用户名: 密码: 验证码:
纳米CeO_2颗粒对镀锌层的改性工艺及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镀锌是应用最广泛的防止钢铁材料腐蚀的有效措施。但随着环境中酸雨和风沙侵蚀的日益加重,不仅对镀锌层的耐蚀性提出了更高的要求,而且还要求镀锌层具有高的耐磨性。因此,研究和开发新型高耐蚀、高耐磨锌基镀层具有十分重要的意义。本文将纳米科技与电沉积锌和热浸镀锌技术相结合,基于稀土元素对提高镀锌层性能的特殊作用和我国稀土资源富有的国情,提出了采用纳米稀土氧化物CeO_2颗粒改性锌及锌铝合金镀层的构想,并对改性工艺及机理开展了深入系统的研究,为纳米锌基复合镀层的基础研究和产业化应用奠定了重要基础。
     本文完成的主要工作和取得的成果如下:
     1.采用复合电沉积工艺制备了纳米CeO_2颗粒呈单分散状态弥散分布的Zn-CeO_2纳米复合镀层,并利用电化学阻抗谱技术研究了复合电沉积过程的机理,发现纳米CeO_2颗粒的加入降低了反应的电荷传递电阻,更有利于锌的电沉积过程。
     2.首次采用超声波辅助热浸镀方法成功地制备了Zn-CeO_2和Galfan-CeO_2纳米复合镀层,并利用TEM、XRD、SEM以及EDS等对其组织结构进行了表征,发现镀层中纳米CeO_2颗粒呈理想的单分散状态弥散分布;归纳了高能超声在热浸镀纳米颗粒增强锌基复合镀层中的作用机制。
     3.首次深入系统地研究了中间体预制辅助热浸镀锌基纳米复合镀层的制备方法。采用高能球磨技术分别制备了纳米CeO_2/Zn、CeO_2/Al和CeO_2/Zn-5%Al复合粉末,利用TEM、XPS、XRD、SEM以及EDS等分析和表征了其组织结构,发现复合粉末中纳米CeO_2颗粒被很好地分散开且呈均匀弥散分布,提出了粉末的复合模型;采用真空热压技术将球磨得到的复合粉末制成纳米CeO_2颗粒呈单个弥散分布的复合材料块体,并利用正交试验对热压工艺参数进行了优化;将纳米CeO_2/Zn复合材料块体作为中间体加入热浸镀锌和Galfan合金镀液中对钢片进行热浸镀,成功地获得了单分散状态的纳米CeO_2颗粒弥散均匀分布在镀层基体上的Zn-CeO_2和Galfan-CeO_2纳米复合镀层。
     4.系统地研究了纳米CeO_2颗粒对镀层耐腐蚀性、耐磨性、硬度、结合力及镀层钢丝拉伸强度等的影响规律,发现纳米CeO_2颗粒的加入显著提高了镀锌层的耐蚀性、显微硬度、耐磨性等。腐蚀失重法、阳极极化法以及电化学阻抗谱技术研究表明,改善镀层耐蚀性的效果与镀液中CeO_2颗粒尺寸、含量及分散情况等有关;冲蚀磨损试验研究表明,在一定范围内增加镀液中纳米CeO_2颗粒的含量,镀层的耐冲蚀磨损性能随之提高。
     5.首次利用电化学阻抗谱方法并结合组织结构分析深入系统地研究了纳米CeO_2颗粒提高电沉积锌层、热浸镀锌和Galfan合金镀层耐蚀性的机理;探讨了CeO_2颗粒改善镀层耐磨性机理以及强化镀层的机制。为进一步全面提升锌基复合镀层的综合性能提供了理论依据。
Galvanizing is the most efficient and widely used measure in protecting steel from corrosion. But with the increasing possibilities of acid rain and sand-dust, the galvanized coatings are required to provide not only a higher corrosion resistance, but also a good wear resistance. Therefore, it is significantly important to research and develop novel galvanized coatings with improved corrosion and wear resistances. Combining nano-technology with galvanizing technology, and based on the special effects of rare earth elements on the corrosion resistance of galvanized coating and the abundance of rare earth elements in China, it was proposed in this dissertation to modify the galvanized coatings with rare earth oxide CeO_2 nano-particles. A systematic research on the modification process and mechanism was carried out, and the results provide the fundamental for the application of nano-composite galvanized coatings. The main work and results are as follows:
     1. Zn-CeO_2 nanocomposite coatings with homogeneously distributed monodisperse CeO_2 nano-particle have been obtained by electrochemical codeposition. The electrochemical impedance spectroscopy technique was used to investigate the mechanism of codeposition. The result shows that the charge transfer resistances are lowered with the addition of CeO_2 nano-particle which is in favor of the deposition of zinc.
     2. Zn-CeO_2 and Galfan-CeO_2 nanocomposite coatings were fabricated successfully for the first time by hot-dip process with high intensity ultrasonic stirring, and then characterized using TEM, XRD, SEM and EDS methods. It was found that the monodisperse CeO_2 nano-particle was distributed homogeneously in the coatings. The mechanism of high intensity ultrasonic stirring on the dispersion of nano-particles in the hot-dip galvanized coatings was deduced as well.
     3. The method of preparing Zn-based hot-dipped nano-composite coating via“master alloy”was originally investigated in details. The CeO_2/Zn, CeO_2/Al and CeO_2/Zn-5%Al nano-composite powders were fabricated by high-energy ball milling. The morphology and microstructure were investigated by means of TEM, XPS, XRD, SEM and EDS, respectively. The results show that nano-CeO_2 particles are distributed homogeneously in the composite powders, which was described using formation models of composite powders. The nano-composite bulks were produced by hot-press sintering under vacuum with as-prepared nano-composite powders, and the processing parameters were optimized by ways of orthogonal design. Adding the as-sintered CeO_2 /Zn nanocomposite bulks into the hot-dip galvanizing and Galfan alloy bath as“master alloy”, Zn-CeO_2 and Galfan-CeO_2 nanocomposite coatings were obtained with homogeneously distributed monodisperse CeO_2 nano-particle.
     4. The effects of CeO_2 nano-particle on the corrosion and wear resistances, hardness, adhesion strength of the Zn-based coatings were investigated, as well as the tensile properties of the steel wire coated with the Zn-CeO_2 and Galfan-CeO_2 nanocomposite. It was found that the properties of the coatings, such as corrosion and wear resistances, microhardness, and so on, are improved obviously as the result of adding CeO_2 nano-particles. The results of corrosion weight loss, anodic polarization and electrochemical impedance spectroscopy analysis indicate that the improving effect on corrosion resistance is relevant to the size, content and dispersion of CeO_2 nano-particles in galvanizing solution. Erosion test shows that the erosion resistance increases with the increasing content of CeO_2 nano-particles within the concentration range used.
     5. The improving mechanisms of CeO_2 nano-particle on the corrosion resistance of the electrodeposited galvanized coatings, hot-dip galvanized and Galfan alloy coatings were investigated by combining the electrochemical impedance spectroscopy technique with morphology and microstructure analyses. Furthermore, the mechanisms of CeO_2 nano-particle on improving the erosion resistance and strengthening of composite coatings were discussed. All provides a theoretical basis for improving the whole properties of Zn-based composite coatings.
引文
[1]卢锦堂,许乔瑜,孔纲.热浸镀技术与应用[M].北京:机械工业出版社, 2006
    [2]朱祖芳.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社, 1995
    [3]胡传炘,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000
    [4] Baldwin K R, Robinson M J and Smith C G E. Corrosion rate measurements of electrodeposited Zn–Ni alloy coating[J]. Corrosion Science, 1994,36 (7):1515~1531
    [5] Sidney Oswaldo PagottoJr, Célia Marina de Alvarenga Freire and Margarita Ballester. Zn-Ni alloy deposits obtained by continuous and pulsed electrodeposition precesses[J]. Surface and Coatings Technology, 1999,122 (1):10~13
    [6] Gavrila M, Millet J P, Mazille H, et al. Corrosion behavior of zinc-nickel coatings electrodeposited on steel[J]. Surface and Coatings Technology, 2000,123 (2-3):164~172
    [7] Ashassi-Sorkhabi H, Hagrah A, Parvini-Ahmadi N, et al. Zinc-nickel alloy coatings electrodeposited from a chloride bath using direct and pulse current[J]. Surface and Coatings Technology, 2001,140 (3):278~283
    [8] Beltowska-Lehman E, Ozga P, Swiatek Z et al. Electrodeposition of Zn-Ni protective coatings from sulfate-acetate baths[J]. Surface and Coatings Technology, 2002,151-152: 444~448
    [9] Müller C, Sarret M, Benballa M. Some peculiarities in the codeposition of zinc-nickel alloys[J]. Electrochimica Acta, 2001,46 (18):2811~2817
    [10] Müller C, Sarret M, Benballa M. Complexing agents for a Zn-Ni alkaline bath[J]. Journal of Electroanalytical Chemistry, 2002,519 (1-2):85~92,
    [11]屠振密.电镀锌与锌合金的特性应用及发展[J].材料保护, 2000,33(1):37~42
    [12] KaLantary M R. Zinc alloy electrodeposition for corrosion protection[J]. Plating and Surface Finishing, 1994,81(6):80~88
    [13] Schrade F, Radtke, Donald C, et al. Role of misch metal in galvanizing with a Zn-5%Al alloy[J]. Journal of the Less Common Metals, 1983,93(2): 253~259
    [14] Laverde D, Zubillaga J C, Gil-Sevillano J, et al. The influence of the primer layer on mechanical damage and loss of corrosion protection of deformed painted Zn-0.16% Al and Zn-5% Al galvanized sheet steel[J]. Crrosion Science, 1995,37(1):79~95
    [15] Jonathon Elvins, John A. Spittle, et al. Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion[J]. Corrosion Science, 2005,47(11): 2740~2759
    [16] Seth A. Eliot. Method for metallographically revealing intermetallic formation at Galfan/Steel interfaces[J].Materials Characterization, 1993,30 (4): 295~297
    [17] Puomi P, Fagerholm H M, Rosenholm J B, et al. Comparison of different commercial pretreatment methods for hot-dip galvanized and Galfan coated steel[J]. Surface and Coatings Technology, 1999,115,(1): 70~78
    [18] Dafydd H, Worsley D A, McMurray H N. The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc–aluminium alloy galvanized coatings[J]. Corrosion Science, 2005,47(12): 3006~3018
    [19]魏绪钧,冯法伦,徐秀芝.稀土对热镀层性能的影响[J].中国稀土学报, 1995,13 (专辑):475~478
    [20] Souto R.M, Llorente M L, Fernández-Mérida L. Accelerated tests for the evaluation of the corrosion performance of coil-coated steel sheet: EIS under cathodic polarization[J]. Progress in Organic Coatings, 2005,53 (1): 71~76
    [21] Scott T. Bluni, Marder A R, Goldstein J I. Surface characterization of hot-dip Galfan coatings[J]. Materials Characterization, 1994,33(2): 93~97
    [22]许并杜.纳米材料及应用技术[M].北京:化学工业出版社, 2004
    [23]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2004
    [24] Kear B H, Skandan G, Sadangi R K. Factor controlling decarburization in HVOF sprayed Nano-WC/Co hard coatings[J]. Scripta Materialia, 2001,44:1703~1707
    [25] Stewart D A, Shipway P H, McCarmey D G. Abrasive wear behavior of conventional and nanocomposite HVOF-sprayed WC-Co coatings[J]. Wear, 1999,225:789~798
    [26] Jiang H G, Lau M L, Lavemia E J. Synthesis of Nanostructured Engineering Coating by High Velocity Oxygen Furel (HVOF) Thermal Spraying[J]. Journal of Thermal Spray Technology, 1998,7(3):412~413
    [27]叶雄林.超音速等离子喷涂WC/Co纳米结构涂层性能研究[J].中国表面工程, 2004(1):31~34
    [28] Zhu Y C, Ding C k. Tribology properties of nanostructured and conventional WC-Co coating deposited by plasma spray [J]. Thin Solid Films, 2000,388:277~282
    [29]李博宇,董星龙,刘圆圆,等.等离子喷涂法纳米结构WC-12Co涂层的微结构与形成机理的研究[J].材料工程, 2006(6):40~45
    [30] Wang Y, Jiang S, Wang M D, et al. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania ccoatings[ J]. Wear, 2000,237:176~185
    [31] Zhu Y C, Ding C X, Yukimurac K, et al. Deposition and characterization of nanostructured WC-Co coating[J]. Ceramics International, 2001,27(6): 669~674
    [32] Natishan P M, Lawrence S H, Foster R L. Salt fog corrosion behavior of high-velocity oxygen-fuel thermal spray coatings compared to electrodeposited hard chromium[J]. Surface and Coatings Technology, 2000,130(2~3) : 218~223
    [33]陈彩凤,陈志刚.纳米α-Al2O3颗粒弥散强化镍基复合涂层的耐磨性能研究[J].润滑与密封, 2006,(3):33~35,38
    [34] Kear B K, Mccandlish L E. Chemical processing and properties of nanostructured WC/Comaterials[J]. Nanostructured Materials, 1993,3(1):19~30
    [35] HE J H, S Choenung J M. A review on nanostructurd WC/Co coatings[J]. Surface and Coatings Technology, 2002,1(1):72~79
    [36]范毅,丁彰雄,张云乾.纳米WC/12Co涂层在轴流式引风机叶片防磨上的研究[J].武汉大学学报(工学版), 2006,39(3):135~139
    [37]赵晓琴,周惠娣,陈建敏.等离子喷涂纳米和常规喂料WC/Co涂层在干摩擦和水环境中的摩擦磨损性能研究[J].摩擦学学报, 2006,26(3):208~213
    [38] Zhang G J. Dai J Q. Wang H P. Research on Laser Cladded Nickel Based Nanomeler Tungsten Carbide Composite Coating[J]. Transactions of Materials and Heat Treatment, 2004,25(5):1004~1008
    [39]张光钧,许佳宁,王慧萍,等. 45钢表面激光熔覆镍基纳米SiC/Co镀层显微组织研究[J].机械制造, 2006,44(497):59~62
    [40]王慧萍,张光钧,戴建强,等.激光熔覆纳米WC_(nano)/Ni复合涂层的相组织[J].应用激光, 2005,25(6):369~370,394
    [41]李明喜,何宜柱,孙国雄.纳米A12O3/Ni基合金复合材料激光熔覆层组织[J].中国激光, 2004,31(9):1150~1152
    [42]张光钧.激光表面工程的发展趋势[J].机械制造, 2005,43(485): 8~11
    [43]陈劲松,黄因慧,刘志东,等.电沉积复合镀层研究的新动态[J].电镀与涂饰, 1998,17(1):67~69
    [44]王积森,温红,孙金全.纳米材料在复合电沉积中的应用[J].电镀与涂饰, 2006, 25(1):59~62
    [45]陈劲松,黄因慧,刘志东.电沉积复合镀层的研究动态与应用[J].电镀与环保, 2005,25(6):1~5
    [46]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社,2002
    [47] Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths[J] . Journal of the Electrochmical Society, 1972,119(8):1009~1012
    [48] Celis J P, Roos J R, Buelens C. Analysis of the electrolytic codeposition of non-brownian particles with a metals[J]. Journal of the Electrochmical Society, 1987,134(6):1402~1408
    [49] Fransaer J, Celis J P, Roos J R. Amathematical model for the electrolytic codeposition of particles with a metallic matrix[J]. J of the Electrochemical Society, 1992,139(2):413~425
    [50] Valdes J L. Electrodeposition of colloidal particles[J]. Journal of the Electrochmical Society, 1987,134(4):223~225
    [51]李卫东.电沉积Ni基复合层的应用基础研究[D].武汉:武汉大学, 2004
    [52] Yeh S H, Wan C C. A Study of SiC/Ni composite plating in the Watts bath[J] .Plating and Surface Finishing, 1997,84(3):54~57
    [53]邵光杰. (Ni-P)-SiC镀层的电沉积及其组织性能[D].秦皇岛:燕山大学,2002
    [54] Hwang B J, Hwang C S. Mechanism of codeposition of silicon carbide with electrolyticcobalt[J] . J of the Electrochemical Society, 1993,140(4):979~984
    [55] Muller B, Ferkel H. A12O3-Nanoparticles distribution in plated nickel composite films[J]. Nanostructured Materlals, 1998,10:128~1288
    [56] Ferkel H, Muller B, Riehemanm W. Electrodepositon of Particle-strengthened nickel films[J]. Materials Science and Engineering, 1997, A234~236:474~476
    [57]汤皎宁,杨钦鹏,曹建明,等. Ni-SiO2复合镀层腐蚀摩擦学性能研究[J].科学技术与工程, 2004,4(5):383~390
    [58] Li J, Sun Y, Sun X, et al.. Mechanical and corrosion-resistance performance of electrodeposited titania–nickel nanocomposite coatings[J]. Surface and Coatings Technology, 2005,192: 331~335
    [59]王丽琴,吴化,铁军,等. Ni-SiC纳米复合镀工艺及性能研究[J].腐蚀科学与防护技术, 2005,17(4):230~233
    [60] Gay P A, Berco T P. Electrodeposition and characterization of Ag-ZrO2 electroplated coatings[J]. Surface and CoatingsTechnology, 2001,140:147~154
    [61]吴元康.金刚石纳米晶在材料保护中的应用[J].材料保护, 1995,28(4):15~17
    [62]余锟.现代化学镀新技术[M].北京:国防工业出版社, 1999
    [63]刘彦军,崔振铎,朱胜利,等. Au/纳米SiC颗粒复合镀层的制备工艺及性能[J].功能材料, 2006,37(2):301~303
    [64]张文峰,朱荻.电沉积纳米复合材料的研究与应用[J].材料导报, 2003,17(8):57~60
    [65]彭晓,马信清,陈全芳,等. Ni-La2O3复合镀层的氧化行为及机制[J].中国稀土学报, 1995,13(4)328~333
    [66] Zhou M, lin W Y, N R de Tacconi, et al.. Metal/semiconductor electrocomposite photoclectrodes[J] .Journal of Electroanalytical Chemistry, 1996,402:221~224
    [67] Takenori D, Kiyohisa I M, Mitsunobu I, et al. Photocatalytically highly active nanocomposite films consisting of TiO2 particles[J]. Journal of the Electrochmical Society, 2000,147(6):2263~2267
    [68] Deguchi T, Imai K, Matsui H, et al. Rapid electroplating of photocatalytically active TiO2-Zn nanocomposite[J]. Journal of Materials Science, 2001,36:4723~4729
    [69] Liu S S,Cheng D H, Ying T L, et al. Study of electrochemical catalytic behavior of hydrogen evolution on electrodeposited nickel-phosphorus-Zirconium dioxide composite electrode[J]. Electroplating & Finishing, 2001,20(6):4
    [70]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002
    [71]李金桂.防腐蚀表面工程技术.北京:化学工业出版社, 2003
    [72] Amadeh A, Pahlevani B, Heshmati-Manesh S. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings[J]. Corrosion Science, 2002 (10):2321~2331
    [73] Wang K L, Zhang Q B, Sun M L, et al. Microstructure and corrosion resistance of laser clad coatings with rare earth elements[J]. Corrosion Science, 2001,43 (2): 255~267
    [74] Arenas M A, de Damborenea J J, Medrano A, et al. Corrosion behavior of rare earth ion-implanted hot-dip galvanised steel[J]. Surface and Coatings Technology, 2002, 158-159: 615~619
    [75]李士嘉,何建平,陈网桦.铈对光亮镀锌耐蚀性的影响[J].中国稀土学报, 1993, 11(4):336~340
    [76]李士嘉,何建平,孙立.稀土对电沉积锌层耐蚀性的影响[J].材料保护, 1991,24(3): 4~6
    [77]何建平,李士嘉,陈网桦.铈元素对锌镀层结构与性能的影响[J].腐蚀与防护, 1994, 15(5): 247~249
    [78]白晓军,王书君. Zn-A12O3和Zn-SiO2复合镀层的研制.材料保护, 1994,27(9):25~27
    [79]白晓军,王书君. Zn-A12O3和Zn-SiO2复合镀层的研制及其耐蚀性和结合力的研究.表面技术, 1994, 23(3): 117~119,123
    [80]李丽华,吴继勋,张海冬,等. Zn-SiO2复合镀工艺研究.电镀与涂饰,1995,14(3): 31~33,11
    [81] Aruna S T, Bindu C N, EzhiL SeLvi V. Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings[J]. Surface and Coatings TechnoLogy, 2006,200: 6871~6880
    [82] Benea L, Bonora P L, BoreLLo A, et al. Composite electrodeposition to obtain nanostructured coatings[J]. Journal of the Electrochmical Society, 2001,148(7): C461~C465
    [83]朱立群,李卫平,钟群鹏. ZrO2纳米微粉在Ni-W-B非晶态复合镀层中的作用研究[J].机械工程材料, 1998,22(4):9~11,27
    [84] Shi L, Sun C F, Gao P, Zhou F, et al. Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating[J]. Applied Surface Science, 2006,252 (10): 3591~3599
    [85] Meenu Srivastava, William Grips V K, Rajam K S. Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles[J]. Applied Surface Science, 2007,253 (8):3814~3824
    [86] Lee H K, Lee H Y , Jeon J M. Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating[J]. Surface and Coatings Technology, 2007,201(8): 4711~4717
    [87] Chen L, Wang L P, Zeng Z X, et al. Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al2O3 composite coatings[J]. Surface and Coatings Technology, 2006,201(3~4):599~605
    [88]郭鹤烔,张三元.复合镀层[M].天津:天津大学出版社,1991
    [89]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003
    [90]黄新民,吴玉程,郑玉春,等.分散方法对纳米颗粒化学复合镀层组织及性能的影响[J].电镀与精饰, 1999,21(5):12~15.
    [91]郑筱梅,杨玲,刘光斌.镍/纳Al2O3复合电镀的工艺研究[J].重庆师范学院学报(自然科学版), 2003,2:40~43
    [92]李春喜,王子镐.超声技术在纳米材料制备中的应用[J].化学通报, 2001,5:268~271.
    [93] Schmid C, Sbaizero O. Ultrasonic homogenization equivolumetric Al2O3/ZrO2 suspensions[J]. Journal of Materials Science, 2000(35):1213~1217.
    [94]肖锋,叶建东,王迎军.超声技术在无机材料合成与制备中的应用[J].硅酸盐学报, 2002,30(5):615~619
    [95]吴杰等,金花子,崔新宇. NdFeB磁体超声波化学镀Ni-P的研究[J].腐蚀科学与防护技术, 2003,15(1):44~46.
    [96]吴蒙华,傅欣欣,李智,等.超声电沉积镍/纳米碳化硅复合镀层组织结构研究[J].机械工程材料, 2004,28(12):46~48
    [97] Katsuyoshi Kobayashi, Atsushi Chiba, Naoki Minami. Effects of ultrasound on both electrolytic and electroless nickeldeposit[J]. Ultrasonics, 2000,38:676~681
    [98]吴杰. NdFeB磁体超声波化学镀Ni-P的研究[J].腐蚀科与防护技术, 2003,15(1):4446.
    [99]宋晓岚,邱冠周,杨振华,等.水相介质中纳米CeO2的分散行为[J].稀有金属,2005, 29(2):197~172
    [100]张景双,石金声,石磊,等.电镀溶液与镀层性能测试[M].北京:化学工业出版社, 2003
    [101] GB/T5270-1985.金属基体上的金属覆盖层(电沉积层和化学沉积层)附着强度试验方法[S].中国, 1985
    [102] Shibli S M A, Dilimon V S, Smitha P, etal. Incorporation of TiO2 in hot dip zinc coating for efficient resistance to biogrowth.[J]. Surface and Coatings Technology, 2006, 200:4791~4796
    [103]李顺林,卢翔,朱正吼,等.金属基纳米复合材料的制备技术研究[J].南京航空航天大学学报, 2003,35(5):572~578
    [104]杨涛林,陈跃.颗粒增强金属基复合材料的研究进展[J].铸造技术, 2006,27(8): 871~873
    [105]申玉田,崔春翔,孟凡斌,等.高强度高导电率Cu-Al2O3复合材料的制备.金属学报, 1999,35(8):888~892
    [106] Ying D Y, Zhang D L. Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling[J]. Materials Science and Engineering, 2000, A286(1): 152~156
    [107] Alexandrov V, Zhu Y T, Lowe T C, et al. Microstrctures and Properties of Nanocomposites Obtained through SPTS Consolidation of Powders[J]. Metallurgical and Materials Transactions A, 1998,29A(9):2253~2260
    [108] Gloriant T, Greer A L. Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys[J]. Nanostructured Materials, 1998,10(3):389~396
    [109]仝兴存,方鸿生,柳百成.快速凝固Al-TiC自生复合材料的显微组织和力学性能[J].金属学报, 1996,32 (10):1111~1115
    [110] Zeman P, Cerstvy R, Mayrhofer P H, et al. Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings[J]. Materials Science and Engineering, 2000, A289:189~197
    [111] Musil J, Zeman P, Hruby H, etal. ZrN/Cu nanocomposite film-a novel superhard material[J]. Surface and Coatings Technology, 1999,120~121:179~183
    [112] Lan J, Yang Y, Li X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Eneineering, 2004,A386:284~290
    [113] Yang Y, Lan J, Li X C.Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminium alloy[J]. Materials Science and Eneineering, 2004,A380:378~383
    [114] Sung-Tag Oh, Tohru Sekino and Koichi Niihara. Fabrication and mechanical properties of 5 vol% copper dispersed alumina nanocomposite[J]. Journal of the European Ceramic Society, 1998, 18(1):31~37
    [115]马立群.在超声场中微细颗粒增强MMCs的研制及有关理论探讨[D].南京:东南大学,1995
    [116]潘蕾.高能超声作用下ZA27基复合材料的制备及性能[D].南京:东南大学,2004.
    [117]王俊,陈锋,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用[J].上海交通大学学报, 1999,33(7):813~816.
    [118] Lan J, Yang Y, Li X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Engineering A, 2004,386 (1-2):284~290
    [119] Wan H, Pan J,Yang D M. In-Situ Aluminium Matrix Composites Preparaed by Ultrasonic Vibration[C]. Tenth International Conference on Composite MaterialsⅡ,Canada, 1995: 14~18
    [120]朱立.钢材热浸镀[M].北京:化学工业出版社, 2006
    [121] Marder A R. The metallurgy of zinc-coated steel [J]. Progress in Materials Science, 2000,(45): 191~271,
    [122]冯若,李化茂.声化学及应用[M].合肥:安徽科技出版社,1990
    [123] Campbell J. Effect of vibration During Solidifaction[J]. International Metals Reviews, 1981, (2):71~104
    [124] Rozenbeg L D. Physical principle of ultrasonic technology[M]. Plenum Press, New York, 1973
    [125] Banerji A, Rohatgi P K, Reif W. Role of wettabillity in the preparation of MMC. Metall, 1984,38(7):656~661
    [126]王俊,陈锋,孙宝德,等.微细颗粒对熔体表观粘度的影响[J].复合材料学报, 2001, 18(1):58~61
    [127] El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation [J]. Journal of Alloys and Compounds, 2005,391:228~235
    [128] El-Eskandarany M S, Sherif M. Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites[J]. Journal of Alloys and Compounds, 1998,279(2):263~271
    [129] Krasnowski M, Fadeeva V I and Matyja H. Nanocomposites produced by mechanical alloying of the Al50Fe25Ti25 powders mixture [J]. Nanostructured Materials, 1999,12 (1):455~458
    [130] Krivoroutchko K, Portnoy V K, Matyja H, et al. Formation of Ni-Al-Ti-C nanocomposites by mechanical alloying[J]. Materials Science Forum, 2000,343(1):308~313
    [131] Kaszuwara W, Leonowicz M, Kozubowski J A. Effect of tungsten addition on the magnetic properties and microstructure of SmFeN-α-Fe nanocomposites[J]. Mater Lett, 2000,42(6):383~386
    [132] He J H, Ice M, Dallek S, et al. Synthesis of nanostructured WC-12 Pct Co coating using mechanical milling and high velocity oxygen fuel thermal spraying[J]. Metallurgical and Materials Transactions A, 2000,31A(2): 541~553
    [133] He J H, Ice M, Dallek S, et al. Synthesis of nanostructured Cr3C2-25(Ni20Cr) coatings[J]. Metallurgical and Materials Transactions A, 2000,31A(2):555~564
    [134] Zhang D L, Raynova S, Koch C C, et al. Consolidation of a Cu–2.5 vol.% Al2O3 powder using high energy mechanical milling[J]. Materials Science and Engineering A, 2005,(410-411): 375~380
    [135] Takacs L. Metal-metal oxide systems for nanocomposite formation by reaction milling[J]. Nanostructured Materials, 1993,2 (3):241~249
    [136] Wan-li GU. Bulk Al/SiC nanocomposite prepared by ball milling and hot pressing method[J]. Transactions of Nonferrous Metals Society of China, 2006,16(s1): 398~401
    [137] Li J L, Li F, Hu K A. Preparation of Ni/Al2O3 nanocomposite powder by high-energy ball milling and subsequent heat treatment[J]. Journal of Materials Processing Technology, 2004,147(2): 236~240
    [138] Woo K D, Zhang D L. Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy[J]. Current Applied Physics, 2004,4(2-4):175~178
    [139] Zhang D L. Processing of advanced materials using high-energy mechanical milling[J]. Progress in Materials Science, 2004, 49(3~4):537~560
    [140]肖永亮,李亚利,梁勇,等.纳米SiC颗粒增强铝基复合材料研究[J].金属学报, 1996,32(6):658~662
    [141]卡恩, R.W.金属与合金工艺(雷延权等译).材料科学与技术丛书,第15卷.北京:科学出版社,1999
    [142]齐宝森,王成国,姚新,等.高能球磨金属铬、铝粉末的特征[J].稀有金属, 2000,24(5):325~329
    [143]马幼平,马明亮,张社会.高能球磨过程中金属粉末的粘附特性[J].热加工工艺, 2002,(1): 3~5
    [144]杨小玲,刘沙,易丹青,等.纳米晶掺Ce硬质合金粉末的制备[J].上海有色金属, 2002,23(2):45~52
    [145]张奎,樊建中,张永忠,等.颗粒增强复合材料增强体颗粒分布均匀性研究.稀有金属, 1999,23(1):62~66
    [146]李凤生.超细粉体技术[M].北京:国防工业出版社,2000
    [147]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997
    [148]刘勋,范景莲,凌国良.纳米Ni-Al2O3金属陶瓷粉末热压致密化过程[J].中南大学学报(自然科学版), 2004,35(1):21~25
    [149]赫运涛,贾成厂,樊世民,等.机械活化W-Cu粉末的压力烧结[J].粉末冶金技术, 2004,22(1):33~36
    [150] Aida T, Fukazawa T. Subgrains in LaB6 crystals gro-wn with a xenon are image furnace [J]. Journal of Crystal Growth, 1987,80 (1):9~16.
    [151]席生岐,周敬恩,朱蕊花,等.高能球磨制备Al3Ti/Al块体纳米晶复合材料[J].中国有色金属学报, 12(s1):115~119
    [152]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社, 2006
    [153]韩彬,李世春,胡秀莲. Zn粉和Al粉固相扩散形成共晶类组织的研究[J].航空材料学报, 2001,21 (2):30~33
    [154]韩彬,邹增大,李世春.粉末冶金锌铝合金的扩散行为[J].材料科学与工艺, 2004,12(5):476~478
    [155]马丁JW,多尔蒂R D.金属系中显微结构的稳定性[M].李新立译.北京:科学出版社, 1984
    [156] Casolco Said R, Negrete-Sanchez J, Torres-Villasenor G. Influence of silver on the mechanical properties of Zn-Al eutectoid superplastic alloy[J]. Materials Letters, 2003, 51:63~67
    [157] Luo B H, Bai Z H, Xie Y Q. The effects of trace Sc and Zr on microstrcture and internal friction of Zn-Al eutectoid alloy[J]. Materials Science and Engineering A, 2004, 370:172~176
    [158]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [159] Shen C B, Wang S G., Yang H Y. et.al. Corrosion and corrosion inhibition by thiourea of bulk nanocrystallized industrial pure iron in dilute HCl solution .Corrosion Science, 2006, 48 :1655~1665
    [160] Sayed S. Abd El Rehim, Hamdi H. Hassan, Mohammed A. Amin. Corrosion inhibition study of pure Al and some of its alloys in 1.0 M HCl solution by impedance technique[J]. Corrosion Science, 2004,46: 5~25
    [161]姚颖悟,姚素薇,宋振兴.电沉积Ni2W合金在NaCl溶液中的腐蚀行为[J].材料工程,2006(9):42~44
    [162]何建平.改进的线性极化法测定锌镀层的腐蚀速率[J].电镀与环保,1993,13(3):22~24.
    [163]王为,郭鹤桐,高建平.复合镀层中ZrO2微粒对基质Ni晶体结构的影响[J].应用化学, 1997,14(1):6~10
    [164]杨仲年.耐候钢和Zn与Zn-Fe合金镀层的腐蚀电化学行为研究[D].杭州:浙江大学, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700