用户名: 密码: 验证码:
纳米氧化锌的形貌控制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化锌(ZnO)作为一种新型多功能无机材料,在很多领域有着广阔的应用前景,尤其是在与人类生存和健康密切相关的光催化降解有机物污染和抗菌方面有着独特的优势。如何将光催化降解性能和抗菌性能结合起来是目前研究纳米氧化锌应用的一个重要分支,然而纳米氧化锌作为光催化材料和抗菌剂国内仍处于研究阶段。控制纳米氧化锌的形貌、在氧化锌表面吸附金属单质或晶格中掺入外来元素都会改变氧化锌本体的很多性能,如缺陷浓度、颗粒大小等,而这些因素会在一定程度上提高氧化锌的物理和化学性能。本文基于这一点,采用直接沉淀法和溶胶法制备特定形貌的纳米ZnO粉体和采用金属单质吸附到氧化锌表面形成金属-ZnO异质结粉体,拟通过控制形貌和形成异质结来提高纳米氧化锌的光催化和抗菌性能。
     首先概述了ZnO在光催化和抗菌方面的研究进展以及纳米ZnO的制备方法,重点回顾了液相法制备特定形貌的纳米氧化锌的研究进展。然后采用直接沉淀法和溶胶法分别制备不同形貌纳米ZnO和纳米金属-ZnO异质结,研究了制备工艺参数和金属吸附对粉体的形貌、颗粒大小、结构和缺陷浓度的影响。最后,研究了不同形貌的纳米ZnO粉体和金属-ZnO异质结粉体的光催化和抗菌性。主要研究包括以下几个方面:
     通过直接沉淀法,制备了三种形貌的纳米氧化锌粉体;并研究了反应温度、溶液的PH值、不同锌盐和表面活性剂对纳米氧化锌形貌的影响。
     用NaOH作为沉淀剂,未加表面活性剂的条件下制备了柱状纳米氧化锌粉体,实验结果显示:纤锌矿结构的氧化锌晶体,长度方向上增长比直径方向上增长所需要能量少,生长更快。因此,反应温度从60℃升高到90℃,制备氧化锌的溶液中反应分子能量升高,使得生成氧化锌的趋势变大,氧化锌形貌从短柱状变为长柱状;溶液中阴离子离子半径大小顺序为:CH_3CO_2~->SO_4~(2-)>NO_3~->Cl~-,离子半径越大,在氧化锌(0001)晶面上吸附量越少,对氧化锌(0001)晶面生长速度抑制越弱,其抑制顺序为:CH_3CO_2~-<SO_4~(2-)<NO_3~-<Cl~-,选用的锌盐不同,粉体形貌从针状(以Zn(Ac)_2·2H_2O制备)变化到柱状(以ZnSO_4制备),然后到笋状(以Zn(NO_3)_2·6H_2O制备),最后为短柱状(以ZnCl_2制备),其中长径比分别为6.5:1—5:1—3.5:1—2:1。随着溶液PH值从酸性到碱性变化,粉体形貌从类球状变为柱状;溶液的强碱性进一步增加,粉体形貌从柱状转变成星状。
     用氨水作为沉淀剂,未加表面活性剂的条件下制备了花状纳米氧化锌粉体,并用XRD和荧光光谱研究了煅烧前后的花状纳米氧化锌粉体性能变化,结果表明:煅烧后氧化锌结晶度提高,晶体缺陷和表面杂质减少,但氧化锌晶粒增大和比表面积减小,因此,如能结合其他工艺,在煅烧前后氧化锌晶粒大小和比表面积变化不大的情况下,煅烧工艺能改善纳米氧化锌粉体的光催化性能;煅烧工艺却大大降低了纳米氧化锌粉体的抗菌性能。为了制备出光催化性能和抗菌性能都较好的氧化锌粉体,以下在制备和改性氧化锌粉体时均不采用煅烧工艺。通过升高反应溶液的PH值,得到微米花状氧化锌粉体。
     用NaOH作为沉淀剂,以柠檬酸钠(NaCA)为表面活性剂制备了片状纳米氧化锌。反应过程中,柠檬酸根和锌离子形成螯合物,抑制了纳米氧化锌的(0001)晶面生长,使得最终形貌为片状。升高温度,得到微米级片状氧化锌粉体。
     在此基础上,研究了三种形貌(柱状、花状和片状)的纳米氧化锌粉体的可见荧光性能,结果显示:由于柠檬酸根包覆到片状氧化锌表面,补偿了ZnO粉体表面的一些悬键,减少了结构缺陷,片状氧化锌的可见荧光强度最低,样品的缺陷最少,但柠檬酸根包覆会引起氧化锌粉体比表面积减小。
     为了制备颗粒尺寸更小的纳米氧化锌粉体,采用溶胶法制备出了不同溶剂中氧化锌溶胶,结果显示:水溶胶中颗粒尺寸较大,稳定性较差,表面存在表面活性剂的包覆,粉体的比表面积变小;醇溶液中溶胶颗粒尺寸较小,稳定性较好,无表面活性剂的包覆,粉体的比表面积变化不大,因此,改性制备和性能分析时均不采用加入表面活性剂工艺。对比醇溶剂(甲醇、乙醇和异丙醇)中氧化锌溶胶紫外吸收峰,乙醇中吸收峰最尖锐,半导体特征最明显,且乙醇毒性小,因此选用乙醇作为溶胶法制备氧化锌的溶剂。以下制备工艺中为了方便比较和讨论,在样品比表面积变化不大的基础上,依靠吸附、小尺寸效应和减少样品的缺陷浓度等手段对氧化锌粉体进行改性。
     以甲基橙和大肠杆菌为模型来研究所制备粉体的光催化和抗菌性能。直接沉淀法制备出的三种形貌(柱状、花状和片状)纳米氧化锌粉体中,为了方便比较,研究了其中两种未加表面活性剂的纳米粉体(柱状、花状)光催化性能,结果显示:柱状氧化锌粉体颗粒尺寸较小,比表面积较大,表面的光催化活性点较多,光催化效率比花状粉体高。溶胶法制备出的纳米ZnO粉体晶粒(8.2 nm)比直接沉淀法(55 nm)制备出的粉体晶粒小,因此,溶胶法制备出的粉体光催化降解率较大,紫外光条件下粉体光催化降解率达到92%,而直接沉淀法制备出的柱状粉体光催化降解率为24%。溶胶法制备出的粉体比直接沉淀法制备出的粉体缺陷浓度大,两种方法制备出的粉体光催化实验结果说明,晶粒大小或颗粒大小以及比表面积大小比缺陷浓度多少对氧化锌粉体光催化性能的影响大。颗粒团聚对溶胶法制备出的纳米ZnO粉体光催化降解率影响较大,粉体在室温下水溶液中放置24 h,粉体产生团聚,紫外光条件下氧化锌粉体的光催化降解率从92%下降到56%。
     对大肠杆菌实验表明,直接沉淀法制备出的两种形貌(柱状、花状)纳米氧化锌粉体中,柱状氧化锌粉体颗粒尺寸小,光催化性能好,很容易吸附沉积到细菌体内而更有效地杀灭细菌,因此柱状粉体比花状粉体抗菌效果较好,其MIC为50 ppm。溶胶法制备出的粉体晶粒(8.2 nm)比直接沉淀法制备出的晶粒(55 nm)小,光催化效率高,但粉体在抗菌测试过程中易团聚(光催化测试时,粉体在水中搅拌,相对于抗菌测试时团聚较少),而缺陷对抗菌性能影响不大,溶胶法制备出的粉体的抗菌性能和直接沉淀法差别不大,其MIC也为50 ppm。
     为了提高氧化锌粉体的光催化效率和抗菌性能,以光催化性能和抗菌性能均较好的溶胶法工艺为基础,制备出掺铜纳米氧化锌粉体。由于低掺杂量(<5.0%)下掺杂粉体的可见荧光强度增强,缺陷增多;掺杂使得粉体能带宽度变化较小,仍只能吸收紫外区光源,对光催化性能的改善贡献较小;而在高掺杂量(>7.5%)下,粉体物相发生改变,粉体表面有氧化铜相出现,很难再通过该方法实现将铜掺杂进氧化锌晶格中,因此,采用本实验工艺条件下掺杂铜不适合提高溶胶法制备的氧化锌粉体的光催化性能。缺陷多少对掺杂氧化锌粉体抗菌性能影响不大,但缺陷增多,粉体的光催化途径杀菌效果会降低,而高掺杂量下吸附在氧化锌表面的氧化铜,在氧化物粉体中的抗菌性能最差,因此,采用本实验工艺条件下掺杂铜对抗菌性能的提高意义不大。
     银吸附不仅可改善氧化锌表面的电荷分离效率、减少氧化锌粉体缺陷而且银本身就是极好的抗菌材料,因此为了改善氧化锌粉体的光催化和抗菌性能,选取直接沉淀法和溶胶法制备氧化锌中性能最佳的工艺为基础,分别制备出纳米Ag-ZnO异质结粉体。由于两种方法制备出的粉体颗粒大小、缺陷多少的不同,两种方法制备出的异质结粉体的光催化效率不同,实验显示:溶胶法制备出的异质结粉体光催化效率明显高于直接沉淀法制备出的粉体;溶胶法制备出粉体的光催化效率随着硝酸银加入量的增加而提高,自然光条件下光催化降解率最大达到85%,光催化降解率比溶胶法制备出的纯纳米氧化锌提高了20%;而直接沉淀法制备出的异质结粉体光催化降解率则随着硝酸银加入量的增加,先减小后增加,紫外光条件下光催化降解率最大达到30%。
     用直接沉淀法和溶胶法两种方法制备出的异质结粉体抗菌实验结果均显示:由于异质结中银与氧化锌具有协同杀菌的作用,随着硝酸银加入量的增加,粉体的抗菌效果变好,样品的MIC从50 ppm下降到6.25 ppm;且溶胶法制备出异质结粉体的颗粒尺寸(~10 nm)较小,颗粒越小越容易吸附到细菌的细胞壁表面,通过吸附沉积杀菌,且颗粒越小,比表面积越大,越有利于光催化杀菌。因此,在硝酸银的加入量相同的条件下,溶胶法制备出的异质结粉体的比直接沉淀法制备出的粉体抗菌效果好。
     直接沉淀法制备出的异质结粉体的光催化性能和抗菌性能随硝酸银加入量的增加,变化趋势不一致。这主要是直接沉淀法制备异质结粉体的过程中,银掺杂和银吸附是一对竞争过程同时存在。银掺杂随着硝酸银和还原剂加入量的增加,比重越来越小,但银掺杂导致粉体缺陷增多;而银吸附随着硝酸银和还原剂加入量的增加,比重越来越大(由于该实验过程是硝酸银溶液向还原剂溶液中滴加,反应前期随着还原剂的加入量增多,还原滴加的硝酸银概率越大,而掺杂概率越小;且硝酸银加入量越多,滴加时间越长,滴加到后期,溶液中氧化锌生成越多,银掺杂进氧化锌晶体概率更小),银吸附过程逐渐占主导,使得样品缺陷减小,因此,直接沉淀法制备过程中随着硝酸银加入量的增加,异质结粉体缺陷先增多后减少,光催化效率先减小后增大。虽然直接沉淀法制备出的异质结粉体光催化效率不高,异质结粉体通过光催化杀菌效果不佳,但银的抗菌效果优于氧化锌,银吸附能从根本上提高氧化锌粉体的抗菌性能,而银掺杂导致粉体缺陷增多对抗菌性能的影响不大,因此,随着硝酸银加入量的增加,直接沉淀法制备出的异质结粉体抗菌性能一直增强。
     溶胶法制备出的纳米氧化锌粉体添加到塑料薄膜中,并研究其对大肠杆菌的杀菌性能,结果显示:在大肠杆菌浓度为10~5cfu/ml时,塑料薄膜对其24小时杀菌率达到99%以上,加工出的塑料薄膜对大肠杆菌生长有很强的抑制作用。
As a new type multifunction inorganic material,nano-ZnO has wide application prospect in many fields,especially in photocatalytic and antibacterial materials which are closely correlated with the survival and health of human beings.How to combine the excellent photocatalytic activity with antibacterial performance of ZnO nanocrystals is still one of the hot-pursued topics in the field of its application.While the photocatalytic activity and antibacterial capability of ZnO has been explored in early work,its effectiveness in environmental purification and antibacterial materials is yet to be explored fully in our country.Morphologically controllable synthsizing,doping other ion into oxide matrix and adsorbing metal on the surface to form heterostructure,which play an important role in modifying the physical and chemical properties of mother oxide,for example defect concentration and particle size,at a certain extent.Based on this point,this paper aims to improve the photocatalytic and antibacterial properties of nano-ZnO through morphologically controllable synthesizing,doping with metal ion,which radius is close to Zn~(2+) ion and forming heterostructure with metal.Firstly,the research progress of ZnO in environment purification and antibacterial materials,and the studies of nano-ZnO preparation with special morphology were introduced in brief.Subsequently,ZnO nano-powders with special morphology,doped ZnO nano-powders and metal-ZnO(MZ) heterostructure were synthesized by direct precipitation and sol method.The influences of preparation technology,doping,adsorbing metal on the structure and morphology of as-synthesized nano-powders were also investigated.Finally,the photocatalytic and antibacterial properties of nano-ZnO powders with different morphologies and metal-ZnO (MZ) heterostructure were studied in detail.On the basis of experimental results,the mechanism for metal-ZnO(MZ) heterostructure to improve properties of nano-ZnO was primarily discussed.This work mainly includes the following aspects:
     ZnO nanocrystals were morphologically controllable synthesized through direct precipitation.It has been found that three different shapes of ZnO nanocrystals were easily obtained through direct precipitation meathod.Furthermore,the effect of reaction temperature、PH、the anion of reactant and dispering agent on their morphologies has also been discussed.
     By using the sodium hydroxide as precipitation agent,rod-like nano-ZnO powders can be obtained.Because(0001) plane of wurtzite ZnO crystal grows fast than other planes in ZnO crystal,with the increase of reaction temperature from 60℃to 90℃,the morphology of ZnO changed from short rod to long rod.It can also be found that the ratio of length to diameter varied from 6.5:1(prepared from Zn(Ac)_2·2H_2O) to 5:1(prepared from ZnSO_4·7H_2O) and then 3.5:1(prepared from Zn(NO)_3·6H_2O),finally to 2:1(prepared from ZnCl_2).It was supposed that the(0001) plane of ZnO crystal was restrained by anion of the zinc salt and the velocity of inhibition was as followed:CH_3CO_2~-<SO_4~(2-)<NO_3~-<Cl~-. Accordingly,the morphology is changed from nanopricker to nanorod and then to bamboo shoot-like and finally to stubby nanocrystals.With the increase of PH value,the morphology of ZnO changed from ball-like to rod-like and then finally to star-like.
     By using the ammonia as precipitation agent,flower-like nano-ZnO powders can also be achieved.The influence of annealing process on the photoluminescence property was also studied.The result shows that photoluminescence peak was nearly quenched after annealing the flower-like sample at 600℃for 3 hours in air,which means the sample has little defects in their crystals after annealing them in air..Furthermore,the diffraction peak was much sharper,and the intensity of peak was much stronger after annealing the flower-like sample in air,which indicates the annealing process increase crystallization and decrease the specific surface area of the sample.Thus,if made the specific surface area of the sample unchangeable,the photocatalytic property of the sample can be improved by annealing process.However antibacterial property of the sample became weak after annealing process.Furthermore,with the increase PH value,flower-like micro-ZnO powders were obtained.
     The flake-like nano-ZnO powders can also be achieved by affiliating the citrate sodium(NaCA) into the solution and using the sodium hydroxide as precipitation agent. The result shows that citrate may be adsorbed preferably on the(0001) crystal plane of ZnO and the growth along this facet is therefore considerably restricted to produce flakes.With the increase of reaction temperature,the flake-like ZnO powders has grown from nanocrystals to microcrystals.
     The influence of three different morphologies on the photoluminescence properties was also studied.It was found that flake-like nano-ZnO powders have less defects among them.Because the flake-like ZnO powders was smallest among them,the photocatalytic activity or antibacterial properties of flake-like nano-ZnO powders might be better. However,adding the dispering agent(citrate sodium) into the reaction process will decrease the specific surface area of the flake-like ZnO sample,which was harmful to improve their photocatalytic and antibacterial properties.
     ZnO sol was synthesized in different solvent by sol way.It was found that the diameter of nanocrystals prepared in mellow solvents were samller and stablable than those prepared in water.In order to synthesize ZnO sol in water,the dispering agent was needed in the preparing process,which leads to decrease the specific surface area of the sample.Thus,in the following part,the preparing process without adding the dispering agent was chose to synthesize the ZnO sample.Furthermore,the absorption peak of ZnO sol in ethanol was more prominent than others made from other mellow solvents in UV curves.It means that the semiconducting character of the samples synthesized in ethanol was more obvious than others made from other mellow solvents.Furthermore the ethanol was nontoxic.Thus, ethanol will be chosed as the appropriate solvent to prepare the ZnO sol or their complex.
     Because of larger specific surface and smaller particle size,the photocatalytic activity of ZnO nanorods prepared was better than flower-like ZnO samples,which were prepared by direct precipitation method.However,the efficiency of degradation of ZnO nanorods prepared by direct precipitation method was dramatically lower than the powders prepared by sol method because ZnO nanorods were larger than the powders prepared by sol method. The results of the photocatalytic degradation test indicate that the ZnO powders,which prepared by sol method,have eximious photocatalytic activity.Under UV light irradiation for 5 h,92%of degradation of methyl orange aqueous solution can be obtained.However, the excellent performance cann't be lasted because of reuniting among the nano-ZnO powders prepared by sol method and the degradation rate has changed from 92%to 50% after drying the powders at room temperature for 24 h.
     MIC test shows that ZnO nanocrystals prepared by sol method and by direct direct precipitation method has the same MIC value for Escherichia,although the powders prepared by sol method is samller than that prepared by direct precipitation method. Because small ZnO particle is easy to growth without adding dispering agent,the antibacterial performance of ZnO powders synthesized by sol method is nearly same to that prepred by direct precipitation method.
     On the basis of sol method,Cu-doped nano-ZnO powders were also prepared to improve the photocatalytic activity and antibacterial properties of pure ZnO powders.It has been found that UV absorption curves from Cu-doped ZnO can be tunable in a range from 325 nm to 345 nm through Cu doping.However,only the sun-light in UV range can be absorbed by the Cu-doped ZnO nanocrystals.Thus,Cu-doping in ZnO mightn't be the appropriate candidate for improving photocatalytic activity of pure ZnO powders.In particular,at low concentration of Cu(<5%),the intensity of the visible peak dramatically increases with increasing Cu concentration,which means Cu low-doping Cu ion can introduce defects in ZnO crystal;At high concentration of Cu(>7.5%),the impurity peaks were observed and the main peaks of ZnO were nearly quenched in XRD curves,which means that high-doped Cu ion into ZnO crystal lattice using this method cann't be achieved. Furthermore,Cu_xO has poor antibacterial performance in oxide.Therefore,it can be deduced that this doping method wasn't suitable to improve their photocatalytic and antibacterial properties,which leaded to the increasing of defects in ZnO samples.
     In order to improve photocatalytic activity and antibacterial performance of the obtained nano-ZnO powders,nano-silver was absorbed on the surface of the powders to form Ag-ZnO nanoheterostructure through sol method and direct precipitation,respectively. The results of the photocatalytic degradation test of as-synthesized Ag-ZnO nanoheterostructure by sol method indicate that its efficiency can be greatly improved by depositing appropriate amount of silver.And when the percent of silver is about 0.4%, Ag-ZnO nanoheterostructure have the best photocatalytic property and its photocatalytic rate is about 85%under sunlight irradiation.Furthermore,all samples prepared by sol method have higher photocatalytic efficiency than P25 under the same condition.However, the result of the photocatalytic degradation rate of Ag-ZnO nanoheterostructure prepared by direct precipitation shows that the highest rate was 30%under UV irradiation condition. Furthermore,the photocatalytic degradation rate of Ag-ZnO nanoheterostructure prepared by direct precipitation decreased initially and then increased with increasing Ag content.
     The value of the MIC for Escherichia of Ag/ZnO nanoheterostructures synthesized by sol method and direct precipitation method confirms from 50 to 6.25 ppm.Because the Ag/ZnO nanoheterostructures synthesized by sol method is smaller and has less defects,its antibacterial property was better than the powders synthesized by direct precipitation under the same Ag concentration.
     It can be found that the photocatalytic activity of nano-ZnO powders prepared by direct precipitation method decreased with increasing of AgNO_3 concentration.On the contrary,their antibacterial properties increased with increasing of AgNO_3 concentration. However,the photocatalytic activity of nano-ZnO powders prepared by sol method increased with increasing of AgNO_3 concentration,while their antibacterial properties also increased with increasing of AgNO_3 concentration.The singular behavior should be caused by different AgNO_3 consumption process under different method.In direct precipitation method,when AgNO_3 adding into the Zn salts solution drop by drop,AgNO_3 has partly converted to Ag and the other part of Ag~+was introduced ZnO crystals.At low AgNO_3 adding concentration,Ag~+-doping was the main process at reaction condition and then the defect concentration increased with Ag~+-doping in ZnO crystals.At high AgNO_3 adding concentration,Ag~+ converting to Ag was the main process at reaction condition and the defect concentration decreased.While in sol method,AgNO_3 can completely convert to Ag if sunlight irradiation time is long enough.Because Ag has excellent antibacterial performance than ZnO and the defects of the as-synthsized samples has less influence on their antibacterial performance than Ag-absorbing,the photocatalytic activity of nano-ZnO powders prepared by direct precipitation method decreased and their antibacterial properties increased with increasing of AgNO_3 concentration.
     The nano-ZnO powders prepared by sol method were added to the plastic film and prepare the antibacterial plastic film.MIC test shows that:when the concentration of Escherichia is 10~5cfu/ml,the antibacterial rate of the antibacterial plastic film is 99%.It means that the as-synthsized plastic film has excellent antibacterial property.
引文
[1] J. Sawai, H. Igarashi, A. Hashimoto, et al. Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. Journal of Chemical Engineering of Japan, 1995,28(5): 556-561.
    [2] R. E. A. Williams, A. G. Gibson, T. C. Aitchiso, et al. Assessment of a contact-plate sampling technique and subsequent quantitative bacterial studies on atopic dermatitis.British Journal of Dermatology. 1990,123(4):493-501.
    [3] C. K. Xu, K. H. Rho, J. H. Chun, et al. Low temperature (~250℃) route to lateral growth of ZnO nanowires. Applied Physical Letters, 2005,87(25):253104-1-253104-3.
    [4] A. R. Hutson. Hall Effect studies of doped zinc oxide single crystals. Physical Review, 1957, 108(4):222-230.
    [5] M. A. Behnajady, N. Modirshahla, N. Daneshvar, et al. Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. Journal of Hazardous Materials, 2006, 140(1-2):257-263.
    [6] M. A. Behnajady, N. Modirshahla, R. Hamzavi. Kinetic study on photocatalyticdegradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials B, 2006, 133(1):226-232.
    [7] N. Daneshvar, M. Rabbani, N. Modirshahla, et al. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO_2 process. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 168(5):39-45.
    [8] N. Daneshvar, D. Salari, M. A. Behnajady. Iran Journal of Chemistry Chemical Engineering, 2002, 21(4):55-62.
    [9] J. M. Herrmann, M. N. J. Disdier, P. P. Mozzanega. Heterogeneous photocatalysis:in situ photoconductivity study of TiO_2 during oxidation of isobutane into acetone.Journal of Catalysis, 1979, 60(2):369-377.
    [10] H. C. Yatmaz, A. Akyol, M. Bayramoglu. Kinetics of the Photocatalytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions. Indian Engineering of Chemical Research, 2004,43(19):6035-6039.
    [11] S. H. Kim, H. K. Kim, S. W. Jeong, et al. Characteristics of Pt schottky contacts on hydrogen peroxide-treated n-type ZnO(0001) layers. Superlattices and Microstructures, 2006, 39(7):211-217.
    [12] A. Furube, R. Katoh, K. Hara, et al. Ultrafast stepwise electron injection from photoexcited Ru-complex into nanocrystalline ZnO film via intermediates at the surface. Journal of Physical Chemistry B, 2003, 107(17):4162-4166.
    [13] P. V. Kamat. Photophysicak Photochemical and Photocatalytic aspects of metal nanoparticle. Journal of Physical Chemistry B, 2002, 106(32):7729-7744.
    [14] K. G. Kanade, B. B. Kale, J. O. Baeg, et al. Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation.Materials Chemistry and Physics, 2007,102(1):98-104.
    [15] R. H. Wang, J. H. Xin, Y. Yang, et al. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Applied Surface Science, 2004,2279(19):312-317.
    [16] K. Maeda,T. Takata, M. Hara, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. Journal of the American Chemical Society, 2005, 127(23):8286-8287.
    [17] J. Y. Kim, F. E. Osterloh. ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength. Journal of the American Chemical Society,2005, 127(29):10152-10153.
    [18] R. Konenkamp, R. C. Word, M. Godinez. Ultraviolet electroluminescence from ZnO/Polymer heterojunction light-emitting diodes. Nano Letters, 2005, 5(10):2005-2008.
    [19] W. D. Yu, X. M. Li, X. D. Gao, et al. Large-Scale Synthesis and Microstructure of SnO_2 Nanowires Coated with Quantum-Sized ZnO Nanocrystals on a Mesh Substrate. Journal of Physical Chemistry B, 2005, 109(36): 17078-17081.
    [20] K. Keis, C. Bauer, G. Boschloo, et al. Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A:Chemistry, 2002,148(1-3):57-64.
    [21]K.Wongchareea,V.Meeyooa,S.Chavadej.Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers.Solar Energy Materials & Solar Cells,2007,91(7):566-571.
    [22]C.Bauer,G.Boschloo,E.Mukhtar,et al.Electron injection and recombination in Ru(dcbpy)_2(NCS)_2 sensitized nanostructured ZnO.Journal of Physical Chemistry B,2001,105(24):5585-5588.
    [23]S.T.C.Cheung,A.K.M.Fung,M.H.W.Lam.Visible photo-sensitization of TiO_2photodegradation of CCl_4 in aqueous medium.Chemosphere,1998,36(11):2461-2473.
    [24]K.H.Tam,A.B.Djurisic,C.M.N.Chan,et al.Antibacterial activity of ZnO nanorods prepared by a hydrothermal method.Thin Solid Films,2008,516(8):6167-6174.
    [25]J.Sawai,H.Igarashi,A.Hashimoto,et al.Evaluation of growth inhibitory effect of ceramic powder slurry on bacteria by conductance method.Journal of Chemical Engineering of Japan,1995,28(3):288-293.
    [26]O.Yamamoto,J.Sawai,T.Sasamoto.Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution.International Journal of Inorganic Materials,2000,2(5):451-454.
    [27]K.H.Tam,A.B.Djurisic,C.M.N.Chan,et al.Antibacterial activity of ZnO nanorods prepared by a hydrothermal method.Thin Solid Films,2007,516(8):6167-6174.
    [28]支华军,贺英.纳米ZnO的光催化和光致发光性能.材料导报,2004,18(1):47-49.
    [29]R.Brayner,R.Ferrari-Iliou.Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.Nano Letters,2006,6(4):866-870.
    [30]J.Sawai.Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO,MgO and CaO) by conductimetric assay.Journal of Microbiological Methods 2003,54(3):177-182.
    [31]P.K.Stoimenov,R.L.Klinger,G.L.Marchin,et al.Metal oxide nanoparticles as bactericidal agents.Langmuir 2002,18(17):6679-6686.
    [32]薛涛,曾舒,毛键等.铈掺杂纳米氧化锌抗菌粉的研制及其结构性能分析.中国稀土学报,2006,(S2):45-48.
    [33]徐甲强,潘庆谊,孙雨安等.纳米氧化锌的乳液合成、结构表征与气敏性能.无机化学学报,1998,14(3):355-359.
    [34]杨秀培,周在德,钟辉.从氧化锌矿制备高纯超细ZnO粉体.化学研究与应用,2002,14(3):366-368.
    [35]L.C.Damonte,L.A.Mendoza Zélis,B.ManSoucase,et al.Nanoparticles of ZnO obtained by mechanical milling.Powder Technology,2004,148(1):15-19.
    [36]C.Hayashi.Ultrafine Particles.Physics Today,1987,12(5):44-51.
    [37]S.L.Ding,J.Guo,X.H.Yan,et al.Radial spherical ZnOstructures with nanorods grown on both sides of a hollow sphere-like core.Journal of Crystal Growth,2005,284(1-2):142-148.
    [38]M.S.El-shall,W.Slack,W.Vann,et al.Synthesis ofnanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber.Journal of Physical Chemistry,1994,98(12):3067-3070.
    [39]陈和生,孙振亚,陈文怡等.纳米科学技术与精细化工.湖北化工,1999,16(1):8-10.
    [40]王旭升.溶胶一凝胶法制备WO_3-SiO_2材料的氨敏特性研究.功能材料,1998,29(3):276-281.
    [41]邹小平,张良莹,姚熹等.溶胶一凝胶法有机-无机精细复合材料P(VDF/TeFE).SiO_2的制备与显微结构.功能材料,1998,29(3):327-329
    [42]刘珍,梁伟,许少社等.纳米材料制备方法及其研究进展.材料科学与工艺艺,2000,8(3):103-108
    [43]Z.Wang,X.F.Qian,J.Yin,et al.Large-scale fabrication of tower-like,flower-like and tube-like ZnO arrays by a simple chemical solution route.Langmuir,2004,20(8):3441-3448.
    [44]刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体.无机材料学报,1999,14(3):391-396.
    [45] M. L. Kahn, M. Monge, E. Snoeck, et al. Spontaneous formation of ordered 2D and 3D superlattices of ZnO Nanocrystals. Small, 2005, 1(2):221-224.
    [46] A. Rabenau. The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie-International Edition, 1985, 24(12):1026-1040.
    [47] B. Cheng, E. T. Samulski. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chemical Communications, 2004,8(2):986-987.
    [48] G. R. Patzke, F. Krumeich, R. Nesper. Oxidic nanotubes and nanorods- Anisotropic modules for a future nanotechnology. Angewandte Chemie-International Edition,2002,41(14):2446-2461.
    [49] S. H. Yu. Hydrothermal/Solvothermal processing for advanced ceramic materials. Journal of the Ceramic Society of Japan, 2001, 105(5):S65-S75.
    [50] S. S. Feng, R. R. Xu. New materials in hydrothermal synthesis. Accounts of Chemical Research, 2001, 34(3):239-247.
    [51] X. G. Peng, L. Manna, W. D. Yang, et al. Shape control of CdSe nanocrystals.Nature, 2000, 404:59-61.
    [52] X. F. Duan, C. M. Lieber. General synthesis of compound semiconductor Nanowires.advanced materials, 2000, 12(4):298-302.
    [53] J. Goldberger, R. R. He, Y. F. Zhang, et al. Single-crystal gallium nitride nanotubes.Nature, 2003, 422:599-602.
    [54] J. T. Hu, T. W. Odom, C. M. Lieber. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 1999, 32(5):435-445.
    [55] Y. N. Xia, P. D. Yang, Y. G. Sun. et al. One-dimensional nanostructures: synthesis,characterization, and applications. Advanced Materials, 2003, 15(5):353-389.
    [56] S. S. Fan, M. G. Chapline, N. R. Franklin, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999,2839(2):512-514.
    [57] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 2929(29): 1897-1899.
    [58] M. Li, H. Schnablegger, S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999,402(5):393-395.
    [59] W. Q. Han, S. S. Fan, Q. Q. Li, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confmed reaction. Science, 1997,277(18):1287-1289.
    [60] L. Guo, Y. L Ji, H. B. Xu, et al. Synthesis and evolution of rod-like nano-scaled ZnC_2O_4·2H_2O whiskers to ZnO nanoparticles. Journal of Materials Chemistry, 2003,13(10):754-757.
    [61] Z. Q. Li, Y. Xie, Y. J. Xiong, et al. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactanty. New Journal of Chemistry, 2007,27(7):1518-1521.
    [62] B. Liu, H. C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 2003, 125(15):4430-4431.
    [63] B. Liu, H. C. Zeng. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and serived hierarchical nanostructures. Langmuir,2004, 20(10):4196-4204.
    [64] M. S. Mo, Jimmy C. Yu, L. Z. Zhang, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Advanced Materials,2005,17(6):756-760.
    [65] B. Liu, S. H. Yu, F. Zhang, et al. Ring-like nanosheets standing on spindle-like rods: unusual ZnO superstructures synthesized from a flake-like precursor Zn_5(OH)_8Cl_2·H_2O. Journal of Physical Chemistry B, 2004,108(14):4338-4341.
    [66] Z. Gui, J. Liu, Z. Z. Wang, et al. From muti-component precursor to nanoparticle,nanoribbons of ZnO. Journal of Physical Chemistry B, 2005,109(3):1113-1117.
    [67] T. J. Boyle, S. D. Bunge, N. L. Andrews, et al. Precursor structural influences on the final ZnO nanoparticle morphology from a novel family of structurally characterized zinc alkoxy alkyl precursors. Chemical Materials, 2004,16(17):3279-3288.
    
    [68] 李毕忠.抗菌塑料的发展和应用.化工新型材料,2000,28(6):8-12.
    
    [69] D. C. Look, Recent advances in ZnO materials and devices. Materials Science Engineering: B, 2001,80(1-3):383-387.
    [70] U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98(4):041301-1-041301-3.
    [71] Z. L. Wang. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics Condensed Matterials. 2004,16(25): R829-R858.
    [72] P. Feng, Q. Wan, T. H. Wang. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Applied Physical Letters, 2005, 87(21):213111-213113.
    [73] H. T. Wang, B. S. Kang, F. Ren, et al. Hydrogen-selective sensing at room temperature with ZnO nanorods. Applied Physical Letters, 2005,86(24):243503-1-243503-3.
    [74] Y. W. Heo, F. Ren, D. P. Norton. Gas, chemical and biological sensing with ZnO.zinc oxide bulk, thin films and nanostructures: processing, properties and applications, 2006, 130(2):491-523.
    [75] W. J. Li, E. W. Shi, W. Z. Zhong, et al. Growth mechanism and growth habit of oxide crystals. Journal of Crystal Growth, 1999, 203(1-2):186-196.
    [76] L. Jiang, G. C. Li, Q. M. Ji, et al. Morphological control of flower-like ZnO nanostructures. Materials Letters, 2007, 61 (10): 1964-1967.
    [77] T. M. Shang, J. H. Sun, Q. F. Zhou, et al. Controlled synthesis of various morphologies of nanostructured zinc oxide: flower, nanoplate, and urchin. Crystal Research Technology, 2007,42(10): 1002-1006.
    [78] R. B. Kale, Y. J. Hsu, Y. F. Lin, et al. Synthesis of stoichiometric flowerlike ZnO nanorods with hundred percent morphological yield. Solid State Communications,2007, 142 (7):302-305.
    [79] Z. S. Hu, G. Oskam, R. L. Penn, et al. The influence of anion on the coarsening kinetics of ZnO nanoparticles. Journal of Physical Chemistry B, 2003,107(14):3124-3130.
    [80] S. Yamabi, H. Imai. Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of Materials Chemistry, 2002,12(12):3773-3778.
    [81] K. Vanheusden, W. L. Warren, C. H. Seager, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996,79(10):7983-7990.
    [82] B. Lin, Z. Fu, Y. Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physical Letters, 2001, 79(7):943-945.
    [83] X. Liu, X. Wu, H. Cao, et al. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2004, 95(6):3141-3147.
    [84] D. C. Reynolds, D. C. Look, B. Jogai. Fine structure on the green band in ZnO.Journal of Applied Physics, 2001, 89(11):6189-6191.
    [85] A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, et al. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photo-excitation. Journal of Physical Chemistry B, 2000, 104(8):1715-1723.
    [86] A. V. Dijken, E. Meulenkamp, D. Vanmaekelbergh, et al. Identification of the transition responsible for the visible emission in ZnO using quantum size effects.Journal of Luminescence, 2000, 90(3-4):123-128.
    [87] Y. W. Heo, D. P. Norton, S. J. Pearton. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. Journal of Applied Physics, 2005,98(7):073502-1-073502-6.
    [88] Q. X. Zhao, P. Klason, M. Willander, et al. Deep-level emissions influenced by and Zn implantations in ZnO. Applied Physical Letters, 2005, 87(21):211912-1-211912-3.
    [89] A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, et al. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Advanced Function Materials,2004,14(9):856-864.
    [90] Q. Yang, K. Tang, J. Zuo, et al. Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route. Applied Physical A:Materials Science & Processing, 2004, 79(8):1847-1851.
    [91] I. Shalish, H. Temkin, V. Narayanamurti. Size-dependent surface luminescence in ZnO nanowires. Physical Review B, 2004, 69(24):245401-1-245401-4.
    [92] H. Zhou, H. Alves, D. M. Hofmann, et al. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)_2 core-shell structure.Applied Physical Letters,2002, 80(2):210-212.
    [93] B. Lin, Z. Fu, Y. Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physical Letters, 2001,79(7):943-945.
    [94] S. A. M. Lima, F. A. Sigoli, M. J.Jr, et al. Luminescent properties and lattice defects correlation on zinc oxide. International Journal of Inorganic Materials, 2001,3(7):749-754.
    [95] P. S. Xu, Y. M. Sun, C. S. Shi, et al. The electronic structure and spectral properties of ZnO and its defects. Nuclice Instrument Methods, Physical Resiew B, 2003,199(5):286-290.
    [96] G. R. Bamwenda, H. Arakawa. The visible light induced photocatalytic activity of tungsten trioxide powders.Applied Catalysis A, 2001,210(2): 181-191.
    [97] G. R. Bamwenda, T. Uesigi, Y. Abe, et al. The photocatalytic oxidation of water to O_2 over pure CeO_2, WO_3, and TiO_2 using Fe~(3+) and Ce~(4+) as electron acceptors.Applied Catalysis A, 2001,205(2):117-128.
    [98] M. Anpo, M. Tomonari, M. A. Fox. In situ photo luminescence of TiO_2 as a probe of photocatalytic reactions. Journal of Physical Chemistry, 1989,93(21):7300-7302.
    [99] C. Hariharan. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Applied Catalysis A: General, 2005,304 (6):55—61.
    [100] J. Sawai, H. Igarashi, A. Hashimoto, et al. Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries. Journal Of Chemical Engineering of Japan, 1996,29(2):251-256.
    [101] Z. R. R.Tian, J. A.Voigt, J. Liu, et al. Complex and oriented ZnO nanostructures.Nature materials, 2003,2(3): 821-826.
    [102] Z. R. R.Tian, J. A.Voigt, J. Liu, et al. Biomimetic arrays of oriented helical ZnO nanorods and columns. Journal of the American Chemical Society, 2002,124(44): 12954-12955.
    [103] C. L. Yang, J. N. Wang, W. K. Ge, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. Journal of Applied Physics, 2001, 90(9):4489-4493.
    [104] J. Fallert, R. Hauschild, F. Stelzl, et al. Surface-state related luminescence in ZnO nanocrystals. Journal of Applied Physics, 2007, 101(7):073506-073510.
    [105] L. Q. Jing, Y. C. Qu, B. Q. Wang, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials & Solar Cells, 2006, 90(12): 1773-1787.
    [106] A. D. Yoffe. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advanced Physics, 1993,42(1-2): 173-266.
    [107] A. Eychmuller. Structure and photo-physics of semiconductor nanocrystals. Journal of Physical Chemistry B, 2000, 104(28):6514-6528.
    [108] J. Liming, J. Rockenberger, S. Eisebitt, et al. Soft X-ray spectroscopy of single sized CdS nanocrystals: size confinement and electronic structure. Solid State Communications, 1999,112(1):5-9.
    [109] A. Kongkanand, K.Tvrdy, Prashant V. Kamat, et al. Tuning Photoresponse through Size and Shape Control of TiO_2 Architecture. Journal of the American Chemical Society, 2008, 58(3):1665-1677.
    [110] L. Q. Jing, Z. L. Xu, X. J. Sun, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science. 2001,108(5):308-314.
    [111] N. Bouropoulos, I. Tsiaoussis, P. Poulopoulos, et al. ZnO controllable sized quantum dots produced by polyol method: An experimental and theoretical study. Materials Letters, 2008,62 (8) 3533-3535.
    [112] M. Haase, H. Weller, A. Henglein. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron Storage on ZnO Particles and Size Quantization. Journal of Physical Chemistry, 1988,92(16):482-487.
    [113] U. Koch, A. Fojtik, H. Weller, et al. Photochemistry of semiconductor colloids.preparation of extremely small ZnO particles, Fluorescence phenomena and size quantization effects. Chemical Physics Letters, 1985,122(5):507-510.
    [114] J. Sawai, H. Kojima, H. Igarashi, et al. Bactericidal action of calcium oxide powder.Translation Materials Research Society of Japan, 1999,24(6):667- 670.
    [115] C. Karunakaran, S. Senthilvelan, S. Karuthap. Solar photooxidation of aniline on ZnO surfaces. Solar Energy Materials & Solar Cells, 2005,89(5):391-402.
    [116] P. D. Cozzoli, A. Kornowski, H. Weller. Colloidal Synthesis of Organic-Capped ZnO Nanocrystals via a Sequential Reduction-Oxidation Reaction. Journal of Physical Chemistry B, 2005,109(10): 2638-2644.
    [117] C. Pacholski, A. Kornowski, H. Weller. Self-Assembly of ZnO: From nanodots to nanorods. Angewandte Chemie International Edition, 2002,41(7): 1188-1191.
    [118] E. A. Meulenkamp. Synthesis and growth of ZnO nanoparticles. Journal of Physical Chemistry B, 1998, 102(29): 5566-5572.
    [119] K. Vinodgopal, D. Wynkoop, P. V. Kamat. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile Azo Dye, Acid Orange 7, on TiO_2 Particles using visible light. Environmental Science Technology,1996, 30(17): 1660-1666.
    [120] P. V. Kamat. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Journal of Physical Chemistry B, 2002, 106(7):7729-7744.
    [121] L. K. Adams, D. Y. Lyon, P. J. J. Alvarez. Comparative eco-toxicity of nanoscale TiO_2, SiO_2, and ZnO water suspensions. Water Research, 2006,40(19):3527-3532.
    [122] H. L. Liu, T. C. K. Yang. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO_2 activated with ultraviolet light. Process Biochemistry, 2003, 39(4):475-481.
    [123] O. Yamamoto, J. Sawai, N. Ishimura, et al. Journal of the Ceramic Society of Japan,1999, 107(7):853-856.
    [124] J. Sawai, E. Kawada, F. Kanou, et al. Detection of active oxygen generated from ceramic powders having antibacterial activity. Journal of Chemical Engineering of Japan, 1996, 29(12):627-633.
    [125] J. Lin, J. C. Yu. An investigation on photocatalytic activities of mixed TiO_2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology a-Chemistry, 1998. 116(1):63-67.
    [126] D. Li, H. J. Haneda. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere, 2003,51(1):129-137.
    [127] Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, et al. Ag/ZnO heterostructure nanocrystals:synthesis, characterization, and photocatalysis. Inorganic Chemistry, 2007,46(17):6980-6986.
    [128] H. Akiyama, O. Yamasaki, H. Kanzaki, et al. Effects of zinc oxide on the attachment of Staphylococcus aureus strains. Journal of Dermatological Science, 1998,17(1):67-74.
    [129] O. Yamamoto. Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 2001, 3(7):643-646.
    [130] C. H. Park, S. B. Zhang, S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective. Physical Review B, 2002, 66(7):073202-1-073202-3.
    [131] M. G. Wardle, J. P. Goss, P. R. Briddon. Theory of Li in ZnO: A limitation for Li-based p-type doping. Physical Review B, 2005, 71(15):155205-1-155205-10.
    [132] K. Sato, H. Karayama-Yoshida. Material Design for transparent ferromagnets with ZnO-based magnetic semiconductors. Journal of Applied Physics of Japan, 2000,39(3): L555.
    [133] Z. Jin, T. Fukumura, M. Kawasaki, et al. High through-put fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Applied Physical Letters, 2001,78(24):3824-3826.
    [134] L. Spanhel, M. A. Anderson. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids.Journal of the American Chemical Society, 1991, 113(8):2826-2833.
    [135] S. M. Zhou, X. H. Zhang, X. M. Meng, et al. Fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires. Nanotechnology, 2004,15(12):1152-1154.
    [136] K. Vanheusden, C. H. Seager, W. L. Warren, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Applied Physical Letters, 1996,68(3):403-405.
    [137] C. X. Xu, X. W. Sun, X. H. Zhang, et al. Photolurninescent properties of copper-doped zinc oxide nanowires. Nanotechnology, 2004,15(8):856-861.
    [138] A. P. Roth, J. B. Webb, D. F. Williams. Band-gap narrowing in heavily defect-doped ZnO. Physical Review B, 1982,25(12):7836-7839.
    [139] M. Heinlaan, A. Ivask , I. Blinova, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO_2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008,71(17):1308-1316.
    [140] M. Jakob, H. Levanon, P. V. Kamat. Charge Distribution between UV-Irradiated TiO_2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Letters, 2003, 3(3):353-358.
    [141] V. Subramanian, E. Wolf, P. V. Kamat. Semiconductor-Metal Composite Nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 films? Journal of Physical Chemistry B 2001,105(6):l 1439-11446.
    [142] J. Li, W. De, W. Bai, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. Journal of Molecular Catalysis A: Chemistry, 2006, 244(5): 193-200.
    [143] K. Pirkanniemi, M. Sillanpaa. Heterogeneous water phase catalysis as an environmental application: a review, Chemosphere, 2002,48(54): 1047-1060.
    [144] S. D. Oh, S. Lee , S. H. Choi, et al. Synthesis of Ag and Ag-SiO_2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar typhimurium and botrytis cinerea. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2006,275(3):228-233.
    [145] Q. L. Feng, J. Wu, G. Q. Chen, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomedical Materials Research, 2000, (6):662-668.
    [146] K. Ozawa, T. Sato, M. Kato, et al. Angle-Resolved Photoemission Spectroscopy Study of Adsorption Process and Electronic Structure of Silver on ZnO(10(?)0).Journal of Physical Chemistry B, 2005, 109(6):14619-14626.
    [147] Kan-Sen Chou, Chiang-Yuh Ren. Synthesis of nanosized silver particles by chemical reduction method. Materials Chemistry and Physics, 2001, 64(3):241-246.
    [148] Z. Zhang, B. Zhao, L. Hu, et al. Synthesis of nanosized silver particles by simple chemical method. Journal of East China University of Science and Technology, 1995,21(4):423-431.
    [149] M. Haase, H. Weller, A. Henglein. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron Storage on zinc oxide particles and size quantization. Journal of Physical Chemistry, 1988, 92:(2)482-487.
    [150] E. A. Meulenkamp, Size dependence of the dissolution of ZnO nanoparticles. Journal of Physical Chemistry B 1998, 102(40):7764-7769.
    [151] S. J. Sakohara, L. D. Tickanen, M. A. Anderson. Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing. Journal of Physical Chemistry, 1992,96(15):11086-11091.
    [152] D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, et al. Magnetic Quantum Dots:Synthesis, Spectroscopy, and Magnetism of Co~(2+)-and Ni~(2+)-Doped ZnO Nanocrystals.Journal of the American Chemical Society, 2003,125(12):13205-13218.
    [153] V. Subramanian, E. E. Wolf, P. V. Kamat. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and Fermi-Level equilibration. Journal of Physical Chemistry B, 2003,107(30):7479-7485.
    [154] C. Pacholski, A. Kornowski, H. Weller. Site-specific photodeposition of silver on ZnO nanorods. Angewandte Chemie, 2004,116(13):4878-4881.
    [155] S. Sakthivel, B. Neppolian, M.V. Shankar, et al., Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO_2. Solar Energy Materials & Solar Cells, 2003, 77(6):65-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700