwala, S. Mankar, S. Mahajani, et al. Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts. Ind. Eng. Chem. Res. 2003, 42: 2146-2155.
    
    [137]卢泽楷,朱万仁.固载超强酸催化剂制备及催化合成乙酸正丁酯的研究.有机化学,2000, 20(5):819-821.
    
    [138]胡健平,储伟,邱发礼.固体酸催化乙酸正丁酯酯化反应的研究.精细化工,2000,17(5): 269-278.
    
    [139]李春生,周春晖,葛忠华等.负载型中孔分子筛催化剂的研究进展.工业催化,2003,11(2): 7-11.
    
    [140]杨丽娜,介玉台,袁兴东等.磷钨酸改性介孔分子筛SBA-15催化剂的酸性及水热稳定性的研 究.石油化工,2005,34(3):222-225.
    
    [141]张慧,任仲皎,曹卫国.无溶剂研磨条件下四氢苯并吡喃衍生物的一锅法合成.有机化学,2006, 26(8):1018-1021.
    
    [142] Y. M. Wang. Z. Y. Wu, J. H. Zhu. Surface functionalization of SBA-15 by the solvent-free method. J Solid State Chem. 2004, 177: 3815-3823.
    
    [143]陈静,孙蕊,韩梅等.MCM-41负载S_2O_8~(2-)/TiO_2固体超强酸的制备和酯化性能研究.无机化学学 报,2006,2(3):421-425.
    
    [144]傅献彩.大学化学(下册).北京:高等教育出版社,1999,706.
    
    [145] J. M. Kim, S. Lun, R. Ryoo. Improwement of hydrothermal stability of mesoporous silica: reinvestigation for time-dependent effect. J. Phys. Chem. B, 1999, 103 (30): 6200-6205.
    
    [146] X.G.Wang, C.C.Chen, S.Y.Chen, et al.Arenesulfonic acid functionalized mesoporous silica as a novel acid catalyst for the liquid phase Beckmann rearrangement of cyclohexanone oxime to ecaprolactam. Appl. Catal. A: Gen, 2005, 281: 47-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700