用户名: 密码: 验证码:
挤出加工流场中聚合物成型机理及其工艺模拟与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料、木材、金属和硅酸盐并称世界四大材料体系,是国民经济和国防建设中重要的生产材料。围绕高分子材料,目前已形成了门类齐全的高分子材料加工工业体系并在国民经济中占有重要地位。挤出是高分子材料成型加工中一类重要工艺,通过挤出模具能够模塑所有的热塑性材料和某些热固性材料,可以生产管材、板材、棒材、网材、单丝、薄膜、异型材、发泡型材、多种材料复合制品以及线缆等带包覆层的工业制品。挤出成型过程中,受温度、压强、应力以及作用时间等变化的影响,体系中聚合物熔体的聚集态结构和化学结构会发生变化。挤出工艺条件在很大程度上决定着材料的结构和性能,并最终影响成型制品的外观和质量。
     由于挤出成型过程影响因素较多,借助常规实验方法,成本高且耗时费力。目前,围绕聚合物挤出流动过程所开展的实验研究大多在实验室中完成,其实验目的主要是从研究材料自身流变性出发,以简单剪切和拉伸流动为测试模型。由于先进测试方法难以直接引入挤出工艺现场,普通测试方法又不可避免会对挤出加工流场中聚合物熔体流动行为造成影响并导致大量系统误差,因此,实验方法只能定性但难以定量描述聚合物加工中的实际流变行为。数值模拟技术经过近几十年的发展,其对于大规模复杂物理和工程问题的优秀解算能力吸引了科研人员的目光,并逐步在力学、传热学、材料学等诸多领域得到广泛应用,加快了现代科技发展步伐。
     本文探讨了数值模拟技术在聚合物流变学中的应用,研究了聚合物挤出成型过程的模型化理论和数值计算方法,构造了能够描述挤出过程中聚合物流变行为特点的物理和数学模型。通过数值模拟技术,成功预测挤出加工流场中聚合物熔体的流动速度、应力和温度等重要场变量分布特点及其变化规律,讨论并分析聚合物的复杂流变行为及其成型机理。将成型过程数值模拟技术与现代优化设计理论相结合,建立并运用相应的优化模型和算法,实现成型工艺与制品质量的优化控制。
     在聚合物流变学基础上,结合流体动力学理论,建立了基于Euler描述的非牛顿流体三维非等温流动数学模型。采用基于低阶插值的罚函数有限元方法,成功避免了混合有限元方法中为稳定压力项求解所采用的高阶插值,从而有效利用运算资源,将求解空间扩展至三维。充分考虑了剪切速率和温度变化对材料流动性的影响,采用非线性粘度模型,实现了流动与传热的耦合求解。通过线性化交替迭代算法,在迭代过程中实现非线性项的线性化,减小了初始变量分布对计算收敛性影响。采用流线迎风Petrov-Galerkin(SUPG)方法,通过构造非对称权函数来增大流场中来流上游效应,克服了标准伽辽金(Galerkin)方法在处理对流扩散方程时因对流占优所引起的数值振荡问题。通过理论分析,推导了幂率流体圆管泊肃叶(Poiseuille)流动中的各场变量分布函数,将模拟与理论结果进行比较,以验证该非牛顿流动数学模型与数值计算方法的可靠性。
     本文所建立的非牛顿流体三维非等温流动数值模拟技术不仅可用于分析一般非牛顿流动问题,在处理目前流动模拟技术难以预测的复杂工艺问题时也表现出较强的适应性。基于该方法,本文首次针对一类新型复合共挤出工艺——异型材钢塑共挤工艺过程开展了数值建模及其工艺分析工作。根据其不同于常规挤出工艺的特点,建立了该工艺过程中聚合物成型的数学模型,通过模拟计算,得到聚合物熔体由测向导入至复合成型整个流动过程的速度、温度、应力和压力等各场变量的分布,掌握了聚合物熔体的流动特点与成型规律,讨论了体积流量和钢衬移动速度变化对各场变量分布的影响。定义流速分布相对均差作为判断挤出流动平衡性的依据,模拟并得到不同导入角角度和分流段长度对挤出流动平衡的影响,分析结论可为实际异型材钢塑共挤工艺设计提供理论指导与支持。
     挤出加工流场中的聚合物熔体除了具有非牛顿流动特性外,还表现出较强的弹性流动特点。针对该问题,本文建立了能够真实反映成型过程中聚合物熔体粘弹流变特性的三维粘弹非等温流动数学模型,构造了稳定的有限元数值求解方法并将其成功应用于聚合物挤出工艺模拟与分析中。采用PTT(Phan-Thien—Tanner)本构模型描述聚合物熔体的粘弹流变行为,在反映聚合物熔体剪切流动特点的同时,能较真实地反映其拉伸流动特点。考虑粘弹介质特有的能量耗散模式,在热力学第一定律基础上,根据非平衡不可逆热力学理论首次推导了该粘弹介质的能量守恒方程。将粘弹性附加应力张量作为有限元基本解,采用解耦方法实现了三维空间中速度场、温度场和流动应力场的多物理场稳定求解。将应力张量作为拟体力项处理后,动量方程会失去椭圆性并导致计算结果发散。通过分离粘弹分裂(DEVSS)方法,引入稳定化因子对动量方程进行椭圆化处理,提高了速度场求解的稳定性。采用非协调流线迎风(SU)方法克服了本构方程在对流占优时的数值振荡问题,实现了应力场的稳定求解。通过对粘弹流体4:4:1收缩流动模拟结果与polyflow软件模拟结果的比较,证明本文所建立的粘弹流动模型和数值计算方法的合理与可靠性。将该模型与方法成功应用于异型材挤出工艺过程模拟,讨论了网格密度、罚数和能量分割系数等计算控制参数对模拟结果的影响。分析了中空异型材挤出过程中聚合物熔体的流动速度、温度和应力分布,讨论了加工流场中聚合物熔体的粘弹流动特点,获得了工艺条件和口模结构参数变化对聚合物流变行为的影响规律。
     挤出胀大是聚合物挤出成型工艺中无法回避的一个问题。由于加工中聚合物熔体的粘弹流变特性,熔体离开口模时,形变回复等会导致聚合物熔体的挤出胀大,表现为挤出物截面形状和尺寸发生变化,对挤出制品的尺寸和精度造成影响。本文在粘弹流动数值模拟技术基础上,建立了聚合物熔体三维挤出胀大的数学模型和数值求解方法并编制了相应的有限元模拟程序。针对一种工业用低密度聚乙烯(LDPE)的挤出胀大问题开展了实验及其数值模拟研究。通过控制应变流变仪分别得到小幅振荡剪切流动中储能和耗能模量的分布以及稳态剪切流动中剪切粘度和第一法向应力差的分布。采用非线性回归方法拟合流变测量实验结果,得到以PTT本构模型表征的材料线性和非线性粘弹流变参数。通过间接测量,得到不同螺杆转速时LDPE通过圆形口模时的出口挤出胀大比。采用本文所建立的聚合物挤出胀大数学模型及其数值求解方法,对实验条件下LDPE的挤出胀大过程进行模拟,比较了挤出胀大比的实验和模拟结果。通过挤出胀大数值模拟,进一步讨论了LDPE通过圆环口模时的出口挤出胀大问题,得到实验中难以测得的流动速度和应力等场变量分布,可对挤出胀大特点及其形成机理进行定性与定量分析和预测。
     聚合物挤出成型过程数值模拟是被动式的,实际应用中需依靠专业工程技术人员的智力、知识和经验,对计算结果进行分析、评价,然后修改设计。本文将挤出成型过程数值模拟技术与优化设计理论相结合以实现成型过程与制品质量的优化控制。在成型过程模拟技术基础上,提出了一种基于数值模拟、前馈神经网络和遗传算法的聚合物挤出工艺与模具优化设计方法。根据挤出流动平衡原则,建立了以出口流动均匀性为目标,以工艺和模具结构参数为设计变量的优化模型。通过成型过程数值模拟获得目标函数值以建立训练神经网络模型的样本库,采用反向误差传播算法进行网络学习,建立用于预测隐目标函数的神经网络模型,从而有效减小有限元模拟计算量。通过遗传算法与神经网络的交互运算,得到优化结果,使设计建立在科学分析的基础上从而提高挤出加工工艺设计水平。探讨了该优化设计方法各模块计算实施中的关键技术问题,编制了聚合物挤出工艺与模具优化设计程序。分别针对异型材钢塑共挤工艺过程和片材挤出工艺过程进行优化设计并达到相应的优化目标。
     数值模拟技术在聚合物加工工程领域的应用已成为计算流变学的重要分支之一。近年来,尽管流体力学数值方法取得了较大进展,但在处理复杂流动问题时,其解算能力仍受到流动区域和计算稳定性的限制。尤其对于复杂工程与工艺问题,其数学建模和数值模拟关键技术研究鲜有报道。本文针对挤出加工流场中聚合物熔体非牛顿粘性和弹性流动特点所建立的数学模型以及所构造的稳定数值计算方法,对于丰富计算流变学具有一定的理论意义。针对挤出工艺过程中聚合物熔体的复杂流变行为及其成型机理所作的分析与研究,以及基于此所开展的成型工艺模拟与优化工作具有较大的工程应用价值。
Polymer is a kind of important manufacturing material in national industry and defence construction which is called the four most important material system incooperating with wood, metal and silicate. With the development of polymer processing technology, the industrial system of polymer processing is established with many kinds of departments and it is playing an important role in national economy. Extrusion is one of the most important polymer processing technologies by which all the thermoplastic polymers and some thermosetting polymers can be molded, such as pipes, sheets, rods, nets, monofils, films, profiles, foaming profiles, composite products and coated products. In the extrusion process, the accumulative structure and chemical structure of polymer melts can be varied with the change of temperatue, pressure and stress. The processing conditions determine the material structure and ultimately affect the performance and quality of final products.
     It is hard to afford to traditional experimental method for the reason that the influencing factors are multiplex and it is also expensive, time-consuming and laborious. Currently, the related experiments on polymer melts flow are mainly conducted in the laboratory and the aim of which is to investigate rheological properties based on the simple model of shear or extensional flows. As for the experiments conducted in practical extrusion process, advanced testing method is diffucult to be directly introduced and general testing method is inevitably affect real flow patterns. It is hard to quantitatively but can only qualitatively reflect practical rheological behaviours of polymer melts by using experimental method. After several years' development, numerical simulation method gradually attracts the attention of scientific and technical researchers for its excellent solving ablility to complex physical and engineering problems. It is now widely adopted in mechanics, thermotics, material science and other fields which greatly accelerate the development of modern science and technology.
     The application of numerical simulation technology in fluid dynamics is discussed in the present research. The modeling theory and numerical method is studied and the mathematical model is established to investigate polymer rheological behaviours in the extrusion process. The distribution and changing law of some important field functions, such as velocity, stress and temperature, are discussed and analysed to explain the forming mechanism of polymer melts. The numerical simulation method is combined with optimal design theory and the optimization model and algorithm is established to realize the optimal control of extrusion process and products' quality.
     The mathematical model of three-dimensional non-isothermal flow of non-newtonian fluid is established under Euler frame on the basis of polymer rheology and fluid dynamics. The penalty finite elment method is adopted to avoid high-order interpolation which is usually used in the mixed finite element method so as to effectively make use of computational resources. The effects of shear rate and temperature on melts flow are considered and the coupled calculation of flow and heat transfer is realized based on the nonlinear viscosity model. The non-linear term is linearized by using linearation iterative algorithm and hence to reduce the effects of valiables' initial distribution. The stream upwind Petrove-Galerkin method is performed to enlarge the upwind effects by using asymmetry weight function to overcome the oscillation of convection terms dominated problems. The field variables' function in the pipe poiseuille flow of power-law fluid is deduced and the corresponding simulated results are compared with the analysed results to prove the reliability of current mathematical model and numerical algorithm for non-newtonian flow.
     The numerical method established above can not only be used in the analysis of general non-newtonian fluid flow problem but also can be adopted to solve complex engineering problem. Based on the proposed method, the mathematical modeling and processing analysis of a novel co-extrusion process of plastic profile with metal insert is performed in the study for the first time. The whole flow characteristic of polymer melts in flow channel is obtained by the calculation of velocity, stress, temperature and pressure. The influences of volume flow rate and metal insert moving velocity on the distribution of field variables is discussed and the corresponding advice on the processing design is put forward. The velocity relative difference is defined to jugde the outlet flow balance. The influences of both the inlet angle and the length of allocation region are investigated by the calculation of velocity relative difference.
     Polymer melts in the extrusion process not only have non-newtonian flow characteristics but also have strong viscoelastic flow characteristics. The mathematical model of three-dimensional viscoelastic non-isothermal flow is established and a stable numerical algorithm is proposed which has been successfully adopted in the analysis of polymer extrusion process. The PTT (Phan Thien-Tanner) model is adopted to depict such viscoelastic properties of polymer melts which can reflect the extensional flow characteristic better. The special energy consumption pattern of viscoelastic medium is considered and its energy conservation equation is deduced according to the nonequilibrium irreversible thermodynamical theory. A decoupled algorithm is adopted to realize stable calculation for the three-dimensional multi-variables field consisting of velocity, temperature and flow stress. The momentum equation will lose its ellipticalness when the stress term is taken as the quasi-body force term and the discrete elastic-viscous stress split algorithm is adopted to improve the stability of velcocity calculation by introducing the stabilization factor. The non-consistant stream upwind method is adopted to overcome the oscillation in the calculation of stress. The mathematical model and numerical method for viscoelastic flow simulation of polymer melts established in the study is introduced to the analysis of general profile extrusion process. The effects of calculation control parameters, such as mesh division, penalty factor and energy partitioning factor, are investigated. The viscoelastic flow characteristics of polymer melts in the profile extrusion process are analysed based on the simulated results of velocity, temperature and stress. The influences of processing conditions and die structure on flow characteristics are further discussed.
     Extudate swell is a common phenomenon for the reason of polymer melts' elastic deformation in the extrusion process which can severely influence the shape and dimensional precision of final products. Based on the viscoelastic flow simulation technology proposed in the study, the mathematical model and numerical algorithm for the simulation of three-dimensional extrudate swell is established and its finite element simulation program is worked out. The extrudate swell of an industrial LDPE is then investigated by both experimental method and numerical method. The distributions of stored-energy modulus and consumed-energy modulus in small amplitude oscillating shear flow and the distributions of shear viscosity and the first normal stress difference in steady shear flow are obtained by using the strain-controlled rheometer. Both linear and nonlinear viscoelastic rheological parameters of PTT model are obtained by using nonlinear regression method. The swelling ratios of LDPE through circular die under different volume flow rates are detected by using indirect measurement and they are compared with the simulated results. The distributions of flow velocity and stress in LDPE annular extrudate swell flow field obtained by simulation are analysed and the corresponding mechanism is further discussed.
     The numerical simulation of polymer extrusion process is a passive system whose results have to be judged and analysed by professional worker with corresponding experiences and knowledge. In the study, the numerical simulation technology is combined with optimal design theory to realize the automatic optimal design and control for products. An optimal design method for polymer extrusion process is put forward based on numerical simulation, artificial neural net and generic algorithm. The optimization model is established by using the outlet flow balance as the optimization object. The processing parameters and die structure parameters are taken as design variables. The neural net model is trained by using the sample database obtained by simulated results so as to reduce the calculated amount of numerical simulation. The optimal design is achieved based on the scientific analysis through the iteration of genetic algorithm and neural net model. The corresponding optimization program for processing parameters and die structure parameters is worked out and the optimal design both for the co-extrusion process of plastic profile with metal insert and for the sheet extrusion process are further achieved.
     The application of numerical simulation technology in the polymer processing engineering becomes one of the important branches in the computational rheology field. Although great progresses have been made in numerical methods on fluid dynamics in the recent years, its solving ability is still restricted to flow regions and computational stability. Researches on the complex mathematical modeling and the key technologies for numerical simulation are rarely reported especially for the solving of complex engineering and technology problem. The mathematical model and numerical method for the simulation of both viscous and viscoelastic characteristics of polymer melts in the study are of great interest to enrich the theory of computational rheology. It is also of much industrial interest to take research on rheological behaviour and the related forming mechanism in the polymer extrusion process based on the simulation and optimization technology.
引文
[1]周宏志,江波,许澍华.浅析高聚物共挤出技术[J].橡塑技术与设备,2004,30(9):4-14
    [2]任杰,李申,任天斌.反应挤出研究进展[J].建筑材料学报,2006,9(1):66-71
    [3]吴大鸣,李晓林,刘颖.单螺杆精密挤出成型技术进展[J].中国塑料,2003,17(2):1-8
    [4]黄兴元,柳和生,周国发,鄢超.辅助挤出技术在聚合物挤出加工中的应用[J].工程塑料应用,2005,33(3):34-37
    [5]彭响方,翟金平.聚合物动态成型技术的研究及进展[J].高分子材料科学与工程,1999,15(5):8-12
    [6]朱复华等.挤出理论及应用[M].北京:中国轻工业出版社,2001
    [7]柳和生,涂志刚,熊洪槐.聚合物熔体在直线型异型材挤出口模内三维粘弹流动分析[J].应用基础与工程科学学报,2004,12(1):73-79
    [8]申长雨等.塑料模具计算机辅助工程[M].郑州:河南科学技术出版社,1998:367-416
    [9]J.Z.Liang.Pressure losses during the annular conical die flow of a rubber compound[J].Polymer Testing,2003,22(5):497-501
    [10]P.J.Oliveira,F.T.Pinho.Analytical solution for fully-developed channel and pipe flow of Phan-Thien-Tanner fluids[J].Journal of Fluid Mechanics,1999,387:271-280
    [11]L.Robert,Y.Demay,B.Vergnes.Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser doppler velocimetry[J].Rheologic Acta,2004,43:89-98.
    [12]D.R.Arda,M.R.Mackley.The effect of die exit curvature,die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing[J].Journal of Non-Newtonian Fluid Mechanics,2005,126:47-61
    [13]张先勇,翟金平,任鸿烈.聚合物弹性行为的研究进展[J].轻工机械,2002,2:13-15
    [14]A.S.Lodge.Elastic liquids[M].London:Academic Press,1964
    [15]R.I.Tanner.A theory of die-swell[J].Journal of Polymer Science,1970,8(12):2067-2078
    [16]X.P.Yang,S.Q.Wang.Extrudate swell behavior of polyethylenes[J].Journal of Rheology,1998,42(5):1075-1094
    [17]T.Tran-Cong,N.Phan-Thien.Three dimensional study of extrusion process by boundary element method.Ⅰ.An implementation of high order and some Newtonian result[J].Rheology Acta,1988,27(1):21-30
    [18]K.R.J.Ellwood.Three dimensional streamlined finite elements:design of extrusion dies[J].International Journal for Numerical Methods in Fluids,1992,14(1):13-24
    [19]M.Normandin,J.R.Clermont,J.Guillet.Three-dimensional extrudate swell experimental and numerical study of a polyethylene melt obeying a memory-integral equation[J].Journal of Non-Newtonian Fluid Mechanics,1999,87(1):1-25
    [20]J.Cormenzana,A.Ledda,M.Laso.Calculation of free surface flows using CONNFFESSIT[J].Journal of Rheology,2001,45(1):237-258
    [21]K.Weissenberg.A continuum theory of rheological phenomena[J].Nature,1947,159(4035):310-311
    [22]C.D.Han.Rheology in polymer processing[M].New York:Academic Press,1976
    [23]J.L.A.Dubbeldam,J.Molenaar.Dynamics of the spurt instability in polymer extrusion[J].Journal of Non-Newtonian Fluid Mechanics,2003,112(2):217-235
    [24]V.Ngamaramvaranggul.Simulation of coating flows with the slip effects[J].International Journal for Numerical Methods in Fluids,2000,33(7):961-992
    [25]W.A.Gifford.The effect of wall slip on the performance of fiat extrusion dies[J].Polymer Engineering and Science,2001,41(11):1886-1892
    [26]M.H.R.Ghoreishy.Finite element analysis of flow of the flow of thermoplastic elastomer melt through axisymmetric die with slip boundary condition[J].Plastics,Rubber and Composites,2000,29(5):224-228
    [27]吕静,陈晋南,胡冬冬.壁面滑移对两种聚合物熔体共挤出影响的数值研究[J].化工学报,2004,55(3):455-459
    [28]李炜.黏性流体的混合有限分析解法[M].北京:科学出版社,2000
    [29]W.M.H.Verbeeten,G.W.M.Peters,F.P.T.Baaijens.Numerical simulation of the planar contraction flow for a polyethylene melt using the XPP model[J].Journal of Non-Newtonian Fluid Mechanics,2004,117(2):73-84
    [30]V.Ngamaramvaranggul,M.F.Webster.Viscoelastic simulations of stick-slip and die swell flows[J].International Journal for Numerical Methods in Fluids,2000,33:961-992
    [31]E.Mitsoulis.Three-dimensional non-Newtonian computations of extrudate swell with the finite element methods[J].Computation Methods in Applied Mechanics and Engineering,1999,180:333-344
    [32]S.Kihara.Numerical simulation of three-dimensional viscoelastic flow within dies[J].Polymer Engineering and Science,1999,39:152-163
    [33]Ⅰ.Mutlu,P.Townsend,M.F.Webster.Simulation of cable-coating viscoelastic flows with coupled and decoupled schemes[J].Journal of Non-Newtonian Fluid Mechanics,1998,74:1-23
    [34]杨云珍,孙利民,王华,申长雨.塑料型材挤出成型冷却分析[J].塑料工业,2004,32(4):29-31
    [35]S.Syrj(a∣¨)l(a∣¨).Further finite element analyses of fully developed laminar flow of power-law non-newtonian fluid in rectangular ducts:heat transfer predictions[J].International Journal of Heat and Mass Transfer,1996,23(6):799-807
    [36]P.Lin.Conjugate transporting polymer melt flow through extrusion dies[J].Polymer Engineering and Science,1997,37(9):1582-1595
    [37]Y.M.Lin,G.H.Wu,S.H.Ju.Non-isothermal flow of a polymeric liquid passing an asymmetrically confined cylinder[J].International Journal of Heat and Mass Transfer,2004,47(8):1989-1996
    [38]梁志明,周持兴等.聚合物熔体的非等温平板收缩流动的数值模拟[J].高分子材料科 学与工程,2003,19(1):15-19
    [39]E.R.L.Mercado,V.C.Souza,R.Guirardello,J.R.Nunhez.Modeling flow and heat transfer in tubes using a fast CFD formulation[J].Computers and Chemical Engineering,2001,25(4):713-722
    [40]F.T.Pinhoa,P.J.Oliveirab.Analysis of forced convection in pipes and channels with the simplifed Phan-Thien-Tanner fluid[J].International Journal of Heat and Mass Transfer,2000,43:2273-2287
    [41]G.Barakous,E.Mitsoulis.Non-isothermal viscoelastic simulation of extrusion through dies and prediction of the bending phenomenon[J].Journal of Non-Newtonian Fluid Mechanics,1996,62:55-79
    [42]A.Goublomme,M.J.Crochet.Numerical prediction of extrudate swell of a high-density polyethylene:further results[J].Journal of Non-Newtonian Fluid Mechanics,1993,47:281-287
    [43]W.米歇利.挤塑模头设计及工程计算[M].北京:烃加工出版社,1989:5-9
    [44]M.L.Williams,R.F.Landel,J.D.Ferry.The temperature dependence of relaxation mechanism in amorphous polymers and other glass-forming liquids[J].Journal of American Chemistry Society,1995,77(7):3701-3706
    [45]D.E.Smith.Design sensitivity analysis and optimization for polymer sheet extrusion and mold filling process[J].International Journal for Numerical Methods in Engineering,2003,57(10):1381-1411
    [46]O.S.Cameiro,J.M.N6brega,F.T.Pinho.Computer aided rheological design of extrusion dies for profiles[J].Journal of Materials Processing Technology,2001,114(1):75-86
    [47]W.Michaeli,S.Kaul,T.Wolff.Computer-aided optimization of extrusion dies[J].Journal of Polymer Engineering,2001,21(2):225-237
    [48]刘斌,王敏杰,刘耀中等.基于数值分析的塑料挤出模优化设计方法研究[J].机械工程学报,2003,39(5):139-144
    [49]余晓容,申长雨,刘春太,王利霞.挤出平缝口模优化设计[J].计算力学学报,2004,4:253-256
    [50]J.S.Chung,S.M.Hwang.Application of a genetic algorithm to the optimal design of the die shape in extrusion[J].Journal of Materials Processing Technology,1997,72(1):69-77
    [51]B.L.Koziey,J.Vlachopoulos,J.Vlcek.Profile die design by pressure balancing and cross flow minimization[C].Annual Technical Conference-ANTEC,Conference Proceedings,v1,Processing,1996:247-252
    [52]J.Svabik,L.Placek,P.Saha.Profile die design based on flow balancing[J].Internal polymer processing,1999,3:247-253
    [53]P.Ulysse.Optimal extrusion die design to achieve flow balance[J].International Journal of Machine Tools and Manufacture,1999,39(7):1047-1064
    [54]P.Ulysse.Extrusion die design for flow balance using FE and optimization methods[J].International Journal of Mechanical Sciences,2002,44(2):319-341
    [55]孙克豪,黄翔.流线型挤压模曲面的构造及其CAD/CAM[J].锻压技术,1996,5:46-49
    [56]邹琳,夏巨谌,胡国安.挤压模具型腔轮廓形状的多目标优化设计[J].锻压机械,2002,4:41-43
    [57]邹琳,夏巨谌,胡国安.挤压模具型腔轮廊曲线优化拟合分析[J].锻压技术,2002,6:51-54
    [58]D.Y.Yang,C.H.Han,M.U.Kim.A generalized method for analysis of three-dimensional extrusion of arbitrarily- shaped sections[J].International Journal of Mechanics Science,2002,28(8):517-534
    [59]江体乾.化工流变学[M].上海:华东理工大学出版,2004:7-8
    [60]韩先洪.成型充填过程中非等温非牛顿粘弹性流动数值模拟[D].大连理工大学博士学位论文,2007
    [61]吴其烨,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002
    [62]唐志玉.塑料模流变学设计[M].北京:国防工业出版,1991:32-46
    [63]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004
    [64]R.B.Bird,J.M.Wiest.Constitutive equations for polymertic liquids[J].Annual Review of Fluid Mechanics,1995,27:169-193
    [65]R.J.J.Jongschaap,K.H.D.Haas,C.A.J.Damen.A generic matrix representation of configuration-tensor rheological models[J].Journal of Rheology,1994,38:769-796
    [66]A.N.Beris,B.J.Edwards.Poisson bracket formulation of viscoelastic flow equations of differential type:a unified approach[J].Journal of Rheology,1990,34:503-538
    [67]A.Schausberger,G.Schindlaner,H.Japeschitz-kriegl.Linear elastic-viscous properties of molten standard polystyrenes.Ⅰ.Presentation of complex modulus role of short range structural parameters[J].Rheology Acta,2002,41(2):220-227
    [68]R.B.Bird,C.F.Curtiss,R.C.Armstrong.Dynamics of polymetric fluids,Vol.2:Kinetic Theory[M].NewYork:Wiley,1987
    [69]R.B.Bird,P.J.Dotson,N.L.Johnson.Polymer solution rheology based on a finitely extensible bead-spring chain model[J].Journal of Non-Newtonian Fluid Mechanics,1980,7(2):213-235
    [70]M.Doi,S.F.Edwards.Theory of polymer dynamics[M].London:Oxford University Press,1986
    [71]R.B.Bird,R.C.Armstrong,O.Hassager.Dynamics of polymetric fluids,Vol.1:Fluid Mechanics[M].NewYork:Wiley,1977
    [72]S.Middleman.Fundamentals of polymer processing[M].NewYork:McGraw-Hill,1977
    [73]V.Nassehi.Practical aspect of finite element modeling of polymer processing[M].Chiehester:John Wiley&Sons,2002
    [74]X.H.Han,X.K.Li.An iterative stabilized CNBS-CG sheme for impressible non-isothermal non-newtonian fluid flow[J].International Journal of Heat and Mass Transfer,2007,50:847-856
    [75]M.M.Cross.Rheology of non-newtonian fluids:A new flow equation for pesudoplastic systems[J].Journal of Colloid Science,1965,20(5):417-437
    [76]P.J.Carreau.Rheological equations from molecular network theories[J].Transaction of the Society of Rheology,1972,16(1):99-127
    [77]B.S.Chen,W.H.Liu.Numerical simulation of post-filling stage in injection molding with a two-phase model[J].Polymer Engineering and Science,1994,34(10):835-846
    [78]H.H.Chiang,C.A.Hieber,K.K.Wang.A unified simulation of the filling and postfilling stages in injection molding.Part Ⅱ:Experiment verification[J].Polymer Engineering and Science,1991,31(2):125-139
    [79]C.A.Hieber,H.H.Chiang.Shear-rate-dependence modeling of polymer melt viscosity[J].Polymer Engineering and Science,1992,32(14):931-938
    [80]韩式方.非牛顿流体本构方程和计算解析理论[M].北京:科学出版社,2000
    [81]M.Reiner.A mathematical theory of dilatancy[J].American Journal of Mathematics,1945,67:350-362
    [82]R.S.Rivlin.The hydrodynamics of non-newtonian fluids[J].Proceedings of Royal Society of London,Series A,1948,193:260-281
    [83]J.G.Oldroyd.On the formulation of rheological equations of state[J].Proceedings of Royal Society of London,Series A,1950,200:523-541
    [84]N.Phan-Thien,R.I.Tanner.A new constitituve equation derived from network theory[J].Journal of Non-Newtonian Fluid Mechanics,1977,2(4):353-365
    [85]H.Giesekus.A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility[J].Journal of Non-Newtonian Fluid Mechanics,1982,11(1):69-109
    [86]H.R.Warner.Kinetic theory and rheology of dilute suspensions of finitely extensible dumbbells[J].Industrial and Engineering Chemistry Fundamentals,1972,11:379-387
    [87]T.C.B.McLeish,R.G Larson.Molecular constitutive equations for a class of branched polymers:the Pom-Pom polymer[J].Journal of Rheology,1998,42:81-110
    [88]W.M.H.Verbeeten,G.W.M.Peters,F.P.T.Baaijens.Differential constitutive equations for polymer melts:The eXtended Pom-Pom model[J].Journal of Rheology,2001,45(4):823-843
    [89]W.M.H.Verbeeten,G.W.M.Peters,F.P.T.Baaijens.Viscoelastic analysis of complex polymer melt flows using the eXtended Pom-Pom model[J].Journal of Non-Newtonian Fluid Mechanics,2002,108(1):301-326
    [90]W.M.H.Verbeeten,G.W.M.Peters,F.P.T.Baaijens.Numerical simulation of the planar contraction flow for a polyethylene melt using the XPP model[J].Journal of Non-Newtonian Fluid Mechanics,2004,117(2):73-84
    [91]B.Bernstein,E.A.Kearsley,L.J.Zapas.A study of stress relaxation with finite strain[J].Transaction of the Sockty of Rheology,1963,7:391-410
    [92]古大治等.高分子流体动力学[M].成都:四川教育出版社,1988:88
    [93]C.D.韩.聚合物加工流变学[M].北京:科学出版社,1985:11-12
    [94]金日光.高聚物流变学及其在加工中的应用[M].北京:化学工业出版社,1986
    [95]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版,2002:1-2
    [96]秦升学.异型材聚合物挤出与钢塑共挤过程的有限元模拟关键技术及其机理研究[D].济南:山东大学博士学位论文,2006
    [97]D.S.Malkus,T.J.R.Hughes.Mixed finite element methods-reduced and selective integration techniques:a unification of concepts[J].Computer Methods in Applied Mechanics and Engineering,1978,15:63-81
    [98]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1999:1-2
    [99]F.Ramsteiner.The viscosity of a polymer melt as a function of temperature,hydrostatic pressure and low molecular additives[J].Rheologica Acta,1970,9(3):374-381
    [100]W.J.Silliman,L.E.Scriven.Seperating how near a static contact line:Slip at a wall and shape of a free surface[J].Journal of Computational Physics,1980,34(3):287-13
    [101]章本照.流体力学中的有限元方法[M].北京:机械工业出版社,1986:439
    [102]R.M.Griffith,J.T.Tsai.Shape changes during drawing of non-circular extruded profile[J].Polymer Engineering and Science,1980,20(18):1181-1187
    [103]D.Beaumier,P.G.Lafleur,C.A.Thibodeau.Streamline die design for complex geometries [C].ANTEC,2001,1:54-58
    [104]D.G.Kiriakidis.Viscoelastic simulation of extrudate swell for an HDPE melt through slit and capillary dies[J].Advances in Polymer Technology,1993,12(2):107-117
    [105]P.B.Kuyl.Non-isothermal viscoelastic flow simulation of a high speed wire coating process[C].ANTEC,1997,1:298-302
    [106]C.Beraudo,A.Fortin,T.Coupez.Finite element method for computing the flow of multi-mode viscoelastic fluids:comparison with experiments[J].Journal of Non-Newtonian Fluid Mechanics,1998,75(1):1-23
    [107]李险峰,袁学锋,步怀天.拉格朗日·欧拉方法模拟高分子复杂流体平面收缩流动[J].高分子学报,2000,4:432-437
    [108]J.P.Aguayo,H.R.Tamaddon-Jahromi,M.F.Webster.Extensional response of the pom-pom model through planar contraction flow for branched polymer melts[J].Journal of Non-Newtonian Fluid Mechanics,2006,134(1-3):105-126
    [109]B.Yesilata,A.Oztekin,S.Neti.Instabilities in viscoelastic flow through an axisymmeric sudden contraction[J].Journal of Non-Newtonian Fluid Mechanics,1999,85(1):35-62
    [110]K.D.Housiadas,G.Klidis,J.Tsamopoulos.Two- and three- dimensional instabilities in the film blowing process[J].Journal of Non-Newtonian Fluid Mechanics,2007,141(2-3):193-220
    [111]J.Z.Liang.Predictions of normal stress difference during circular duct flow of polymer melts[J].Polymer Testing,2002,21(6):619-622
    [112]M.J.Crochet,A.R.Davies,K.Waiters.Numerical simulation of non-newtonian flow[M]. Amsterdam: Elsevier, 1984
    [113] M.J. Crochet, R. Keunings. Die swell of a Maxwell fluid: numerical prediction[J]. Journal of Non-Newtonian Fluid Mechanics, 1980,7: 199-212
    [114] M.J. Crochet, R. Keunings. On numerical die swell calculations[J]. Journal of Non-Newtonian Fluid Mechanics, 1982, 10: 85-94
    [115] R. Keunings, M.J. Crochet. Numerical simulation of the flow of a viscoelastic flow through an abrupt contraction[J]. Journal of Non-Newtonian Fluid Mechanics, 1984,14: 279-299
    [116] R.C. King, M.R. Apelian, R.C. Armstrong. Numerically stable finite element techniques for viscoelastic calculating in smooth and singular geometries[J]. Journal of Non-Newtonian Fluid Mechanics, 1988, 29: 147-216
    [117] S.R. Burdette, P.J. Coates, R.C. Armstrong. Calculations of viscoelastic flow through an axisymmetric corrugated tube using the explicitly elliptic momentum equation formulation (EEME)[J]. Journal of Non-Newtonian Fluid Mechanics, 1989,33: 1-23
    [118] D. Rajagopalan, R.C. Armstrong, R.A. Brown. Finite element methods for calculation of steady viscoelastic flow using constitutive equations with a newtonian viscosity[J]. Journal of Non-Newtonian Fluid Mechanics, 1990, 36: 159-192
    [119] M.A. Mendelson, P.W. Yeh, R.C. Armstrong. Approximation error in finite element calculation of viscoelastic fluid flow[J]. Journal of Non-Newtonian Fluid Mechanics, 1982,10:31-54
    [120] A.N. Beris, R.C. Armstrong, R.A. Brown. Finite element calculation of viscoelastic flow in a journal bearing. I. Small eccentricities[J]. Journal of Non-Newtonian Fluid Mechanics,1984,16: 141-172
    [121] A.N. Beris, R.C. Armstrong, R.A. Brown. Finite element calculation of viscoelastic flow in a journal bearing. II. Moderate eccentricities[J]. Journal of Non-Newtonian Fluid Mechanics, 1986, 19: 323-347
    [122] M.J. Szady, T.R. Salamon, A.W. Liu. A new mixed finite element for viscoelastic flows governed by differential constitutive equations[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 59: 215-243
    [123] R. Guenette, M. Fortin. A new mixed finite method for computing viscoelastic flows[J].Journal of Non-Newtonian Fluid Mechanics, 1995, 60: 27-52
    [124] F.P.T. Baaijens. An iterative solver for the DEVSS/DG method with application to smooth and non-smooth flows of the upper convected Maxwell fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 75: 119-138
    [125] M.A. Hulsen, A.P.G van Heel, B.H.A.A. van den Brule. Simulation of viscoelastic flows using Brownian configuration fields[J]. Journal of Non-Newtonian Fluid Mechanics, 1997,97: 79-101
    [126] M. Somasi. B. Khomarni. Linear stability and dynamics of viscoelastic flows using time dependent stochastic simulation techniques[J]. Journal of Non-Newtonian Fluid Mechanics,2000, 93:339-362
    [127] A.W. Liu, P.E. Bornside, R.C. Armstrong. Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparisons of predictions for microstructure and flow field[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 77: 153-190
    [128] J. Sun, M.D. Smith, R.C. Armstrong. Finite element method for viscoelastic flows based on the discrete adaptive viscoelastic stress splitting and discontinuous Galerkin method:DAVSS-G/DG[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 86: 281-307
    [129] X.J. Fan, N. Phan-Thien, R. Zheng. Simulation of fiber suspension flows by the Brownian configuration field method[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 84:257-274
    [130] X.L. Luo. Operator splitting algorithm for viscoelastic flow and numerical analysis for the flow around a sphere in a tube[J]. Journal of Non-Newtonian Fluid Mechanics, 1996, 63:121-140
    [131] E.O.A. Carew, P. Townsend, M.F. Webster. A Taylor-Petrov-Galerkin algorithm for viscoelastic flow[J]. Journal of Non-Newtonian Fluid Mechanics, 1993, 50: 253-287
    [132] A. Baloch, P. Townsend, M.F. Webster. On the simulation of highly elastic comlex fluids[J].Journal of Non-Newtonian Fluid Mechanics, 1995, 59:111-128
    [133] H. Matallah, P. Townsend, M.F. Webster. Recovery and stress-splitting schemes for viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 75:139-166
    [134] T. Sato, S.M. Richardson. Explicit numerical simulation of time-dependent viscoelastic flow problems by a finite element/finite volume method[J]. Journal of Non-Newtonian Fluid Mechanics, 1994, 51: 249-275
    [135] P. Wapperson, M.F. Webster. Simulation for viscoelastic flow by a finite volume/element method[J]. Computation Methods in Applied Mechanics and Engineering, 1999, 180:281-304
    [136] Y.R. Fan, R.I. Tanner, N.Phan-Thien. Galerkin/least-square finite element methods for steady viscoelstic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 84: 233-256
    [137] A.N. Brooks, T.J.R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Computation Methods in Applied Mechanics and Engineering, 1982, 32(2):199-259
    [138] T.J.R. Hughes, M. Mallet, A. Mizukami. A new finite element formulation for computational fluid dynamics[J]. Computation Methods in Applied Mechanics and Engineering, 1986, 54: 341-355
    [139] J.M. Marchal J M, M.J. Crochet. A new mixed finite element for calculating viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1987,26: 77-114
    [140] M. Fortin, A. Fortin. A new approach for the FEM simulation of viscoelastic flows[J].Journal of Non-Newtonian Fluid Mechanics, 1989, 32: 295-310
    [141] J. Donea, T. Belytschko, P. Smolinski. A generalized Galerkin method for steady state convection-diffusion problems with application to quadratic shape function[J]. Computer Methods in Applied Mechanics and Engineering,1985,48:25-43
    [142]D.M.Hawken,H.R.Tomaddon-Jahromi,P.Townsend.A Taylor-Galerkin-based algorithm for viscous incompressible flow[J].International Journal for Numerical Methods in Fluids,1990,10:327-351
    [143]O.C.Zienkiewicz,R.L.Taylor.The finite element method(5~(th) Edition)[M].Oxford:Butterworth-Heinemann,2000
    [144]N.Phan-Thien,R.I.Tanner.A new constitutive equation derived from network theory[J].Journal of Non-Newtonian Fluid Mechanics,1977,2:353-365.
    [145]G.W.M.Peters,F.P.T.Baaijens.Modelling of non-isothermal viscoelastic flows[J].Journal of Non-Newtonian Fluid Mechanics,1997,68:205-224
    [146]F.P.T.Baijens.Mixed finite element methods for viscoelastic flow analysis:a review[J].Journal of Non-Newtonian Fluid Mechanics,1998,79(4):361-385
    [147]黄树新.粘弹流体挤出胀大的机理研究[D].上海:上海交通大学博士后出站报告,2003
    [148]R.I.Tanner.Engineering rheology[M].Oxford:Clarendon,1985,322-324
    [149]R.E.Nickell,R.I.Tanner,B.Caswell.The solution of viscous impressible jet and free-surface flows using finite element method[J].Journal of Fluid Mechanics,1974,65(1):189-206
    [150]P.W.Chang,T.W.Pattern,B.A.Finlayson.Collocation and Galerkin finite element methods for viscoelastic fluid flow.Ⅰ.Description of method and problems with fixed geometry[J].Computational Fluids,1979,7(4):267-283
    [151]B.Caswell,M.Viriyayuthakom.Finite element simulation of die swell for a Maxwell fluid[J].Journal of Non-Newtonian Fluid Mechanics,1983,12:13-29
    [152]M.B.Bush,J.F.Milthorpe,R.I.Tanner.Finite element and boundary element methods for extrusion computations[J].Journal of Non-Newtonian Fluid Mechanics,1984,16:37-51
    [153]X.L.Luo,R.I.Tanner.A streamline element scheme for solving viscoelastic flow problems.Part Ⅰ.Differential constitutive equations[J].Journal of Non-Newtonian Fluid Mechanics,1986,21:179-199
    [154]范毓润.挤出胀大的有限元与实验[D].杭州:浙江大学博士学位论文,1988
    [155]R.D.Wesson,A.C.Papanastasiou.Flow singularity and slip velocity in plane extrudate swell computations[J].Journal of Non-Newtonian Fluid Mechanics,1988,26:277-295
    [156]M.J.Crochet,R.Keunings.Finte element analysis of die swell of a highly elastic fluid[J].Journal of Non-Newtonian Fluid Mechanics,1982,10:339-356
    [157]C.Béraudo,A.Fortin,T.Coupez,Y.Dernay,B.Vergnes,J.F.Agassant.A finite element method for computing the flow of multi-mode viscoelastic fluids:computations and experiments[J].Journal of Non-Newtonian Fluid Mechanics,1998,75:1-23
    [158]吴崇周.塑料成型加工原理[M].长春:吉林科学技术出版社,1986
    [159]H.M.Laun.Prediction of elastic strains of polymer melts in shear and elongation[J].Journal of Rheology,1986,30(2):459-501
    [160] N. Orbey, M. Dealy. Determination of the relaxation spectrum from oscillatory shear data[J].Journal of Rheology, 1991,35(6): 1035-1049
    [161] J. Honerkamp, J. Weese. Determination of the relaxation spectrum by a regularization method[J]. Macromolecules, 1989, 22(11): 4372-4377
    [162] C. Elster, J. Honerkamp. Modified maximum entropy method and its application to creep data[J]. Macromolecules, 1991, 24(1): 310-314
    [163] J. Honerkamp, J. Weese. A nonlinear regularization method for the calculation of relaxation spectra[J]. Rheology Acta, 1993, 32(1): 65-73
    [164] M. Baumgaertel, H.H. Winter. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data[J]. Rheology Acta, 1989,28(6): 511-519
    [165] M. Baumgaertel, H.H. Winter. Interrelation between continuous and discrete relaxation time spectra[J]. Journal of Non-Newtonian Fluid Mechanics, 1992, 44(1): 15-36
    [166] H.H. Winter. Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check[J]. Journal of Non-Newtonian Fluid Mechanics, 1997,68(2-3): 225-239
    
    [167] C.L. Mallows. Some comments on Cp statistic[J]. Technometrics, 1973,15(4): 661-675
    [168] A. Arsac, C. Carrot, J. Guillet, P. Revenu. Probems originating from the use of the Gordon-Schowalter derivative in the John-Segalman and related models in various shear-flow situations[J]. Journal of Non-Newtonian Fluid Mechanics, 1994, 55: 21-36
    [169] X.L. Luo, R.I. Tanner. A pseudo-time integral method for non-isothermal viscoelastic flows and its application to extrusion simulation[J]. Rheology Acta, 1987,26:499-507
    [170] A.G Cunha, J.A. Covas, P. Oliveira. Optimization of polymer extrusion with genetic algorithms[J]. Journal of Mathematics Applied in Business and Industry, 1998, 9(3):207-277
    [171] J.H. Holland. Adaptation in natural and artificial systems[M]. Michigan: University of Michigan Press, 1975
    [172] A.G Cunha, J.A. Covas, B. Vergnes. Defining the configuration of co-rotating twin-screw extruders with multiobjective evolutionary algorithms[J]. Polymer Engineering and Science,2005:1159-1173
    [173] Y.X. Jia, S. Sun, L.L. Liu, Y. Mu, L.J. An. Design of silicone rubber according to requirements based on the multi-objective optimization of chemical reactions[J]. Acta Materialia, 2004, 52: 4153-4159
    [174] Z. Michalewicz, C.Z. Janikow, J.B. Krawczyk. A modified genetic algorithm for optimal control problems[J]. Computers Mathematic Application, 1992,23(12): 83-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700