用户名: 密码: 验证码:
激光—感应复合熔覆金属陶瓷层技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆金属陶瓷层具有高硬度、耐磨损与耐腐蚀等性能,在关键零部件的表面强化与修复领域具有广阔的应用前景。但是,熔覆效率低,复合层易产生气孔与裂纹等缺陷,严重阻碍了激光熔覆金属陶瓷层技术的工业化应用进程。为了提高熔覆效率与降低冶金缺陷,本文提出了激光—感应复合熔覆的新方法,对激光—感应复合熔覆金属陶瓷层技术的工艺特点、WC颗粒的烧损机理与复合层的耐磨性能等进行了研究,得到的主要结果如下:
     构建了一个由CO_2激光器、高频感应加热器、自动送粉器、CNC控制台等组成的激光—感应复合熔覆平台。对激光—感应复合熔覆金属陶瓷层的工艺进行了系统研究。结果表明:最小激光比能、最大熔覆层厚度、接触角均与最大粉末面密度呈线性关系;随着感应预热温度的增加,最大熔覆效率增加;与单纯激光熔覆技术相比,激光—感应复合熔覆金属陶瓷层技术的效率可以提高约1~4倍。
     系统研究了影响激光—感应复合熔覆金属陶瓷层质量的工艺参数。结果表明:与垂直光斑相比,采用平行光斑进行激光—感应复合熔覆时,可以获得较大的激光加工参数选择范围与较高的熔覆效率;通过激光高速扫描与增加送粉量,可以降低复合层的稀释率,改善WC颗粒在复合层内的均匀分布,从而获得WC含量达35%wt、高硬度且与基材呈冶金结合的无裂纹金属陶瓷层。
     对激光—感应复合熔覆Ni基WC复合层内WC颗粒的烧损规律进行了详细研究。研究证实可以采用WC颗粒烧损程度的半定量公式,计算激光高速扫描时,WC颗粒在多道搭接激光—感应复合熔覆Ni基WC复合层内的烧损率,表明该公式具有较广的应用范围与较强的实用性,不仅可以应用于单纯激光熔覆金属陶瓷层时陶瓷相的烧损程度的评价,而且可以为合理评价激光—感应复合熔覆金属陶瓷层的组织与性能提供重要的理论依据。
     在大量研究工作的基础上,提出了激光—感应复合熔覆铸造碳化钨—镍基合金金属陶瓷层中,粒度小于38μm的铸造WC颗粒的烧损机理,其可能的方式如下:
     (1)典型的溶解扩散式烧损:WC颗粒的边缘不断受到高温Ni基合金液的浸蚀,相互交换原子,导致WC颗粒直接溶解于Ni基合金液中,并在随后的冷却过程中以M_6C和M_(12)C等碳化物形式析出;同时,Ni、Cr与Fe等原子向WC颗粒内部扩散,在WC颗粒的边缘形成一个有限厚度的合金化反应层。
     (2)WC颗粒的溃散—溶解扩散复合烧损方式:部分粒径较小的WC颗粒,在激光束的直接照射下被破碎成粒径更小的碎块状WC颗粒,然后发生前已述及的典型的溶解扩散式烧损。然而,由于破碎的WC颗粒体积小,它们与Ni基合金液交互作用,可能使碎块状WC颗粒完全合金化,成为高钨含量的合金碳化物。
     (3)较大尺寸的WC颗粒溃散成粒径极小的碎块状WC颗粒后,因为与高温Ni基合金液的交互作用而完全溶解于其中,并在随后的冷却过程中,以不同成分(M_6C、M_(12)C、M_(23)C_6与M_7C_3)与不同形式(块状、杆状与鱼骨状等)的合金碳化物析出。另外,原来粒度就很小的WC颗粒也可能采取这种完全溶解的烧损方式。
     在激光—感应复合熔覆过程中,粘结金属的成分对WC颗粒的烧损程度影响很大。研究结果表明,当采用的粘结金属为铁基合金时,激光—感应复合熔覆Fe基WC复合层内的WC颗粒几乎完全溶解,复合层由M_6C、M_(23)C_6、马氏体与残余奥氏体等组成,其粘结金属的显微硬度低于相同工艺条件下Ni基WC复合层内粘结金属的显微硬度。这种显著差异的结果此前国内外未见类似报道。这种显著差异是由高温状态下WC颗粒在粘结金属中的溶解度、粘结金属的熔点、WC颗粒的溶解速率与粘结金属释放的潜热等因素共同决定的。这一结果对合理选择粘结金属类型具有一定的指导意义。
     系统研究了激光—感应复合熔覆Ni基WC复合层、Fe基WC复合层的干滑动摩擦磨损性能,并对其磨损失效机理进行了分析。结果表明,在干滑动磨损过程中,存在粘着磨损、磨粒磨损、疲劳磨损与氧化磨损等多种磨损特征,磨屑呈片状且以剥层的方式脱落。碳化钨颗粒的含量、烧损程度对耐磨性影响很大。通过提高激光扫描速度,可以使激光—感应复合熔覆Ni基WC复合层的耐磨性提高到单纯激光熔覆同样成分Ni基WC复合层的1.4倍。主要原因是激光扫描速度增加,可以降低WC颗粒的烧损程度,提高粘结金属的硬度,改善WC颗粒的分布均匀性及其平均间距,限制粘结金属的塑性变形。
     总而言之,上述结果表明,激光—感应复合熔覆金属陶瓷层具有单纯激光熔覆同样成分的金属陶瓷层更好的性能。因此,激光—感应复合熔覆金属陶瓷层技术具有广阔的工业应用前景。
Laser cladding ceramic-metal composite coating (LCCC) has high hardness, excellent wear resistance and corrosion resistance, and thus has a wide application ranges in the surface strengthening and repairing of the key components. However, the low cladding efficiency, high volume of porosities and cracks in LCCC has restricted its applications in many fields. In order to enhance the cladding efficiency and reduce the metallurgical defects, induction heating, another heat source is introduced into the laser cladding process, which is named as laser-induction hybrid cladding (LIHC) in the dissertation. The processing characteristics, the heat damage mechanisms of WC particles and the wear resistance of the composite coating by LIHC were studied systemically. The main results were as following.
     A system of LIHC was developed, which was composed of a CO_2 laser, a high frequency induction heater, an auto-feeding powder apparatus and CNC controller, etc, based on which the processing parameters of the ceramic-metal composite coatings produced by LIHC were investigated. The results showed that the minimum laser specific energy, the maximum cladding height and the contact angle had a linear relationship with the maximum powder density per area. The maximum cladding efficiency increased with the increasing of the preheated average temperature of the substrate by induction heating. Moreover, the efficiency of LIHC can be increased to 1-4 times higher than that of the individual laser cladding.
     The effects of the laser processing parameters on the quality of the composite coatings by LIHC were investigated systemically. The results demonstrated that the choice range of laser processing parameters and the cladding efficiency using the parallel spot were wider and higher than those using the perpendicular spot during LIHC, respectively. By increasing laser scanning speed and powder feeding rate, the dilution of the composite coating by LIHC was decreased, the homogeneity of WC particles distribution was improved. As a result, the free-crack ceramic-metal composite coatings with a low dilution and high microhardness were obtained, with the weight fraction of WC particles higher than 35%wt and the metallurgical bonding between the composite coatings and the substrate.
     The heat damage fashions and mechanisms of WC particle in Ni-based WC composite coatings by LIHC were studied in detail. The results proved that the formulas of half quantity on the heat damage level of WC particles introduced before can be adopted to evaluate the heat damage extent of WC particles in multi-pass overlapping Ni-based WC composite coatings if the high laser scanning speed was adopted during LIHC, which demonstrated that the formulas not only had an extensive application range and strong practicality, but also may provide an important theoretical basis to evaluate the microstructure and properties of laser-induction hybrid cladding Ni-based WC composite coatings.
     When Ni-based alloy was used as the matrix alloy in ceramic-metal composite coatings by LIHC, the heat damage mechanisms of WC particles usually took the following models:
     (1) The dissolution-diffusion heat damage fashion: WC particles were continually dissolved by the molten Ni-based alloy at high temperature and exchanged their atoms each other, which resulted in WC particles dissolveng directly into Ni-based alloy solution and then precipitated in the format of M_6C, M_(12)C and other carbides during the rapid solidification processing. In the meantime, the alloying elements such as Ni, Cr and Fe diffused into WC particles rapidly, thus forming an alloyed reaction layer with limited thickness.
     (2) The dispersion-dissolution diffusion hybrid heat damage fashion: a part of WC particles with small size were dispersed into several small pieces of WC particles when they were irradiated by laser, which was heat damaged as the dissolution-diffusion heat damage fashion above mentioned. However, these dispersed WC particles with relatively smaller size may change into the alloyed carbides with high W concentration after they interacted with Ni-based alloy solution at high temperature.
     (3) WC particles with relatively smaller size may dissolve into Ni-based alloy solution completely, and then precipitated into the composite coating in the format of carbides such as M_6C, M_(12)C, M_(23)C_6 and M_7C_3 with different morphology (i.e. blocky, bar-like and fish-bone shape).
     The compositions of the matrix alloys have a big effect on the heat damage of the WC particles. It was found that WC particles had a complete dissolution in Fe-based WC composite coatings produced by LIHC. The coatings was composed of M_6C, M_(23)C_6 martensite and the retained austenite and the microhardness of the binder metal was lower than that in Ni-based WC composite coating under the same processing condtions. This result has not reported before. This difference was mainly caused by the difference of the dissolution level and rates of WC particles in the binder metal, melting point and latent heat between Ni-based and Fe-based alloy. The above results were highly helpful to choose a reasonable binder alloy.
     The sliding wear resistance and mechanisms of Ni-based WC composite coatings and Fe-based composite coatings prepared by LIHC were studied systematically. The adhesion wear, abrasive wear, fatigue wear and oxidation wear were simultaneously found in the samples by dry sliding wear process of the ceramic-metal composite coatings, the debris with lamellar structure were sheared from the composite coatings by the delamination pattern. Especially, the heat damage extent of the WC particles had a big effect on the sliding wear resistance of the composite coatings. By increasing laser scanning speed, the wear resistance of Ni-based WC composite coatings by LIHC can be 1.4 times as much as that of Ni-based WC composite coatings by the laser cladding with the same composition of the alloying powders. The main reason was that increasing laser scanning speed can decrease the heat damage extent, which can increase the microhardness of the composite coatings, improve the homogeneous distribution of WC particles, decrease the average distance of WC particles and limit the plastic transformation of the binder.
     In summary, the above results demonstrated that laser-induction hybrid cladding ceramic-metal composite coatings had more excellent propeties than the laser cladding ceramic-metal composite coatings with the same composition of alloy powders, which may find a wide application field in industrial area.
引文
[1]涂江平,郦剑,毛志远,等.火焰喷涂镍基碳化钨涂层的高温冲蚀磨损特征.浙江大学学报(自然科学版),1993,27(6):803-811
    [2]陈志刚,朱小蓉,汤小丽,等.火焰喷涂重熔Ni基WC复合涂层的耐磨性能试验研究.物理学报,2007,56(12):7320-7329
    [3]Schweissen,Schneiden.Innovations in welding technology in 2000.Welding Research Abroad,2001,47(7,8):8-9.
    [4]Suleimanov.S.Kh,Baizakov.B.B.Cladding of stainless steel on carbon steel.Journal De physique Ⅳ,1999,9(3):447-452
    [5]Ayers.J.D,Tucker.T.R.Particulate-TiC-hardened steel surfaces by laser melt injection.Thin Solid Films,1980,73(1):201-207
    [6]Ayers.J.D.Modification of metal surfaces by the laser melt-particle injection process.Thin Solid Films,1981,84(4):323-331
    [7]Molian.P,Rajasekhara.H.Laser melt injection of BN powders on tool steels Ⅰ:Microhardness and tructure.Wear,1987,114(1):19-27
    [8]Mehlmann.A.,S.F.Dirnfeld,I.Minkoff.Laser-melt injection of B4C on titanium.Surface and Coatings Technology,1990,42(3):275-281
    [9]J.A.Vreeling,Ocelik.V,De.Hosson.J.T.M.Ti-6Al-4V strengthened by laser melt injection of WC_p particles.Acta Materialia,2002,50(19):4913-4924
    [10]Do Nascimento.A.M,Ocelik.V,Ierardi.M.C.F,et al.Microstructure of reaction zone in WC_p/duplex stainless steels matrix composites processing by laser melt injection.Surface and Coatings Technology,2008,202(10):2113-2120
    [11]Cooper.K.P,Slebodnick.P,Thomas.E.D.Seawater corrosion behavior of laser surface modified Inconel 625 alloy.Materials Science and Engineering A,1996,206(1):138-149
    [12]Pei.Y.T,Ocelik.V,De Hosson.J.Th.M.SiC_p/Ti6Al4V functionally graded materials produced by laser melt injection.Acta Materialia,2002,50(8):2035-2051
    [13]Kloosterman.A.B,Kooi.B.J,De Hosson.J.Th.M.Electron microscopy of reaction layers between SiC and Ti-6Al-4V after laser embedding.Acta Materialia,1998,46(17):6205-6217
    [14]Vreeling.J.A,Ocelik.V,Pei.Y.T,et al.Laser melt injection in aluminum alloys:on the role of the oxide skin.Acta Materialia,2000,48(17):4225-4233
    [15]吴萍,周昌炽,唐西南.激光合金化熔覆制备耐陶瓷梯度涂层.金属学报,1994,30(11):B508-512
    [16]Tam.K.F,Cheng.F.T,Man.H.C.Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass.Materials Research Bulletin,2002,37(7):1341-1351
    [17]Chen.Y,Wang.H.M.Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating.Materials Science and Engineering A,2004,368(1-2):80-87
    [18]Mei.Z,Guo.L.F,Yue.T.M.The effect of laser cladding on the corrosion resistance of magnesium ZK60/SiC composite.Journal of Materials Processing Technology,2005,161(3):462-466
    [19]Anandkumar.R,Almeida.A,Colaco.R,et al.Microstructure and wear studies of laser clad Al-Si/SiC_((p)) composite coatings.Surface and Coatings Technology,2007,201(24):9497-9505
    [20]Liu Xiubo,Wang Huaming.Microstructure and tribological properties of laser clad γ/Cr_7C_3/TiC composite coatings on γ-TiAl intermetallic alloy.Wear,2007,262(5-6):514-521
    [21]Xie Guozhi,Lu Yijun,He Ziyi,et al.Microstructure and corrosion properties of plasma-sprayed NiCr-Cr_3C_2 coatings comparison with different post treatment.Surface and Coatings Technology,2008,202(13):2885-2890
    [22]Man.H.C,Zhang.S,Cheng.F.T,et al.In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding.Surface and Coatings Technology,2006,200(16-17):4961-4966
    [23]Gao Yali,Wang Cunshan,Yao Man,et al.The resistance to wear and corrosion of laser-cladding Al_2O_3 ceramic coating on Mg alloy.Applied Surface Science,2007,253(12):5306-5311
    [24]Liu Y.H,Guo Z.X,Yang.Y,et al.Laser(a pulsed Nd:YAG) cladding of AZ91D magnesium alloy with Al and Al_2O_3 powders.Applied Surface Science,2006,253(4):1722-1728
    [25]曾晓雁.激光熔覆金属陶瓷复合层中陶瓷相的行为研究.[博士学位论文].武汉:华中理工大学,1993.24-157
    [26]Zeng Xiaoyan,Zhu Beidi,Tao Zengyi,et al.Analysis of energy conditions for laser cladding ceramic-metal composite coatings.Surface and Coatings Technology,1996,79(1-3):162-169
    [27]Zeng Xiaoyan,Tao Zengyi,Zhu Beidi,et al.Investigation of laser cladding ceramic-metal composite coatings:processing modes and mechanism.Surface and Coatings Technology,1996,79(1-3):209-217
    [28]Lo K.H,Cheng F.T,Kwok.C.T,et al.Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder.Surface and Coatings Technology,2003,165(3):258-267
    [29]Dobrzanski L.A,Labisz.K,Jonda.E,et al.Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder.Journal of Materials processing Technology,2007,191(1-3):321-325
    [30]Man H.C,Zhang.S,Cheng.F.T,et al.In situ synthesis of TiC reinforced surface MMC on A16061 by laser surface alloying.Scipta Materialia,2002,46(3):229-234
    [31]Du Baoshuai,Zou Zengda,Wang Xinhong,et al.In situ synthesis of TiB_2/Fe composite coatings by laser cladding.Materials Letters,2008,62(4-5):689-691
    [32]Man H.C,Yang Y.Q,Lee.W.B.Laser induced reaction synthesis of TiC+WC reinforced metal matrix composite coatings on Al 6061.Surface & Coatings Tehnology,2004,185(1):74-80
    [33]Jyrki Suutala,Jail Tuominen,Petri Vuoristo.Laser-assisted spraying and laser treatment of thermally sprayed coatings.Surface & Coatings Technology,2006,201(5):1981-1987
    [34]Hitoshi Hiraga,Takashi Inoue,Akira Matsunawa,Hirofumi Shimura.Effect of laser irradiation condition on bonding strength in laser plasma hybrid spraying.Surface & Coatings Technology,2001,138(2-3):284-290
    [35]Hitoshi Hiraga,Takashi Inoue,Shigeharu Kamado,Yo Kojima,Akira Matsunawa, Hirofumi Shimura.Fabrication of NiTi intermetallic compound coating made by laser plasma hybrid spraying of mechanically alloyed powders.Surface & Coatings Technology,2001,139(1):93-100
    [36]Steen.W.M.Laser material processing.Laser surface treatment.Second edition,1998.110-186
    [37]吴新伟.碳化钨金属陶瓷激光熔覆过程中粘结金属与陶瓷相的交互作用.[博士学位论文].武汉:华中理工大学,1997.40-103
    [38]顾立德.特种耐火材料.北京:冶金工业出版社,1987.82-98
    [39]株洲硬质合金厂.烧结硬质合金.北京:冶金工业出版社,1992.454-459
    [40]Sun.R.L,Yang.D.Z,Guo.L.X,et al.Laser cladding of Ti-6Al-4V alloy with TiC and TiC+NiCrBSi powders.Surface and Coatings Technology,2001,135(2-3):307-312
    [41]Sun.R.L,Mao.J.F,Yang.D.Z.Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate.Surface and Coatings Technology,2002,155(2-3):203-207
    [42]Tucker.T.R,Clauer.A.H,Wright.I.G.,et al.Laser-processed composite metal cladding for slurry erosion resistance.Thin Solid Films,1984,118(1-3):73-84
    [43]Yang Sen,Chen Na,Liu Wenjin,et al.Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding.Surface & Coatings Technology,2004,183(24):254-260
    [44]张维平,马玉涛,刘硕.激光熔覆原位自生复合材料涂层的研究.激光技术,2005,29(1):38-39
    [45]Yang.S,Zhong.M.L,Liu.W.J.TiC particulate composite coating produced in situ by laser cladding.Materials Science and Engineering A,2003,343(25):57-62.
    [46]Wu Xiaolei.In situ formation by laser cladding of a TiC composite coating with a gradient distribution.Surface and Coatings Technology,1999,115(2-3):111-115
    [47]Wu Xiaolei,Hong Youshi.Microstructure and mechanical properties at TiC_p/Ni-alloy interfaces in laser-synthesized coatings.Materials Science and Engineering A,2001,318(1-2):15-21
    [48]Wang.A.A.,Sircar.S,Mazumder.J.Laser cladding of Mg-Al alloys.Journal of Material Science,1993,28(19):5113-51
    [49]Yue.T.M,Wang.A.H,Man.H.C.Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding.Scripta Materialia,1999,40(3):303-311.
    [50]李强,雷廷权,张永忠,等.激光熔覆(WC+W_2C)p/Ni基合金复合涂层的微观结构特征.材料科学与工艺,2002,10(1):5-10
    [51]Chiang.K.A,Chen.Y.C.Microstructural characterization and microscopy analysis of laser cladding Stellite12 and tungsten carbide.Journal of Materials Processing Technology,2007,182(1-3):297-302
    [52]吴新伟,曾晓雁,朱蓓蒂.镍基碳化钨金属陶瓷激光熔覆层开裂性的研究.中国激光,1997,24(6):570-576
    [53]Zhong.M.L,Liu.W.J,Zhang.Y,et al.Formation of WC/Ni hard alloy coating by laser cladding of W/C/Ni pure element powder blend.International Journal of Refractory Metals & Hard Materials,2006,24(6):453-460
    [54]Hidouci.A,Pelletier.J.M,Ducoin.F,et al.Microstructural and mechanical characteristics of laser coatings.Surface & Coating Technology,2000,123(1):17-23
    [55]Acker.K.V,Vanhoyweghen.D,Persoons.R,et al.Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings.Wear,2005(1-4),258:194-202.
    [56]吴新伟,朱蓓蒂,曾晓雁.自动送粉法激光熔覆的工艺操作图.金属热处理学报,1995,16(2):47-52
    [57]陈艳霞,钟敏霖,刘文今,等.激光送粉熔覆WC/Co硬质合金的气孔问题.材料热处理学报,2002,23(2):49-53
    [58]李强,付涛,杨坤,等.激光熔覆镍基碳化钨金属陶瓷气孔问题研究.激光杂志,2006,27(3):61-62
    [59]Paul.C.P,Alemohammad.H,Toyserkani.E,et al.Cladding of WC-12 Co on low carbon steel using a pulsed Nd:YAG laser.Materials Science and Engineering:A,2007,464(1-2):170-176
    [60]Kadolkar.P.B,Watkins.T.R,De Hosson.J.Th.M,et al.State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys.Acta Materialia.2007,55(4):1203-1214
    [61]Sue.J.A,Schajer.GS.Stress determination for coatings.In:Lampman SR,Reidenbach F,editors.Surface engineering.ASM handbook,vol.5.Materials Park (OH):ASM International,1998.647
    [62]Xu Guojian,Munaharu Kutsuna,Liu Zhongjie,et al.Characteristic behaviours of clad layer by a multi-layer laser cladding with powder mixture of Stellite-6 and tungsten carbide.Surface and Coatings Technology,2006,201(6):3385-3392
    [63]Wang Dongsheng,Liang Erjun,Chao Mingju,et al.Investigation on the microstructure and cracking susceptibility of laser-clad V_2O_5 /NiCrBSiC alloy coatings.Surface and Coatings Technology,2008,202(8):1371-1378
    [64]Wang.A.H,Nie.J.H,Xie C.S.Fractural behavior in the transitional region of laser-clad Al-Fe bronze on Al-Si alloy under tensile loading.Materials Letters,2002,56(5):822-826
    [65]Ouyang.J.H,Nowotny.S,Richter.A,et al.Laser cladding of yttria partially stabilized ZrO_2(YPSZ) ceramic coatings on aluminum alloys.Ceramics International,2001,27(1):15-24
    [66]曾晓雁,吴新伟,陶曾毅,等.激光熔覆铸造WC-Ni基合金中WC颗粒的烧损机理与评诂.金属学报,1997,33(8):863-868
    [67]Hoadley.A.F.A,Rappaz.M.A thermal model of laser cladding by powder injection.Metallurgical Transaction B,1992,23(10):631-642
    [68]Picasso.M,Hoadley.A.F.A.Finite element simulation of laser surface treatments including convection in the melt pool.International Journal of Numerical Methods for Heat & Fluid Flow,1994,4(1):61-83.
    [69]Picasso.M,Marsden.C.F,Wagniere.J.-D,et al.A simple but realistic model for laser cladding.Metallurgical and Materials Transactions B,1994,25(4):281-291
    [70]Toyserkani.E,Khajepour.A,Corbin.S.Three-dimensional finite element modeling of laser cladding by powder injection:effects of powder federate and travel speed on the process.Journal of Laser Application,2003,15(3):153-160
    [71]Toyserkani.E,Khajepour.A,Corbin.S.3-D finite element modeling of laser cladding by powder injection:effects of laser pulse shaping on the process.Optics and Lasers in Engineering,2004,41(6):849-867
    [72]Fathi.A,Toyserkani.E,Khajepour.A,et al.Prediction of melt pool depth and dilution in laser powder deposition.Journal of Physics D:Applied Physics,2006,39:2613-2623
    [73]应丽霞,王黎钦,陈观慈,等.3D激光熔覆陶瓷.金属复合涂层温度场的有限元仿真与计算.金属热处理,2004,29(7):24-28
    [74]Choi.J,Choudhuri.S.K,Mazumder.J.Role of preheating and specific energy input on the evolution of microstructure and wear properties of laser clad Fe-Cr-C-W alloys.Journal of Materials Science,2000,35(13):3213-3219
    [75]Li Sheng,Hu Qianwu,Zeng Xiaoyan,et al.Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer.Applied Surface Science,2005,240(1-4):63-70
    [76]Xu Guojian,Muneharu Kutsuna,Zhongjie Liu,et al.Characteristics of Ni-based coating layer formed by laser and plasma cladding processes.Materials Science and Engineering:A,2006,417(1-2):63-72
    [77]Pei.Y.T,Ouyang.J.H,Lei.T.C,et al.Laser clad ZrO_2-Y_2O_3 ceramic/Ni-base alloy composite coatings.Ceramics International,1995,21(2):131-136
    [78]Li Mingxi,He Yizhu,Yuan Xiaomin.Effect of nano-Y_2O_3 on microstructure of laser cladding cobalt-based alloy coatings.Applied Surface Science,2006,252(8):2882-2887
    [79]Sorin Ignat,Pierre Sallamand,Alexandru Nichici,et al.MoSi_2 laser cladding-elaboration,characterisation and addition of non-stabilized ZrO_2 powder particles.Intermetallics,2003,11(9):931-938
    [80]赵亚凡,陈传忠.激光熔覆金属陶瓷涂层开裂的机理及防止措施.激光技术,2006,30(1):16-22
    [81]Jang.J.Y,Chiu.Y.W.Numerical and experimental thermal analysis for a metallic hollow cylinder subjected to step-wise electro-magnetic induction heating.Applied Thermal Engineering,2007,27(11-12):1883-1894
    [82]Si Songhua,Yuan Xiaomin,Liu Yuelong,et al.Effect of Laser Power on Microstructure and Wear Resistance of WC_p/Ni Cermet Coating.Journal of Iron and Steel Research,International,2006,13(3):74-78
    [83]Li Yanxiang,Ma Jian.Study on overlapping in the laser cladding process.Surface and Coatings Technology,1997,90(1-2):1-5
    [84]Sun.S,Durandet.Y,Brandt.M.Parametric investigation of pulsed Nd:YAG laser cladding of stellite 6 on stainless steel.Surface and Coatings Technology,2005,194(2-3):225-231
    [85]李胜,胡乾午,曾晓雁.激光模式对激光熔覆层质量的影响.激光技术,2005,29(6):667-669
    [86]Gedda.H,Powell.J,Wahlstrom,et al.Energy redistribution during CO_2 laser cladding.Journal of Laser Applications,2002,14(2):78-82
    [87]Coelho.J.P,Abreu.M.A,Pires.M.C.High-speed laser welding of plastic films.Optics and Lasers in Engineering,2000,34(4-6):385-395
    [88]Abbas.G.,West.D.R.F.Laser surface cladding of stellite and stellite-SiC composite deposits for enhanced hardness and wear.Wear,1991,143(2):353-363
    [89]De Oliveira U,Ocelik.V,De Hosson.J.Th.M.Analysis of coaxial laser cladding processing conditions.Surface and Coatings Technology,2005,197(2-3):127-136
    [90]陈新.16Mn钢表面激光熔覆的研究[硕士学位论文].武汉:华中理工大学,1987.6-30
    [91]陶锡麒,潘邻.激光熔覆用钴基合金粉末的研究.材料保护,2002,35(10):28-29
    [92]黄永俊,曾晓雁,胡乾午,等.激光感应复合熔覆中熔覆层有效能量分析.金属热处理,2008,33(5):44-47
    [93]郑启光,辜建辉.激光与物质相互作用.武汉:华中理工大学出版社,1996.14-16
    [94]John Davis,Peter Simpson.感应加热手册,张淑芳,柳祥训,蔡慰望.译:北京:国防工业出版社,1985.4-6
    [95]曾晓雁,吴懿平.表面工程学.北京:机械工业出版社,2001.51-52
    [96]赵世臣.常用金属材料手册.北京:冶金工业出版社,1978.817-902
    [97]Xu Jiang,Liu Wenjin.Wear characteristic of in situ synthetic TiB_2particulate-reinforced Al matrix composite formed by laser cladding.Wear,2006,260(4-5):486-492
    [98]Li.Q,Lei.T.C,Chen.W.Z.Microstructural characterization of WCp reinforced Ni-Cr-B-Si-C composite coatings.Surface and Coatings Technology,1999,114(2-3):285-291
    [99]Przybylowicz.J,Kusinski.J.Structure of laser cladded tungsten carbide composite coatings.Journal of Materials Processing Technology,2001,109(1-2):154-160
    [100]Zhou Shengfeng,Huang Yongjun,Zeng Xiaoyan.A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot.Applied Surface Science,2008,254(10):3110-3119
    [101]Jackson.K.A,Hunt.J.D.Transparent compounds that freeze like metals.Acta Metallurgica,1965,13(11):122-1215
    [102]Zhong Minlin,Liu Wenjin,Yao Kefu,et al.Microstructural evolution in high power laser cladding of Stellite 6+WC layers.Surface and Coatings Technology,2002,157(2-3):128-137
    [103]Gremaud.M,Carrard.M,Kurz.W.The microstructure of rapidly solidified A1-Fe alloys subjected to laser surface treatment.Acta Metallurgica et Materialia,1990,38(12):2587-2599
    [104]胡赓祥,钱苗根.金属学.上海科学技术出版社,1984.172-175
    [105]Pan.Q.Y,Lin.X,Huang.W.D,et al.Microstructure evolution of Cu-Mn alloy under laser rapid solidification conditions.Materials Research Bulletin,1998,33(11):1621-1633
    [106]Zhou Shengfeng,Huang Yongjun,Zeng Xiaoyan,et al.Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding.Materials Science and Engineering:A,2008,480(1-2):564-572
    [107]Carvalho.P.A,Vilar.R.Laser alloying of zinc with aluminum:Solidification structures.Surface and Coatings Technology,1997,91(3):158-166
    [108]Zhou Shengfeng,Zeng Xiaoyan,Hu Qianwu,et al.Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization.Applied Surface Science,2008,doi:10.1016/j.apsusc.2008.04.003
    [109]Rosenthal.D.The theory of Moving Source of Heat and its Application to Metal Transfer.Transaction,ASME,1946,43(11):849-866
    [110]Pomthep Chivavibul,Makoto Watanabe,Seiji Kuroda,et al.Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC-Co coatings.Surface and Coatings Technology,2008,202(8):1405-1417
    [111]Nejat Y.Sari,Muharrem Yilmaz.Improvement of wear resistance of wire drawing rolls with Cr-Ni-B-Si+WC thermal spraying powders.Surface and Coatings Technology,2008,202(13):3136-3141
    [112]吴新伟,曾晓雁,朱蓓蒂,等.镍基WC金属陶瓷激光熔覆涂层的熔化烧损规律.金属学报,1997,33(12):1282-1288
    [113]张维平,马玉涛,刘硕.大面积激光熔覆制备原位自生TiB_2-Ni金属陶瓷复合涂层的研究.材料保护,2005,38(2):4-6
    [114]张大伟,雷廷权,李福军.激光单道与多道熔覆Ni+Cr_3C_2复合涂层的组织及硬度.材料热处理学报,2001,22(3):23-27
    [115]Wu Xiaolei.Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating.Surface and Coatings Technology,1999,115(2-3):153-162
    [116]Wu Xiaolei,Chen Guangnan.Nonequilibrium microstructures and their evolution in a Fe-Cr-W-Ni-C laser clad coating.Materials Science and Engineering A,1999,270(2):183-189
    [117]Wu Xiaolei,Hong Youshi.Microstmctural evolution of a laser-cladded coating.Scripta Materialia,2000,43(2):123-127
    [118]徐祖耀.金属材料热力学,科学出版社,1981.78-243
    [119]廖为鑫,解子章.粉末冶金过程热力学分析,冶金工业出版社.1984.256-257
    [120]Van Acker.K,Vanhoyweghen.D,Persoons.R,et al.Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings.Wear,2005,258(1-4):194-202
    [121]Wu.P,Du.H.M,Chen.X.L,et al.Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings.Wear,2004,257(1-2):142-147
    [122]Zhu Liu,Li Jian,Wu Tao,et al.Preparation of WC-Co composite powder by electroless plating and its application in laser cladding.Materials Letters,2006,60(16):1956-1959
    [123]Liu Dejian,Li Liqun,Li Fuquan,et al.WC_p/Fe metal matrix composites produced by laser melt injection.Surface and Coatings Technology,2008,202(9):1771-1777
    [124]Babu.S.S,Martukanitz.R.P,Parks.K.D,et al.Toward prediction of microstructural evolution during laser surface alloying.Metallurgical and Materials Transactions A,33(4):1189-1200
    [125]胡礼木,崔令江,李慕勤.材料成型原理.北京:机械工业出版社,2005.95-145
    [126]Liu.Y,German.R.M.Contact angle and solid-liquid-vapor equilibrium.Acta Materialia.44(1996) 1657-1663.
    [127]胡汉起.金属凝固原理(第二版).北京:机械工业出版社,2000.128-223
    [128]刘江龙,刘朝.激光作用下合金熔池内的熔池流动.重庆大学学报,1993,16(5):109-114
    [129]杨洗陈,郑天禧,张乃坤.FeCrSiB合金激光熔敷中对流传质研究.金属学报,1992,28(2):B84-88
    [130]Zeng.D.W,Xie.C.S,Wang.M.Q.In situ synthesis and characterization of Fe_p/Cu composite coating on SAE 1045 carbon steel by laser cladding.Materials Science and Engeering A 2003,344(1-2):357-364
    [131]崔忠圻.金属学与热处理.北京:机械工业出版社,2000.163-164
    [132]邵荷生,曲敬信,许小棣,等.摩擦与磨损.煤炭工业出版社,1992.142-185
    [133]曾晓雁,吴新伟,陶曾毅,等.激光熔覆Ni-WC金属陶瓷层的耐磨性分析.金属学报,1997,33(8):885-890
    [134]Vardavoulias.M,Jouanny-Tresy C,Jeandin.H.Sliding wear behavior of ceramic particle-reinforced high-speed steel obtained by powder metallurgy.Wear,1993,165(2):141-149
    [135]Cerri.W,Martinella.R,Mor.G O.Laser deposition of carbide-reinforced coatings. Surface and Coatings Technology,1991,49(1-3):40-45
    [136]Jia.K,Fischer.T.E.Sliding wear of conventional and nanostructured cemented carbides.Wear,1997,203-204(4):310-318
    [137]Nicoletto.G,Tucci.A,Esposito.L.Comparative dry wear behavior of hard coatings.Wear,1993,162-164(Part 2):925-929
    [138]张剑锋,周志芳.摩擦磨损与抗磨技术.天津:天津科技翻译出版公司出版,1993.116-118
    [139]Chen Huahui,Xu Caiyun,Chen Jun,et al.Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear.Wear,2008,264(7-8):487-493
    [140]Jahanmir.S,Suh.N.P,Abrahamson II.E.P.The delamination theory of wear and the wear of a composite surface.Wear,1975,32(1):33-49
    [141]Suh.N.P.The delamination theory of wear.Wear,25(1):111-124
    [142]孙家枢.金属的磨损.北京:冶金工业出版社,1992:118-122
    [143]齐毓霖.摩擦与磨损.北京:高等教育出版社,1986.60-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700