用户名: 密码: 验证码:
神华煤直接液化动力学及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以提高神华煤直接液化转化率和油产率为目标,以实际应用的液化体系为研究对象,考察了神华煤液化的主要影响因素,建立了适合神华煤液化的动力学模型,综合分析了煤直接液化机理,提出了提高神华煤液化转化率和油收率的关键因素。论文的主要研究内容和结果如下:
     在热重分析仪上考察了神华煤非等温热解和催化热解规律,并对其热解动力学进行了研究。研究结果表明:铁基催化剂明显促进了神华煤的热解,使热解总失重率由原煤的约35%提高到约60%;在300℃~600℃范围内原煤热解活化能在135 kJ·mol~(-1)~460kJ·mol~(-1)之间,催化热解活化能在150 kJ·mol~(-1)~310 kJ·mol~(-1)之间,催化剂的加入明显降低了神华煤热解活化能。另外,建立了一种新的计算煤热解赝反应级数的方法。此方法以至少三条相同升温速率但不同初始质量的煤热解失重数据为基础,可以计算出煤热解赝反应级数随温度或转化率的变化规律。计算结果得到,在300℃~700℃范围内神华煤热解和催化热解赝反应级数分别在(0.2~1.6)和(0.6~1.2)之间,因此可将神华煤热解和催化热解近似视为一级反应。
     在高压反应釜中考察了搅拌速率、温度、氢初压、催化剂负载量、溶煤比、液化气氛等液化工艺参数对神华煤液化的影响。实验结果表明:在400℃~460℃范围内煤液化转化率和油产率随温度的升高有明显增加趋势,增加速率先快后慢;氢气是煤直接液化的重要条件之一,但过高的氢初压对油收率不利,在考察范围内(5MPa~10MPa),初压为8MPa时油产率最高;催化剂负载量超过2.00%时油产率有下降趋势;高溶煤比对提高转化率和油产率、降低沥青烯产率有明显作用。
     对神华煤液化动力学进行研究,分别建立了能较准确地反映神华煤升温阶段和恒温阶段液化反应途径且比较简洁的动力学模型,计算了相应的动力学参数。研究结果表明,在液化动力学模型中将神华煤分为易反应部分、难反应部分和不反应部分是合适的:液化升温阶段和恒温阶段的转化途径不同,升温阶段主要存在煤转变成沥青烯与前沥青烯和煤转变成油和气体两条反应途径,恒温阶段的主要反应途径是煤转变成沥青烯和前沥青烯,后者再进一步转变成油和气体。由动力学计算得到,神华煤液化的最大转化率为92.9%,此计算结果与实验结果较为接近(92.6%,430℃,150min)。
     通过在不同供氢能力的溶剂和不同气氛下的液化实验考察了铁基催化剂在煤液化中的主要作用及液化过程中的氢传递途径。研究结果表明:煤液化过程可以分为热液化和催化液化两种途径。铁基催化剂在煤液化过程中促进了氢在整个反应体系(固、液和气三相)中的平衡分布,当以氢气为液化反应气氛时,催化剂的作用是促进气相氢到溶剂的转移和溶剂氢到煤上的转移;活性氢主要由供氢溶剂和H_2经过热作用和催化作用得到,H_2通过溶剂参与液化反应。溶剂的主要作用除溶解分散煤及产物外还有提供和传递活性氢。H_2、溶剂、催化剂三者的作用是相互促进、相辅相成的。
     考察了神华煤多段液化和其液化残渣再液化规律,探讨了促进神华煤直接液化的关键因素。实验结果表明:在本论文所采用的液化条件下,高温对神华煤液化有一定的促进作用,但不是提高神华煤液化转化率和油产率的关键因素;活性氢的过量消耗和聚合反应的大量发生是抑制神华煤液化的根本原因。所以促进神华煤液化的关键因素是提供足够的活性氢,可以通过采用强供氢溶剂、提高溶煤比或者采用高活性催化剂等途径来实现。
The aim of this paper is to promote the conversion and oil yield of Shenhua(SH) bituminous coal direct liquefaction.The effects of main factors on SH coal liquefaction were studied;Kinetic models fiting SH coal liquefaction were developed and the mechanism of direct coal liquefaction was investigated;And main approach of promoting SH coal liquefaction was analysed.Main research works and results in this paper are as follows:
     Kinetic characteristics of SH coal pyrolysis and catalytic pyrolysis were investigated by thermogravimetric analyzer.The results showed that Fe catalyst increases the weight loss of SH coal pyrolysis from 35%to 60%;Activation energy of SH coal pyrolysis and catalytic pyrolysis at the temperature of 300℃—600℃are 135kJ·mol~(-1)—460kJ·mol~(-1) and 150kJ·mol~(-1)—310kJ·mol~(-1),repectively.Catalyst reduce the activation energy of SH coal pyrolysis clearly.An new calculation method of coal pyrolysis fake reaction order distribution curves with temperature or conversion was developed,and the calculation results showed that fake reaction order for pyrolysis and catalytic pyrolysis of SH coal from 200℃to 700℃is 0.2—1.6 and 0.6—1.2,respectively.And it is appropriate comparatively for the regarding SH coal pyrolysis(200℃—700℃) as a serious of first-order reaction.
     The effect of stirring rate,temperature,H_2 pressure,amount of catalyst loading,ratio of solvent to coal on coal liquefaction were investigated.The results showed that the conversion and oil yield increase with the increasing of temperature in 400℃—460℃and ratio of solvent to coal.The highest oil yield can be obtained with the H_2 original pressure of 8 MPa within the research range(5MPa—10MPa).Oil yield decreases if the amounts of catalyst loading are higher than 2%.
     Direct liquefaction kinetics of SH coal was studied and kinetic models for heating-up and isothermal stages were developed respectively.In the models,the coal was divided into three parts,easy reactive part,hard reactive part and unreactive part.There were two main reaction approachs of coal liquefaction in heating-up stage,which are coal to preasphaltene & asphaltene and coal to oil & gas.The main reaction approach for isothermal stage is from coal to preasphaltene & asphaltene and then from preasphaltene & asphaltene to oil & gas. Calculation results also showed that the maximal conversion of direct SH coal liquefaction is 7.10%,which is similar to the experimental result(92.61%,430℃,150min).
     Role of iron-based catalyst and hydrogen transfer mechanism in direct SH coal liquefaction were investigated by using three solvents with different hydrogen donation capability at H_2 or N_2 atmosphere.The results showed that the major role of the catalyst is promoting the formation of activated hydrogen and accelerating the secondary distribution of hydrogen in the whole reaction system including gas,liquid and solid phases.The main sources of activated hydrogen include thermal and catalytic cracking of solvent and H_2,and the major transfer approach of activated hydrogen is from molecular hydrogen to solvent and then from solvent to coal.The solvent acts as a "bridge" role in the hydrogen transfer process.
     Single and multi-stage liquefaction of SH coal and re-liquefaction of its liquefaction residue were investigated to understand the essential approach of promoting SH coal liquefaction.The experimental results showed that there is positive function of two-stage liquefaction on shortening reaction time at high temperature stage,but little effect on conversion and yield of SH coal liquefaction.The main factor of inhibiting the liquefaction is consumption of activated hydrogen and appearing of polymerization.So the essential approach of increasing oil yield and conversion of SH coal liquefaction is providing enough activated hydrogen to stabilize the free radicals and inhibiting polymerization.
引文
[1]http://www.china.com.cn.中国原油对外依存度走势.2007.5
    [2]2004中国经济年鉴,北京,中国经济年鉴社.2004,11:963.
    [3]倪斌.煤炭在我国能源结构优化中基础性作用的思考.中国能源.2004,26(7):16-20.
    [4]吴春来,舒歌平.中国煤的直接液化研究.煤炭科学技术.1996,24(4):12-16.
    [5]范传宏.煤直接液化工艺技术及工程应用.石油炼制与化工.2003,34(7):20-24.
    [6]Itoh H,Hiraide M,Akira K et al.Simulator for coal liquefaction based on the NEDOL Process.Ind.Eng.Chem.Res.2001,40:210-217.
    [7]Patrakov Y F,Kamyanovb Y F,Fedyaeva O N,A structural model of the organic matter of Barzas liptobiolith coal.Fuel.2005,84:189-199
    [8]Given P H,Marzec A,Barton W A et al.The concept of a mobile or molecular phase within the macromolecular network of coals:A debate.Fuel.1986,65(2):155-163
    [9]Wiser W H.proceeding of EPRI Conference on "Coal Catalysis".Santa Monica,California,USA.1973,3.
    [10]凌开成,邹纲明.兖州烟煤与石油渣油共处理的研究.煤炭转化.1997,20(2):62-66.
    [11]谢崇禹.煤液化用煤种的选择研究.当代化工.2007,36(2):189-191.
    [12]魏贤勇,宗志敏,秦志宏等.煤液化化学.北京:科学出版社,2002,6.
    [13]Bergius F,Billiviller J.Germany Patent.1919:301,231.
    [14]王村彦,黄慕杰,吴春来.煤直接液化催化剂的研究与开发动向.煤炭科学技术.1998,(4):24-25.
    [15]Liu Z,Yang J,Zondlo J W et al.In situ impregnated iron-based catalysts for direct coal iquefaction.Fuel.1996,75:51-57.
    [16]Chadha A,Sharma R K,Stinespring C D et al.Iron sulfide catalysts for coal liquefaction prepared using a micellar Sechnique.Ind.Eng.Chem.Res.1996,35:2916-2919.
    [17]Matson D W,Linehan J C,Darub J G et al.Nanophase iron based liquefaction catalysts:synthesis,characterization,and model compound reactivity.Energy&Fuels.1994,8:10-18.
    [18]Bacaud R,Bessin M,Gerald D M.Development of a new iron catalyst for the direct liquefaction of coal.Energy&Fuels.1994,8(1):3-9.
    [19]Hager G T,Bi X X,Eklund P C et al.Relative activity of nanoscale iron oxide,iron carbide and iron sulfide catalyst precursors for the liquefaction of a subbituminous coal.Energy&Fuels.1994,8(1):88-93.
    [20]Dadyburjur D B,Stewert W R,Stiller A K et al.Disproportional ferric sulfide catalysts for coal liquefaction.Energy&Fuels.1994,8(1):19-24.
    [21]王村彦,史士东,舒歌平等.浆状高分散铁基煤液化催化剂的制备.中国,99103015.X,1999.10.13
    [22]申峻,王志忠.煤直接液化催化剂研究的新进展.煤炭转化.1999,22(1):6-9.
    [23]Borah D,Barua M,Baruah M K.Dependence of pyrite concentration on kinetics and thermodynamics of coal pyrolysis in non-isothermal systems.Fuel Process Technol.2005,86:977-993.
    [24]Bai J F,Wang Y,Hu H Q et al.Pyrolysis kinetic of coal in-situ in pregnated with Fe_2S_3.J.Fuel Chem.Technol.2001,29:39-43.
    [25]王村彦,朱晓苏,吴春来.煤直接液化催化剂及其高分散化.煤炭转化.1998,21(2):14-16.
    [26]Kabe T,Saito M,Qian W et al.Elucidation of hydrogen mobility in coal using a tritium pulse tracer method.Hydrogen exchange reaction of coal with tritiated gaseous hydrogen.Fuel.2000,79:311-316.
    [27]Ishihara A,Nishigori D,Saito Met al.Elucidation of Hydrogen Mobility in Functional Groups of Coals Using Tritium Tracer Methods.Energy Fuels.2002,16:32-39.
    [28]Wang Z,Shui H,Zhang D et al.A Comparison of FeS,FeS+S and solid superacid catalytic properties for coal hydro-liquefaction.Fuel.2007,86:835-842.
    [29]朱继升,杨建丽,刘振宇等.先锋煤直接液化催化剂的研制及液化性能评价.燃料化学学报.1999,27:20-25.
    [30]Francis J D,Whitehurst D D.Study of coal conversion in polycondensed aromatic compounds.Fuel.1981,60(8):655-662.
    [31]Horst R,Michael A W.Effects of in-situ mineral matter and a nickel—molybdenum catalyst on hydrogenation of Liddell coal.Fuel.1980,59(3):175-180.
    [32]Raffaele G R,Donald C C,Douglas M J et al.Structural aspects of sub-bituminous coal deduced from solvation studies.2.Hydrophenanthrene solvents.Fuel.1977,56(1):25-32.
    [33]Ouchi K,Makabe M.Hydrogen transfer in the hydrogenation of model compounds.Fuel.1988,67(11):1536-1541.
    [34]Lonnie W V.Free radical chemistry of coal liquefaction:role of molecular hydrogen.Fuel.1980,59(2):102-106.
    [35]Simon J C,Mark H,Jackson W R et al.Evidence for direct interaction of hydrogen with brown coal in tin-catalysed reactions.Fuel.1982,61(9):831-833.
    [36]Wei X Y,Ogata E,Zong Z M,et al.Effect of hydrogen pressure,sulfur and FeS_2 on diphenylmethane hydrocracking.Energy & Fuels.1992,6:868-869.
    [37]Thomas M G,Padrick T D,Stohl F V,et al.Decomposition of pyrite under coal liquefaction conditions:A kinetic study.Fuel.1982,61(8):761-764.
    [38]王力,陈鹏.煤与废塑料共液化中铁系催化剂工作状态和活性点的研究.煤炭学报.2000,25:201-205.
    [39]Sharma R K,Zondlo J W,Dadyburjor D B.A Kinetic Scheme for Catalytic Coliquefaction of Coal and Waste Tire.Energy & Fuels.1998,12:589-597.
    [40]Pradhan V R,Holder G D,Wender I et al.Kinetic Modeling of Direct Liquefaction of Wyodak Coal Catalyzed by Sulfated Iron Oxides Ind.Eng.Chem.Res.1992,31:2051-2056.
    [41]薛永兵,凌开成,邹纲明.煤直接液化中溶剂的作用和种类.煤炭转化.1999,22(4):1-4.
    [42]张代钧,鲜学福.煤大分子结构研究的进展.重庆大学学报.1993,16(2):58-62.
    [43]Guin J,Tarrer A,Taylor L et al.Mechanisms of Coal Particle Dissolution.Ind.Eng.Chem.Proc.Des.Dev.1976,15(4):490-494.
    [44]Tomic J,Schobert H.Coal conversion with selected model compounds under noncatalytic,low solvent:coal ratio conditions.Energy&Fuels.1996,10:709-717.
    [45]Artok L,Erbatur O,Schobert H.Reaction of dinaphthyl and diphenyl ethers at liquefaction conditions.Fuel Processing Technology.1996,47(1):153-176.
    [46]Rincon J M,Cruz S.Influence of preswelling on liquefaction of coal,Fuel.1988,7(8):1162-1163.
    [47]Hu H Q,Sha G Y,Guo S C,et al.The 6th Japan-China Symposium on Coal and C1 chemistry proceedings.Japan,13-17 October,1998:176-179.
    [48]Ikenaga N,Kan-nan S,Sakoda T et al.Coal hydroliquefaction using highly dispersed catalyst precursors.Catalysis Today.1997,39(1-2):99-109.
    [49]Godo M,Saito M,Ishihara A.Elucidation of coal liquefaction mechanisms using a tritium tracer method:hydrogen exchange reaction of solvents with tritiated molecular hydrogen in the presence and absence of H_2S.Fuel.1998,77(10):947-952.
    [50]Sharma R K,Yang J,Zondlo J W et al.Effect of process conditions on co-liquefaction kinetics of waste tire and coal.Catalysis Today.1998,40:307-320.
    [51]盛清涛,凌开成,杜普安.氢气在煤液化中的作用.煤化工.2003,6:29-32.
    [52]Hulston C K,Redlich P J,Jackson W R,et.al.Effect of added transition metals and two-stage heating on reactions of sodium-aluminate-treated coals in water with CO,H_2 and CO-H_2 mixtures.Fuel.1997,76(3):247-256.
    [53]Artanto Y,Jackson W R,Redlich P.J.et al.Liquefaction studies of some Indonesian low rank coals.Fuel.2000,79:1333-1340.
    [54]Ling K C,Shen J,Zou G M et al.Study on Reaction Property of China Yangcun Coal with Heavy Oils.In:Proceeding of 14th Annual International Pittsbuurgh Coal Comference and Work shop.Taiyuan.1997:48-55
    [55]盛清涛,凌开成,王建平等.神府煤高温快速液化可行性的初步研究.煤炭转化.2004,27(3):26-29.
    [56]Huang H,Wang K Y,Wang S J et al.Kinetics of coal liquefaction at very short reaction times.Energy Fuels.1996,10:641-648.
    [57]Cronauer D C,Jewell D M,Shah Y T et al.Mechanism and kinetics of selected hydrogen transfer reactions typical of coal liquefaction.Ind Eng Chem Fundam.1979,18:153-162.
    [58]Mohan G,Sllla H.Kinetics of donor solvent liquefaction of Bituminous Coals in nonisothermal experiments.Ind.Eng.Chem.Process Des.Dev.1981,20:349-354.
    [59]Weller S,Clark E L,Pelipetz M G.Mechanism of coal hydrogenation.Ind.Eng.Chem.1950,42:334-340.
    [60]Weller S,Pelipetz M G,Friedman S.Kinetics of coal hydrogenation conversion of asphaltene.Ind.Eng.Chem.1951,43:572-1578.
    [61]Leonard E,Sllla H.Kinetics of donor solvent liquefaction of Kentucky No.6 coal.Ind Eng Chem Process Des Dev.1983,22:445-452.
    [62]Li C Z,Wu F,Xu B.et al.Characterization of successivetimeltemperature-resolved liquefaction extract fractions released from coal in a flowing-solvent reactor.Fuel.1995,74(1):37-45.
    [63]Huang H,Wang K Y,Wang S J.Studies of Coal Liquefaction at Very Short Reaction Times.Energy & Fuels.1998,12:95-101.
    [64]Okutanl T,Foster N R.Novel kinetic analysis of coal liquefaction.Ind.Eng.Chem.Fundam.1983,22:308-315.
    [65]Ding W B,Liang J,Larry L A.Kinetics of thermal and catalytic coal liquefaction with plastic-derived liquids as solvent.Ind Eng Chem Res.1997,36:1444-1452.
    [66]李文华,霍卫东,舒歌平等.马家塔煤及其显微组分的加氢液化特征.燃料化学学报.2001,29:104-107.
    [67]Yoshida R,Maekawa Y,Ishii T et al.Mechanism of high-pressure hydrogenolysis of Hokkaido coals(Japan).2.Chemical structure of products.Fuel.1976,55(4):337-345.
    [68]Ramdoss P K,Tarrer A R.Modeling of Two-Stage Coal Coprocessing Process.Energy &Fuels.1997,11:194-201.
    [69]Simsek E H,Karaduman A,Olcay A.Investigation of dissolution mechanism of six Turkish coals in tetralin with microwave energy.Fuel.2001,80:2181-2188.
    [70]张德祥.年轻煤在石油重油中加氢液化的研究—煤液化动力学初探.淮南矿业学院学报.1990,10(1):113-122.
    [71]Hiroshi N,Hiroshi M,Yuzo S et al.Evaluation of Coal Reactivity for Liquefaction Based on Kinetic Characteristics.Energy & Fuels.1988,2:522-528.
    [72]Ikeda K,Sakawaki K,Nogami Y et al.Kinetic evaluation of progress in coal liquefaction in the 1 t/d PSU for the NEDOL process.Fuel.2000,79:373-380.
    [73]Xu B,Rafael K.Two-Stage kinetic model of primary coal liquefaction.Energy&Fuels.1996,10:1115-1123.
    [74]Curran G P,Struck R T,Gorin E.Mechanism of Hydrogen-Transfer Process to Coal and Coal Extract,Ind.Eng.Chem.Proc.Des.Dev,1967,6(2):166-173.
    [75]Song C S,Hanaoka K,Nomura M.Shortcontact time pyrolytic liquefaction of Wandoan sub bituminous coal and catalytic upgrading of the SCT-SRC.Fuel.1989,68(3):287-292.
    [76]张银元,赵景联.煤直接液化技术的研究与开发.山西煤炭.2001,21(2):32-36.
    [77]崔之栋,李嘉路.煤炭液化.大连大连理工大学出版社:1992.
    [78]吕永平,赵鸣.宁武煤和废塑料的共处理液化研究.煤炭加工与综合利用.2001,4:33-35.
    [79]Adersion L L,Tuntawiroon W.Research on the liquefaction by Co-processing of Coal and Wast Plastic.ACSDiv Fuel Chemical Preprints.1993,38(3):816-820.
    [80]Taghiei M M,Feng Z,Huggins F E et al.Coliquefaction of Wast Plastic with Coal.Energy and Fuel.1994,8(1):228-232.
    [81]赵鸣,郭春华.高挥发烟煤和富氢固态废弃物共液化研究.煤炭转化.2001,24(3):62-64.
    [82]邹纲明,申峻,凌开成等.烟煤与重质油共处理的研究.燃料化学学报.1999,27(2):187-190.
    [83]徐洁,李庭琛,颜涌捷等.煤与木屑共液化.燃料化学学报.1999,27(4):328-333.
    [84]Wei X Y,Ogata E,Zong Z M et al.Advances in the study of hydrogen transfer to model compounds for coal liquefaction.Fuel Process Technol.2000,62:103-107.
    [85]Suzuki T,Development of Highly Dispersed Coal Liquefaction Catalysts.Energy & Fuels.1994,8:341-347.
    [86]Huang L,Schobert H H,Comparison of temperature conditions in direct liquefaction of selected low-rank coals.Energy & Fuels,2005,19:200-207.
    [87]朱晓苏,李茹英,郑建国等,高分散固体酸催化剂的液化试验研究,煤炭转化,2001,24(3):51-61.
    [88]Priyanto U,Sakanishi K,Okuma O et al,Optimization of Two-Stage Liquefaction of Tanito Harum Coal with FeNi Catalyst Supported on Carbon Black,Energy & Fuels,2001,15:856-862.
    [89]世界能源导报,2002年1月30日
    [90]郭崇涛.煤化学.第一版,化学工业出版社,北京,1994.
    [91]Arenillas A,Rubiera F,Pevida C,et al.A comparison of different methods for predicting coal devolatilisation kinetics.J.Anal.Appl.Pyrolysis.2001,58:685-701.
    [92]Zheng M,Bai D.Pyrolysis characteristics and the kinetics of Dongshen Coal.Coal Chem Ind.2006,2:13-16.
    [93]Griffin T P.An experimental and modeling study of heating rate and particle size effect s in bituminous coal pyrolysis.Energy and Fuels.1993,7(1):297-305
    [94]Maki T,Takat S A.Analysis of pyrolysis reactions of various coals including argonne prenium coals using a new dist ributted activation model.Energy and fuels.1997,11(3):972-977.
    [95]徐建国.用热分析法研究煤的热解特性.燃烧科学与技术.1999,5(2):175-179.
    [96]Coats A W,Redfern J P,Kinetic parameters from thermogravimetric data.Nature.1964,201(1):682-691.
    [97]Doyle C D,Kinetic analysis of thermogravimetric data.J.Appl.Polymer Sci.1961,5(15):2852-2921.
    [98]Kissinger H E,Variation of peak temperature with heating rate in different rate in differential thermal analysis.J.Res.Nat ButStandards.1956,57(2):2172-2211.
    [99]Pitt G J,The kinetics of the evolution of volatile products from coal.Fuel.1962,41(3):2672-2741.
    [100]Vuthaluru H B.Thermal behaviour of coal/biomass blends during co-pyrolysis.Fuel Process Technol.2003,85:141-155.
    [101]Vuthaluru H B.Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis.Bioresour.Technol.2004,92:187-195.
    [102]Guniz A G,Unalp U,Tulay D.Mathematical modeling of thermal decomposition of coal.J.Anal.Appl.Pyrolysis.2004,71:537-551.
    [103]陆昌伟,奚同庚.热分析质谱法.上海:上海科学技术文献出版社,2002.
    [104]谢崇禹.煤液化用煤种的选择研究.当代化工.2007,36(1):65-66.
    [105]Wei X Y,Ogata E,Zong Z M et al.Effects of iron catalyst precursors,sulfur,hydrogen pressure and solvent type on the hydrocracking of di(1-naphthyl)methane.Fuel.1993,72(11):1547-1552.
    [106]Hu H Q,Sha G Y,Chen G H.Effect of solvent swelling on liquefaction of Xinglong coal at less severe conditions.Fuel Processing Technology.2000,68:33-43.
    [107]Caroline E B,Harold H S.Direct liquefaction for production of high yields of feedstocks for specialty chemicals or thermally stable jet fuels.Fuel Processing Technology.2000,64:57-72.
    [108]Sasaki M,Kotanigawa T,Yoshida T.Liquefaction Reactivity of Methylated Illinois No.6 Coal.Energy & Fuels.2000,14:76-82.
    [109]Hu H Q,Bail F,Guo S C et al.Coal liquefaction with in situ impregnated Fe_2(MoS_4)_3bimetallic catalyst.Fuel.2002,81:1521-1524.
    [110]孙林兵,倪中海,张丽芳等.煤直接液化铁基催化剂研究进展.煤炭技术.2002,21(11):65-67.
    [111]杜淑凤,舒歌平,陈绍毅.依兰煤液化过程中天然矿物催化剂影响的研究.洁净煤技术.2000,6(2):32-34.
    [112]Tian D C,Sharma R K,Stiller A H,et al.Direct liquefaction of coal using ferric-sulfide-based,mixed-metal catalysts containing Mg or Mo.Fuel.1996,75(6):751-758.
    [113]Comolli A G,Lee T L,Popper G A et al.The Shenhua coal direct liquefaction plant.Fuel Processing Technology.1999,59:207-215.
    [114]王寨霞,杨建丽,刘振宇.煤直接液化残渣对道路沥青改性作用的初步评价.燃料化学学报.2007,35(1):109-112.
    [115]薛永兵,杨建丽,刘振字等.煤与FCC油浆共处理重质产物对道路沥青改性作用的评价.石油学报.2006,22(1):95-99.
    [116]Chu X,Li W,Li B et al.Sulfur transfer from pyrolysis and gasification of ShenHua coal direct liquefaction residue.The 9~(th) China-Japan Symposium on Coal and C_1 chemistry,Chengdu,China,Oct,2006:105-106.
    [117]Chu X,Li W,Li B et al.Gasification propory of direct coal liquefaction residue with steam.Process Safty and Environmental Protection.2006,84(B6):440-445.
    [118]周颖,邱介山,肖南等.以煤炭液化残渣为原料等离子体制备纳米炭材料的方法.中国,申请号200510047800.X,公告号:CN1807715,2006.07.26.
    [119]Zhou Y,Zhang Y,Li Z T et al.Production of carbon nanotubes from coal hydroliquefaction residue.The 9~(th) China-Japan Symposium on Coal and C_1 chemistry,Chengdu,China,Oct.2006:271-272.
    [120]Cui H,Yank J L,Liu Z Y et al.Characteristics of residues from hermal and catalytic coal hydroliquefaction.Fuel.2003,82:1549-1556.
    [121]Cui H,Yang J L,Liu Z Y et al.Effect of remained catalysts and enriched coal minerals on devolatilization of residual chars from coal liquefaction.Fuel.2002,81:1525-1531.
    [122]Li X,Hu H O,Zhu S W et al.Kinetics of coal liquefaction during heating-up and isothermal stages.Fuel.2008,87:508-513.
    [123]Xu B,Kandiyoti R.Two-Stage kinetic model of primary coal liquefaction.Energy & Fuels.1996,10:1115-1123.
    [124]Cronauer D C,Shah Y T,Mcllvried H G et al.Kinetics of catalytic liquefaction of Big Horn coal in a segmented bed reactor.Ind Eng Chem Process Des Dev.1978,17:288.
    [125]Kidoguchi A,Itoh H,Hiraide M et al.Simulation of initial stage reactions in the direct coal liquefaction of sub-bituminous coals.Fuel.2001,80:1325.
    [126]凌开成,薛永兵,申峻等.杨村烟煤快速液化反应性的研究.燃料化学学报.2003,31(1):49-52.
    [127]Ramdoss P K,Tarrer A R.Kinetic model development for single-stage coal coprocessing with petroleum waste.Fuel Process Technol.1997,51:83.
    [128]Vahrman M.The smaller molecules derived from coal and their significance.Fuel.1970,49(1):5-16.
    [129]Hirano K,Kouzu M,Okada T et al.Catalytic activity of iron compounds for coal liquefaction.Fuel.1999,78:1867-1873.
    [130]Hu H Q,Bai J F,Zhu H J et al.Catalytic Liquefaction of Coal with Highly Dispersed Fe_2S_3 Impregnated in-Situ.Energy & Fuels.2001,15:830-834.
    [131]Zhu J,Yang J,Liu Z et al.Improvement and characterization of an impregnated iron-based catalyst for direct coal liquefaction.Fuel Process Technol.2001,72:199-214.
    [132]Ikenaga N,Taniguchi H,Watanabe A et al.Sulfiding behavior of iron based coal liquefaction catalyst.Fuel.2000,79:273-283.
    [133]Zhang L,Yang J L,Zhou J S et al.Properties and liquefaction activities of ferrous sulfate based catalyst impregnated on two Chinese bituminous coal.Fuel.2002,81:951-958.
    [134]Wang L,Chen P.Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics.Fuel.2002,81:811-815.
    [135]盛清涛,凌开成,杜晋安.氢气在煤液化反应中的作用.煤化工.2003,6:29-32.
    [136]Malhotra R,McMillen D F.Relevance of Cleavage of Strong Bonds in Coal Liquefaction.Energy Fuel.1993,7:227-233.
    [137]McMillen D F,Malhotra R,Chang S J et al.Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems.Fuel.1987,66:1611-1620.
    [138]Vernon L W.Free radical chemistry of coal liquefaction:role of molecular hydrogen.Fuel.1980,59(2):102-106.
    [139]Skowronski R P,Ratto J J,Goldberg I B et al.Hydrogen incorporation during coal liquefaction.Fuel.1984,63(4):440-448.
    [140]Ohe S,Ito H,Makabe M et al.Reaction mechanism of coal liquefaction.1.Two-ring solvent system.Fuel.1985,64(7):902-905.
    [141]K.Ouchi,M.Makabe,Hydrogen transfer in the hydrogenation of model compounds.Fuel,1988,67(11):1536-1541.
    [142]Shams K G,Miller R L,Baldwin R M.Enhancing low severity coal liquefaction reactivity using mild chemical pretreatment.Fuel.1992,71(9):1015-1023.
    [143]Sadao W,Shouichi I,Takao Het al.Study on coal liquefaction characteristics of Chinese coal.Fuel.2002,81:1551-1557.
    [144]王力,陈鹏,舒歌平等.煤与废塑料共液化中氢转移的示踪试验研究.溶剂的作用.燃料化学学报.2001,29(3):219-222.
    [145]Hasuo H U, Sakanishi K, Taniguchi H et al. Effects of Catalytic Activity and Solvent Composition on Two-Stage Coal Liquefaction. Ind. Eng. Chem. Res. 1997, 36: 1453-1457.
    [146]Malhotra R, McMillen D F. A Mechanistic Numerical Model for Coal Liquefaction Involving Hydrogenolysis of Strong Bonds. Rationalization of Interactive Effects of Solvent Aromaticity and Hydrogen Pressure. Energy & Fuels. 1990, 4: 184-193.
    [147] Hu S X, Li X, Jin L J et al. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction. International conference on coal science and technology, Nottingham, 2007.
    [148]Herod A A, Hellenbrand R, Xu B et al. Aikanes and solvent diraers in successive extract fractions released from coal during liquefaction in a flowing-solvent reactor. Fuel. 1995, 74: 1739-1752.
    [149]Li W Y, Feng J, Xie K C et al. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor. Fuel Process Technol. 2004, 85: 1671-1687.
    
    [150] 朱之培, 高晋生. 煤化学.上海:上海科学技术出版社, 1984.
    
    [151]Martinez M T, Benito A M, Callejas M A. Kinetics of asphaltene hydroconversion 1. Thermal hydrocracking of a coal residue. Fuel. 1997, 76: 899-905.
    [152]Benito A M, Callejas M A, Martinez M T. Kinetics of asphaltene hydroconversion 2. Catalytic hydrocracking of a coal residue. Fuel. 1997, 76: 907-911.
    [153]Watanabe I, Sakanishi K, Mochida I. Changes in Coal Aggregate Structure by Heat Treatment and Their Coal Rank Dependency. Energy & Fuels. 2002, 16: 18-22.
    [154]Li X, Hu H Q, Zhu S W et al. Kinetic study of direct coal liquefaction, The 9th China-Japan Symposium on Coal and C1 Chemistry Proceeding. Chengdu, 2006: 133-134.
    [155]Derbyshire F, Davis A, EpsteinM et al. Temperature-staged catalytic coal liquefaction. Fuel. 1986, 65(9): 1233-1239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700