用户名: 密码: 验证码:
6.2米液压支架关键技术研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在借鉴国外液压支架先进设计制造经验的基础上,运用理论计算、数值分析和试验相结合的方法,一次性成功研发了ZY9400/28/26型大采高、大工作阻力两柱掩护式液压支架。这是世界上第一套超过6m的高可靠性大采高电液控制支架,解决了多个大采高、高可靠性液压支架的技术难题,使我国液压支架的设计与制造达到了国际先进水平。
     为解决液压支架设计与制造中的难点,本文的主要研究工作和创新性从如下几个方面得以体现:
     1)根据首采工作面的水文、地质条件,首次研究了6m以上液压支架的综采设备的配套问题,计算了6.2m液压支架的主要技术参数。借助CAD/CAE技术,采用自上而下的设计理念,对6.2m液压支架进行了设计和分析计算。应用SolidWorks、COSMOS软件进行了支架的三维设计,完成了虚拟样机干涉分析和动态仿真。应用近似分析方法,对液压支架双扭线进行了比较和优化,并进一步采用有限元方法对液压支架的整体强度进行了分析计算。在整体强度计算的基础上对液压支架的结构件形式、截面形式、关键部位进行仿真计算,保证了支架的稳定性和可靠性。
     2)对900MPa级高强钢在当前液压支架中的选用情况和焊接难点进行了分析,应用Formaster-D型全自动快速膨胀仪采用热模拟的方法对SHT900钢的焊接CCT图进行了测定,根据焊接CCT图对高强钢(HAZ)过热区组织转变规律进行测定和研究,对SHT900钢焊接性进行了理论计算。采用斜Y型坡口焊接性试验、最高硬度试验和焊接金相试验等试验方法研究了预热温度、层间温度、热输入等参数对高强钢焊接的影响。通过理论计算和试验研究相结合的方法准确确定焊接工艺参数,并通过冲击性试验和残余应力测定试验的方法确定了高强钢的焊后热处理工艺。
     3)针对现有液压支架柱窝材料强度低,加工热裂纹倾向严重,不能满足高端液压支架对材料高强度和良好塑性、韧性和可加工性的要求的现状,通过正交实验优化设计了一种新型ZG30Cr06A高强钢。通过热模拟交换法、射线衍射法等试验方法测定了新材料的机械性能参数和热物性参数,将相关参数添加到铸造CAE软件-MAGMAsoft中,实现了铸造工艺的优化设计。最后对柱窝的热处理方法和焊接性进行了研究。研究结果表明新材料具有优良的机械性能、良好的可铸性和可焊性,能够满足6.2m液压支架设计和使用要求。
     4)6.2m液压支架采用先进的PM-4电液控制系统进行集成控制。通过新型插装式液控单向阀的开发解决了现有液控单向阀流通能力有限,卸载冲击大的问题。建立了液压系统的功率键合图,根据功率键合图建立了液压系统状态方程。应用Matlab/Simulink软件对先导阀进行了动态仿真,优化了先导阀的结构。通过对电液控制系统的研究和选型设计保证了移架速度8s/架设计要求。
Based on the experiences of advanced design and manufacture of hydraulic support, great mining height, large resistance 6.2m support with two-prop shield is investigated and designed successfully using the combination of theoretical calculations, numerical simulation and experimenal measurement. In order to reach international advanced level, the researching project has solved a series of key techlonogies during the design and manufacture of high-end hydraulic support.
     For solving these difficulties of hydraulic support design and manufacture, the achievement and originality of the thesis are mainly presented in the following:
     1) The questions of over 6m synthesizing mining equipment were firstly studied. According to the hydrogeology condition and matching equipment, main technical parameters ware confirmed. With CAD/CAE and adopting overall designing idea, 6.2m hydraulic support is designed and analyzed. Dynamic simulation of virtual prototyping and interference analysis has been achieved based on Solid-Works and COSMOS 3D design. Hyperbola of support has been optimized. Though using finite element analysis, the whole strength of this support has been examined. Then the simulation of structure part, section type and key parts of support has been analyzed in terms of the strength examination. High stability and reliability of the mechanism are got efficiently.
     2) The welding CCT diagram of SHT900 steel was investigated by thermal simulated technique, which is Formast-D automatic expansion instrument. The phase transformation of overheated zone is studied based on the HAZ CCT, and the weld-ability of SHT900 has been calculated. The relations between preheat temperature, inter-ass temperature and weld-ability are researched depending on slit type cracking test, maximum hardness test and metallographic analysis. Process parameters is obtained by dint of testing and calculated, and the post-weld heat treatment process has been ascertained by impact test and residual welding stress test.
     3) Aim at in existence of low strength and severe trend of hottear of materials of Hydraulic support socket post, which can not adapt to the design of high strength、good toughness and workability of high hydraulic support. A new kind of high strength steel ZG30Cr06A has been designed by the orthogonal experimentation. The new material's thermo-physical and other parameters have been measured by heat exchange-simulation and ray attenuation methods, Addition these data to the cast CAE software MAGMA, and application simulation method for the socket post optimization process. Finally, researched on the heat treating process and weld-ability of the new material, results demonstrate that ZG30Cr06A has good mechanical performance, upstanding Weld-ability and casting properties, this material can meet the design and use requirement of high hydraulic support.
     4) The advanced electro-hydraulic controlling system was designed and introduced to the 6.2m hydraulic support. A new kinds of plug-in electro-hydraulic directional control valve has been developed. Therefore the drawback of poor one-way valve flow and large unloading impact problems are solved. Power bond graph of hydraulic systems is established, which can derive equation of state in the dynamic course. The dynamic simulation and optimization of the pilot valve structure are performed with Matlab/Simulink. Through research and selecting design of the electro-hydraulic control system, Support-moving speed has reached 8s/rack, which guarantee the design requirements.
引文
[1]罗恩波.国内液压支架现状及我国的发展趋势[J].煤矿机电,2000,(3):27-30
    [2]栾振辉,侯波.液压支架的技术现状与发展[J].矿山机械,2004,(9):15
    [3]吴乐兵.液压支架的发展与前瞻[J].淮南职业技术学院学报,2006,6(74):44-46
    [4]查继先,郭媛,马安强等.综采液压支架发展回顾与前瞻[J].煤矿机械,2004,12:1-3
    [5]曹树祥.我国放顶煤支架的发展与展望[J].东北煤炭技术,1996,(10):81-84
    [6]王国法.液压支架设计研究的新进展[J].煤矿机械,1995,(5):1-4
    [7]崔柳.神华集团大采高液压支架国产化浅析[J].煤矿开采,2005,10(2):18-19
    [8]朱鹏跃,韩养珍.我国自行研制6.2m高液压支架一次采全高的必要性和可行性探讨[J].煤炭机械,2005,1:12-14
    [9]中国煤炭学会.年生产能力800-1000万T综采成套技术装备本土化.项目建议书,2004.5
    [10]Thomas M,Barczak,David F.Gearchart,Canopy and Base Load Distribution on a long Wall Shield[J],Bureau of Mines,1997.
    [11]Shi Yuanwei.Research on the Interaction Between Roof Strata and Shield Supports[C].16th Conference On Ground Control in Mining 1999.
    [12]曹牛.国产液压支架的研制与发展[J].中国工程机械学报.2005,14(4):168-169
    [13]刁张军.纯水液压技术在液压缸系统中应用展望[J].煤矿机械,2003,7:82-83
    [15]黄自强.液压支架的技术现状及发展趋势[J].山西机械,2002,(12):45-46
    [14]张艳,戚建所.浅谈综合机械化采煤设备的配套[J].煤矿机械,2004,(10):48
    [16]毛德兵.综放开采技术在澳大利的应用前景[J].煤炭学报,2001,126(7):55-56.
    [17]樊运策.我国高产高效矿井建设的重要技术途径[J].煤炭学报,2001,26:1-5
    [18]赵衡山.德国液压支架设计研究的新进展[J].煤炭学报,2006,(5):21-25
    [19]李秋生,崔汉涛,尹冬晨.新型液压支架结构形式构想[J].矿上机械,2006,34(5):21-22
    [20]陈宏.水介质单体液压支柱的开发与应用[J].煤矿安全,2003(3):16-19
    [21]居思一.数值模拟分析技术在支架液压系统中的应用[J].煤炭科学术,1992,(5):23-25
    [22]Dong Zi-Feng.Application of Virtual Reality in Simulating and Hydraulic Supporter Design[C].First International Meeting of Engineer Machine,2004,(3):58-61
    [23]Fan Dai,Wolfgang,Martin Gobel.Applying Virtual Reality to Electronic Prototyping Conceptand First Results:Virtual Prototying:Virtual Environ Ments and the Product Design Process[M].Chap Man and Hall Press,2000,(5):46-48
    [24]王永东,田银素.大采高液压支架使用中存在的问题与对策[J].煤炭科学技术,2002,(1):51-53
    [25]赵宏珠.综采面矿压与液压支架设计[J].中国矿业大学出版社,1999,(5):65-75
    [26]美国ANSYS Inc.ANSYS使用手册[B],1998.
    [27]戴绍诚.高产高效综合机械化采煤技术与装备[M].北京:煤炭工业出版社,2001.
    [28]成大先.机械设计手册(液压控制)[K].北京:化学工业出版社,2004.
    [29]刘文彦.谈两柱掩护式液压支架与四柱支撑掩护式支架的性能比[J].煤炭企业管理.2006.3:53-55
    [30]李小豁,段文鹏.两柱掩护式大采高强力液压支架的适应性研究[J].煤矿机械,2002,15(3):111-122
    [31]刘长友,钱鸣高.采场直接顶对支架与围岩关系的影响机制[J].煤炭学报,1997,22(5):471-476
    [32]韩伟.液压支架控制系统及移加速度定量化研究[D].煤炭科学总院,2006.,1:9-14
    [33]唐艳云,丁伟雄.支架掩护是液压支架的结构特点及合理应用[J].煤矿机械,200(1):74-75
    [34]陈启梅,胡应曦,潘飞鹏.液压支架选型专家系统[J].贵州工业大学学报,2003,32(1):20-24
    [35]朱诗顺.液压支架结构及材优化设计理论、方法及应用研究[D].北京:中国矿业大学,1994.5
    [36]Jiang Jianjing.Concrete Structure Engineering[J].China Building Industry,in press
    [37]Ketelaar,Janp.J.The Effective Use of Power in Longwall Coalwinning Machinery Armoured Face Conveyors.Shearers,Power Consumption[D].United Kingdom:University of Newcastle Upon Tyne,1987
    [38]PRICE D.L.Simulation of the Design and Operation of Longwall Shearer Drums[D]. Australia,:University of new South Wales,1986
    [39]高有进.6.2m高可靠性大采液压支架的选型与设计[J].中国煤炭,2007,33(2):34-35
    [40]史元伟.液压支架初撑力及工作阻力的确定[J].煤炭学报,1985,(3).
    [41]夏秋仲.液压支架关键部件力学性能有限元分析[D].辽宁:辽宁工程技术大,2007.3
    [42]Bahattin KANBER,Ibrahim H.GUZELBEY,Ahmet ERKLIG.Boundary element analysis of contact problems using artificial boundary node approach[J].Chinese Journal of Mechanics Press,2003,19(4):347-354
    [43]Deviprasad T,Kesavadas T.Virtual Prototyping of assembly components using process modeling[J].Journal of Manufacturing Systems,2002,22(1):16-27
    [44]郑俊庆.基于虚拟现实的机械系统分析[J].煤矿机械,2004,(9):54-55
    [45]乔红兵.轻型放顶煤液压支架的三维建模方法的研究[J].煤矿机械,2003,(2):13-14
    [46]叶先磊.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003
    [47]戴绍成,李世文,李芬等.高产高效综合机械化采煤技术与装备[M].北京:煤炭工业出版社,2000(9):476
    [48]王国法.两柱掩护式放顶煤液压支架设计研究[J].煤炭科学技术,2003,(4):25-27
    [49]M Schulz,T Reuding,T Ertl.Analysing engineering simulations in virtual environment [J].TEEE Computer Graphics and Applications November December,2005:46-52
    [50]蓝宇,张连杰.大型有限元分析软件ANSYS的特点[J].建筑机械,2000,(9):11-15
    [51]夸克工作室.有限元分析基础篇[M].北京:清华大学出版社,2002,(4):126-127
    [52]胡晓康,洪如谨.UG运动分析培训教程[M].北京:清华大学出版社,2004
    [53]夸克工作室.有限元分析基础篇ANSYS与Mathematica[M].北京:清华大学出版社,2002.
    [54]王晓东.液压支架推移机构试验装置的设计[J].煤矿开采,1995,(12):54-55
    [55]MDI Using ANSYS/Post Processor.2000.10
    [56]MDI Getting Started Using ANSYS/Controls.2000.10
    [57]ANSYS Theory Manual,Ansys8.0 Help System
    [58]有限元在工程中的应用.2000ANSYS中国用户年会论文集.
    [59]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002
    [60]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000
    [61]杨长保,薛河,刘金依.利用ANSYS软件对柱销联轴器进行应力分析[J].煤矿机械,2002,2:28-29
    [62]郑建荣.ANSYS虚拟样机技术入门与提高[M].北京:机械工业出版社,2001
    [63]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003.
    [64]杨长保.微泵动态特性及优化评价规则的分析与研究[D].西安:西安科技大学,2002
    [65]张一丁等.变转速泵液压缸实验数值模拟分析分析[J].液压与气动,2003,(1):3-5
    [66]Zorriassatine F,Wykes C,Parkin R,Gindy N.A survey of xirtual ptototyping techniques fot mechanical product development[C].Proceedings of the Institution of Mechanical Engineers Part B Engineering Manufacture.2003,217(4):513-530
    [67]潘际銮.展望21世纪焊接科研[J].中国机械工程,2000,Z1
    [68]Bailey N.Weldability of high strength steels[J].Welding and Metal Fabrication,1933,(8):389-393
    [69]刘大胜.焊接机器人的现状与发展[J].机器人,2005,(5):42-43
    [70]姚连登.CF钢在煤矿机械和水电工程中的应用现状及开发前景[J].机械工程材料,2004,28(12):43-45
    [71]High-strength.Steel Tubular Joints[C].Proceedings of the Nordic Conference on Fatigue,England:West Midlands,1993,309-323
    [72]祁文军,方建疆,周建平.基于焊接CCT图的焊接接头组织和性能预测[J].焊接技术,2003,(5):33-34
    [73]李友,杨成钢,李强.P460N11钢SH-CCT图的测定[J].机械设计与制造,2001(6):74-75
    [74]胡怡.GQ112A钢CCT图的测定[J].金属热处理,2001,26(7):38-39
    [75]吕德林,李彦文.低合金钢焊接CCT图的影响因素及其预测[J].焊接,1995,16(6):s36-38
    [76]吕德林.国产低合金钢焊接CCT图的研究及应用[J].焊接,1994,15(7):10-15
    [77]程景玉.焊接CCT图在指导工艺评定及防止冷裂纹上的应用[J].1994,15(4):24-26
    [78]王后孝,魏艳红,孙俊生.基于传热源及CCT图的GMAW焊接热影响区组织及硬度预测[J].金属学报,2005,41(8):840-847
    [79]李红英,龚美涛,何堃.77B钢奥氏体连续冷却转变曲线(CCT图)[J].热加工工艺,2005(4):58-59
    [80]Moon D.W.,Lambrakos S.G.,Wong R.J.,Metzbower E.A.Macrostructure,hardness,and temperature in HSLA100 steel weld[J].Sci Technol Weld Joining,2003,(8):334
    [81]Wang H.X.,Sun J.S.,Wei Y.H.,Zheng Y.Y.Simulation of GMAW thermal process based on string heat source model[J].Sci Technol Weld Joining,2005,10(6):681-694
    [82]Dithey U.Proc of IIW Asian-Pacific Welding[C].Conference on Capatilities of Welding Processes and Their Automation Potential With A View to the Year 2000,Auckland:New Zealand,1996
    [83]锡唐.焊接结构[M].哈尔滨:哈尔滨工业大学出版社,1997
    [84]陈佰鑫.焊接工程缺陷分析与对策[M].华人学出版社.1998,(7):69-70
    [85]李海宁,顾茂峰.液压支架焊接工艺装备现状与自动化焊接技术解决方案[J].中州煤炭,2006,27(5):825-826
    [86]高有进,王乘,徐宗林等.屈服强度900MPa级高强钢焊接工艺[J].焊接学报,2007,28(9):103-106
    [87]Denys,R.M.,Lefevre A.A.Fracture behavior of high strength steel welds:effect of weld metal matching[C].Proceedings of the International Conference on Off shore Mechanics and Arctic Engineering-OMAE,Materials Engineering,1993:619-630
    [88]Mumford D,Shah J.Optimal approximations by piecewise smooh functions and associated variational problems[J].Communications in pure and Applied Mathematics,1989,(42):577-685
    [89]Malladi R,Sethian A J,Vemure C B.Shape modeling with front propagation:A lebel set app roach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158-175
    [90]Paragios N,D Erche R.Geodesic active contours and level sets for the detection and tracking ofmoving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280
    [91]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1993(10):1-55.
    [92]宋凤海.光谱分析中谱线强度评定方法的研究[J].化工施工技术,1996(6):20-23
    [93]罗风金等.原子吸收光谱分析的新进展[J].四川兵工学报,1994(3):137-139.
    [94]Wang F.X.,Kobayashi A.S.High density moire interferometry[J],Opt.Eng,1990,20(1):38-41;
    [95]Kang BSJ,.Zhang GZ,Manohar E,and Liu P,Creep crack growth of inconel superalloy at elevated temperature using moire interferometry[C],Proceedings of the SEM Spring Conference.USA:Maryland,1994
    [96]Kang BSJ,.Zhang GZ,.Jenkins MG,Ifju MF.Development of high temp erature moire interferometry using aero-thickNess grating[C].ATEM '93.Japan:Kanazawa,1993
    [97]Wang FX,Ifju P,and Kang BSJ.High-temperature moire interferometry using Zaro-ThickNess grating[C].Proceedings of the International Congress on Experim ental Mechanics,1992
    [98]张佳秋,姜华.激光脉冲法测定合金的热物性参数[J].铸造,1998,4:45-48.
    [99]张海林,宋强.X射线衍射法测定液态纯铁的[J].光谱实验室,2003,20(1):29-30
    [100]Iida T,Guthrie TIL.The Physical properties of Liquid Metals[M].New York:Clarendon Press,1988:47
    [101]李海军,陈超选.光电直读光谱法分析钛合金时铝对碳干扰及校正[J].理化检验-化学分册,2006,7
    [102]刘鸣娟.Arc-Mct930直读光谱分析仪工作原理及在钢铁分析中的应用[J].国外金属热处理,2004,(1):48-49.
    [103]王凤翔等.LDZ125高温合金断裂韧性实验研究[J].南昌航空工业学院学报,1995,(1):1-15;
    [104]严超华,李禾,李仁增.云纹干涉法测定高温材料弹性模量及泊松比的研究[J].南昌航空工业学报.1999,13(4):44-49
    [105]Campisi GJ,Bevolo AJ,Shanks HR,Schmidt FA.Heteroepitaxial silicon growth on polycrystalline MoSi/sub 2/[J].J.Appl.Phys.,52(8):5043-5049
    [106]王延露.基于MAGMAsoft的铸造充型凝固过程分析与研究[D].兰州:兰州理工大学,2005.6.
    [107]郭庆.铸件凝固过程的温度场模拟及缩孔、变形和热裂缺陷预测[D].保定:河北工业大学,2002.4
    [108]MAGMASOFT4.2使用说明书[M].MAGMA公司,2002,3.
    [109]李文珍.铸件凝固过程微观组织及缩孔缩松形成的数值模拟研究[D].北京:清华大学,1995
    [110]Schmidt D.AFS Solidification System(3D) Overview Demo[DB/CD].USA:Finite Solutions Inc,1998.
    [111]李文珍,柳百成,王春乐.铸钢件缩孔缩松预测的试验研究[J],铸造技术,1995,(4):37-41
    [112]王春乐,贾宝仟,柳百成.缩松预测判据G/R1/2的试验研究[J],大型铸锻件,1996,(03):4-10
    [114]崔吉顺,李文珍.铸件缩孔缩松多种预测判据的应用[J].清华大学学报,2001,41(10):5-8
    [115]候波.用插装阀设计电液控制支架液压系统的可行性分析[J].煤炭科学技术.2005,33(7):49-53
    [116]陈怀道,原儒东.大采高支架EEP电液控制系统的应用[J].煤矿机电,2006,5:50-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700