用户名: 密码: 验证码:
新型金属结合剂金刚石工具技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热压烧结的金属结合剂金刚石磨料工具经过长达四十多年的生产运用实践,其固有弊病和缺陷已有了较为充分的暴露,其中最为根本和核心的问题是:对磨料结合把持强度低,磨料易脱落;磨料出刃难,出刃后出露程度保持难;磨料随机分布导致工作面上磨料负荷与磨削过程失衡。
     本文在总结综合吸收消化国内外关于金属结合剂金刚石工具研究所取得进步与不足的基础上,围绕对磨料的结合把持强度、钎焊磨料的热损伤、孔隙结构及磨料有序分布等几个工艺关键问题开展了相关的基础及应用研究,所研制的新型金属结合剂金刚石工具在加工性能对比试验中表现了显著的优势。
     本文完成的具有创新意义的研究工作主要包括:
     (1)从钎焊金刚石形态与界面微观结构、界面结合强度以及金刚石磨料加工中的行为三个角度研究了金刚石钎焊效果的评价体系,获得了对金刚石磨料具有高把持强度同时又无附加损伤的金刚石钎焊技术。
     (2)提出了松装液相烧结制备多孔金属结合剂金刚石固结磨料工具的新工艺方法。该工艺方法通过松装获取相对稳定的固相骨架结构,采用造孔剂调节孔隙率与孔隙大小,以专用于金刚石磨料钎焊的活性钎料作为液相在烧结过程中润湿、铺展、充填于固相骨架表面,将金刚石磨料和形成固相骨架的粉末互相钎接形成具有一定强度、在一定范围内孔隙含量和大小可控且金刚石磨料与结合剂界面为化学结合的多孔烧结体。相比于现有的多孔金属结合剂金刚石磨料工具制造工艺,该工艺方法制作的多孔金属结合剂金刚石节块在强度相当的条件下孔隙率和磨料把持强度得到了极大的提高。
     (3)利用松装液相烧结新工艺,成功制备了适于高效精密加工用多孔金属结合剂金刚石镶块砂轮。试验研究表明,采用140/170粒度金刚石磨料制作的新型砂轮可在很低的磨料浓度条件下,精密磨削Al2O3工程陶瓷获得较低的表面粗糙度,且具有磨削力小、砂轮锋利且寿命长、材料有效去除率高的特点。
     (4)将有序排布金刚石高温钎焊技术与常规的金刚石节块热压技术有效结合在一起,制作成功了能够实现难加工材料高效重负荷加工的新型多层金属结合剂金刚石工具。通过与专业生产厂家的同规格锯片的对比试验,已确证论文提供的典型样品工具—φ350金刚石圆锯片具有金刚石用量少、锋利,锯切效率高、寿命长的突出优点。
     论文围绕金属基多层金刚石固结磨料工具所完成的具有开创意义的上述基础与应用研究工作,对推动国内外金刚石固结磨料工具的换代改造具有重要意义。
The metal-bonded diamond abrasive tools fabricated by hot-press sintering technique have been applied for over forty years. The inherent shortcomings and disadvantages have also appeared, and the most important points are as follows: the low bonding strength to the abrasive grains and the induced easy pullout of the grains from the matrix, the difficult outcrop and holding capacity of the cutting edge in the machining process, the unmatched grain load to the grinding practice owing to the stochastic grain distribution.
     On the basis of the research on the metal-bonded diamond abrasive tools in recent years, new investigation are conducted from the following aspects, including the joining strength to the grains, the thermal damage of the abrasive, the hole structure and the optimum distribution of grains. The new-type metal-bonded diamond abrasive tools with multi-hole structure are fabricated and show outstanding advantages over the traditional tools in the machining experiments.
     The main creative concepts are summarized as follows:
     (1) The brazing effect of the diamond grains is analyzed from three aspects, such as the diamond shape and the interfacial microstructure, the joining strength, the behavior of the grains during machining. The key brazing technology is acquired to ensure the high joining strength and avoid the thermal damage of the diamond grain.
     (2) The new technology is put forward to fabricate the multi-hole metal-bonded diamond abrasive tools in the loose liquid-phase sintering process. The steady solid framework forms through the loose technique. The ratio and size of the hole are adjusted by the pore producer. At the same time, the filler alloy, which has ever been utilized to braze diamond grain, is applied to wet and spread on the solid framework. The diamond grain could join hard with the framework. The sintered specimens are accomplished. Compared with the traditional technology of the metal-bonded diamond abrasive tools, the diamond tools fabricated using the new technology in this investigation could improve the pore ratio and the joining strength under the condition of the identical specimen strength.
     (3) The slotted multi-hole metal-bonded diamond grinding wheels for high efficiency precision grinding are fabricated using the loose liquid phase sintering technology. The machining experiments detect that this new diamond tool with rather low density of the grains could grind precisely Al2O3 engineering ceramics. The low surface roughness reaches. Moreover, the characteristics, i.e. the low grinding force, the sharp edge and long tool life, the high material removal rate is also evident.
     (4) The multi-layer metal-bonded diamond sawing blades for cutting difficult-to-machine materials are fabricated using the comprehensive technology of both the uniform distribution of the diamond grain and the conventional hot-press sintering technology. The machining experiments are carried out between the new blades and the merchant counterparts with diameter of 350mm. The result indicates that the new tools have some topping merits, including small quantity of grains, shape edge, high machining efficiency and long tool life.
     The creative work on the multi-layer metal-bonded diamond abrasive tools in this investigation could accelerate markedly the research and the application of the diamond tools around the world.
引文
[1] H.J. Xu, Y.C. Fu, B. Xiao, et al. Fabrication of monolayer brazed diamond tools with optimum grain distribution. Key Engineering Materials,2004, 259:6~9
    [2]林增栋.金属-金刚石的粘结界面与金刚石表面的金属化[J].粉末冶金技术,1989,7(1):1~9
    [3]吴贻琨,于清.粉末冶金铁基金刚石胎体材料的表面分析.功能材料,1993,25(4):370~375
    [4]李晨辉,熊惟皓,吕海波. Cr在金刚石工具胎体材料中的应用.粉末冶金技术,2001,19(6):343~347
    [5]徐西鹏,黄文德.稀土在金刚石圆锯片节块烧结中的作用.稀土,1997,18(1):25~28
    [6]王岚,高学绪.金刚石表面的金属化.北京科技大学学报,1997,19(5):462~466
    [7]臧建兵,赵玉成,王明智,等.超硬材料表面镀覆技术及应用.金刚石与磨料磨具工程,2000(3):8~12
    [8]臧建兵,赵玉成,王明智,等.超硬材料表面镀覆技术及应用(续).金刚石与磨料磨具工程,2000(4):7~12
    [9]王明智,王艳辉,臧建兵.微蒸发镀Ti-Cr合金对工具烧制过程中金刚石的保护作用[J].金刚石与磨料磨具工程,1996(1),P.7-9
    [10]吴贻琨,张弘弢,刘培德,等.金刚石钴基结合剂材料的表面分析.大连理工大学学报,1994,34(5):551~555
    [11]臧建兵,王艳辉,王明智. Ti镀层-金刚石界面结合强度与界面产物显微结构的关系.人工晶体学报,1996,25(4):330~334
    [12] Chattopadhya A K ,Hintermann H E. Induction brazing of diamond with diamond Ni-Cr hardfacing alloy under argon atmosphere. Surface and Coating Technology,1991,5:293~298
    [13] Su H H, Xu H J, Fu Y C,et al. Study on machining of hard-brittle materials with thin-walled monolayer brazed diamond core drill. Materials Science Forum, 2004, 471-472, p.287-291
    [14] Fu Y C,Xiao B,Xu H J,et al. Machining performance of monolayer brazed diamond tools. Key Engineering Materials,2003,259~260:73~77
    [15]肖兵,徐鸿钧,武志斌,等. Ni-Cr合金真空单层钎焊金刚石砂轮.焊接学报,2001,22(2) :23~26
    [16]苏宏华,徐鸿钧,傅玉灿,肖冰等.多层烧结超硬磨料工具现状综述与未来发展构想.机械工程学报, 2005, 41(3): 12-17
    [17]诸兴华.磨削原理.北京:机械工业出版社,1988
    [18]傅玉灿,徐鸿钧,等.高效磨削用砂轮地貌的优化设计研究.应用科学学报,2001,10(1):48~52
    [19]肖兵.单层超硬磨料工具高温钎焊的基础研究:[博士学位论文].南京:南京航空航天大学,2001
    [20]陈根余,谢小柱,李立钧,等.超硬磨料砂轮修整与激光修整新进展.金刚石与磨料磨具工程,2002(2):8~12
    [21]宋月清,甘长炎,夏志华,等.金刚石的磨损形态对工具切割性能的影响.金刚石与磨料磨具工程,1998(6),2~6
    [22]徐西鹏,沈剑云,黄辉,等.实现花岗石高效锯切的关键因素分析.机械工程学报,1998,34(1):104~110
    [23]Tanaka T.New development of metal bonded diamond wheel with pore by the growth of bonding bridge.Japan Soc. Precision Engineering,1992,26(1):27~32
    [24]Truong S H, Isono Y,Tanaka T. Scanning electron microscopic study and mechanical property examination of a bond bridge: development of a porous metal bonded diamond wheel. Journal of materials processing technology,1999,89-90:385-391.
    [25]Tomino H,Kondo Y,Tojyo T. Pulse electric current sintering behavior of atomized cast-iron—diamond composite power. Soc.Mat.Sci.,Japan, 1999,48(6):585~591
    [26]Tomino H,Kondo Y,Katsumura M,et al. Plus Electric Current sintering Behavior of atomized cast-iron powder of Fe-C system Containing hypo-eutectic carbon (Ⅰ) - porousity contol and microstructure.Journal of the Japan Society of Powder and Powder Metallurgy,1998,45(8):703~708
    [27]Onishi H,Kobayashi M,Takata A,et al. Fabrication of new porous metal-bonded grinding wheels by HIP method and machining electronic ceramics.Journal of Porous Materials,1997, 4:187~198
    [28]Truong S H,Isono Y,Tanaka T. A study on the Toughening of bond bridge of Ni-Cu-Sn alloy–development of porous metal bonded diamond wheel.Journal of the Japan Society of Precision Engineering,1998,64(6):923~928
    [29]Truong S H ,Isono Y,Tanaka T,et al. Experimental Study on High Pore Rate Formation and Grinding Performance of Porous Metal-bonded Diamond wheel.In:2000年度精密工学会春季大会学術講演会講演論文集,2000年度精密工学会春季大会,东京,日本,2000:300
    [30]Tomino H,Tsukuda A,Kondo Y,et al.Influence of porosity on grinding performance of porous cast-iron bonded diamond grinding wheel made by pluse current sintering method.Journal of the Japan Society of Powder and Powder Metallurgy,1999,46(3):257~261
    [31]Tomino H,Kondo Y,Katsumura M,et al. Plus electric current behavior of atomized cast-iron powder of Fe-C system containing hypo-eutectic carbon (Ⅱ)- young’s modulus of atomized cast-iron porous sintered body.Journal of the Japan Soc. of Powder and Powder Metallurgy,1998,45:709~713
    [32]Tomino H,Kondo Y,Katsumura M,et al. Pulse electric current sintering behavior of atomized cast-iron powder of Fe-C system containing hypo-eutectic carbon (III) --Mechanical properties of atomized cast-iron porous sintered body.Journal of the Japan Soc. of Powder and Powder Metallurgy,1998,45:715~720
    [33]Truong S H,Isono Y,Tanaka T,et al. Investigation on thermal of workpiece in cool air grinding with porous metal bonded diamond wheel.Journal of the Japan Society of Precision Engineering,2000,66(12):1911~1916
    [34]S. H. Truong,et al.A study on the thermal phenomenon in cool grinding with porous metal-bonded diamond wheel.In:1999年度砥粒加工学会学術講演会講演論文集,1999年度砥粒加工学会学術講演会,日本工业大学,日本,1999:373~376
    [35]S. Malkin,T. W. Hwang. Grinding mechanisms for ceramics. Annals of the CIRP,1996,45(2):569~580
    [36]徐西鹏,吴健,沈剑云,等.结合剂中金刚石固位机理及提高固位能力的技术.中国有色金属学报,1998,8(Suppl.2):8~10
    [37]戴秋莲,徐西鹏,王永初.金属结合剂对金刚石把持力的增强措施及增强机制评述.材料科学与工程,2002,20(3):465~468
    [38]卢金斌,徐九华,徐鸿钧,等. Ni-Cr合金真空钎焊金刚石界面反应的热力学与动力学分析.焊接学报,2004,25(1):21~24
    [39]S.H. Truong, Y. Isono, T. Tanaka. Scanning electron microscopic study and mechanicalproperty examination of a bond bridge:development of a porous metal bonded diamond wheel. Journal of Materials Processing Technology,1999,89-90: 385~391
    [40]刘培生著.多孔材料引论.北京,清华大学出版社,2004
    [41]宝鸡有色金属研究所.粉末冶金多孔材料(上册).北京,冶金工业出版社,1978
    [42]黄培云.粉末冶金原理.北京,冶金工业出版社,1997
    [43]梁永仁,杨志懋,丁秉钧.金属多孔材料应用及制备的研究进展.稀有金属材料与工程,2006,35(Supp1.2):30~34
    [44]韩永奇.我国石材工业现状及发展对策.石材,2004(1):7~10
    [45]姜荣超.我国金刚石工具工业发展的特点、措施与前景.工业金刚石,2003(4~5):11~19
    [46]卢金斌.金刚石磨料钎焊工艺与机理的研究.[博士学位论文],南京,南京航空学院,2004
    [47]Chattopadhyay A. K, Hintermann H. E. Experimental Investigation on Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy under Argon Atmosphere. Journal of Materials Science, 1991, 20: 5093-5100
    [48]Chattopadhyay A K et al.On Performance of brazed boned monolayer diamond grinding wheel.Annals of the CIRP,1991,40(1):347~350
    [49]傅玉灿,徐鸿钧.从电镀到钎焊——国外单层超硬磨料砂轮制造技术新发展.工具技术,1998,32(8):4~8
    [50]姜荣超.加快金刚石钎焊工艺及其制品的发展与产业化.超硬材料工程,2006,18(1):36~43
    [51]果世驹编著.粉末烧结理论.北京,冶金工业出版社,1998
    [52]Hirschhorn J S. Introduction to Powder Metallurgy. American Powder Metallurgy Institute, 1969
    [53]F V莱内尔著,殷声,赖和贻译.粉末冶金原理和应用.北京,冶金工业出版社,1989
    [54]曾德麟编著.粉末冶金材料.北京,冶金工业出版社,1989
    [55]John Banhart. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 2001,46:559~632
    [56]H. H.豪斯纳著.粉末冶金手册.北京,冶金工业出版社,1982
    [57]丁志敏.松装烧结通孔材料透过颗粒最大半径的计算.物理测试,1995,3:32~33,45
    [58]李志宏,赵博,宜云雷.对超硬材料行业未来发展的思考.超硬材料工程,2005,17(63):36~40
    [59]孙毓超,宋月清.铁与铁基结合剂.工业金刚石,2004,3:16~18
    [60]孙毓超.铁基结合剂的功与罪.工业金刚石,2003,4-5:73~75
    [61]邹僖.钎焊(第2版),北京,机械工业出版社,1989
    [62]C.M.Sung.Brazed Diamond Grid:A Revolutionary Design for Diamond saws.Diamond and Related Materials,1999,8:1540~1543
    [63]肖冰,徐鸿钧,武志斌.Ni-Cr合金真空炉中钎焊单层金刚石砂轮的实验研究.焊接学报,2001,22(2):23~26
    [64]马伯江.金刚石磨料高频感应钎焊的基础研究.[博士学位论文],南京,南京航空学院,2005
    [65]YiXiong Liu and R.M.German. Contact angle and solid-liquid-vapor equilibrium. Acta Mater. 1996, 44(4):1657~1663
    [66]J.Liu, A.L.Cardamone and R.M.German. Estimation of capillary pressure in liquid phase sintering. Powder Metallurgy. 2001,44(4):317~324
    [67]万隆,陈石林,刘小磐编.超硬材料与工具.北京,化学工业出版社,2006
    [68]王秦生编著.金刚石烧结制品.北京,中国标准出版社,2000
    [69]束德林.金属力学性能.北京,机械工业出版社,1987
    [70]姚德超.粉末冶金实验技术.北京:冶金工业出版社,1990
    [71]刘培生,马晓明.多孔材料检测方法.北京,冶金工业出版社,2006
    [72]刘孝敏.工程材料的微细观结构和力学性能.合肥,中国科学技术大学出版社,2003
    [73]H.P.蒂吉斯切,B.克雷兹特编,左孝青,周芸译.多孔泡沫金属.北京,化学工业出版社,2005
    [74]Sadi Karagoz, Muzaffer Zeren. The property optimization of diamond-cutting tools with the help of micro-structural characterization. International Journal of Refractory Metals & Hard Materials, 2001, 19: 23~26
    [75]任敬心,康仁科,史兴宽,难加工材料的磨削.北京:国防工业出版社,1999
    [76]I.P. Tuersley, A. Jawaid, I.R. Pashby. Review: Various methods of machining advanced ceramic materials. Journal of Materials Processing Technology, 1994, 42(4): 377~390
    [77]宋振武,高航.螺旋槽砂轮磨削性能的试验研究.磨料磨具与磨削,1985,6:1~5
    [78]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社,1999
    [79]任敬心,华定安.磨削原理.西安:西北工业大学出版社,1988
    [80]S. Malkin.磨削技术与理论(蔡光起译).沈阳:东北大学出版社,2002
    [81]Malkin S, Ritter J E. Grinding mechanism and strength degradation for ceramics. ASME J. of Eng. for Ind. 1989,111: 167~173
    [82]A G Mamalis, J Kundrak, K Gyani, M Horvath. On the precision grinding of advanced ceramics. The Int J Adv Manuf Technol, 2002 (20): 255~258
    [83]K Kitajima, G Q Cai, N Kumagai, et al. Study on mechanism of ceramics grinding. Annals of the CIRP,1992,41(1):367~371
    [84]Lawn B.R, Evans A.G. A model for crack initiation in elastic/plastic indentation fields. J. Materials Science, 1977, 10: 2195~2199
    [85]Bifano T G, Dow T A, Scattergood R O. Ductile regime grinding: A new technology for maching brittle materials. ASME J. of Eng. for Ind., 1991, 113: 184~189
    [86]H K Tonshoff, J Peters, I Inasaki. Modelling and simulation of grinding processes. Annals of the CIRP,1992,41(2):677~688
    [87]J E Mayer Jr, G P Fang, Texas A M. Effect of grit depth of cut on strength of ground ceramics. Annals of the CIRP,1994,43(1):309~312
    [88]Bi Zhang, Trevor D Howes. Subsurface Evaluation of Ground Ceramics. Annals of the CIRP,1995,44(1):263~266
    [89]周志平,刘劲松.高温结构陶瓷的磨削去除机理及磨削加工技术.工具技术,2004,38(8):71~75
    [90]邓朝晖,张壁,孙宗禹,等.陶瓷磨削材料去除机理的研究进展.中国机械工程,2002,13(18):1608~1611
    [91]王德和,牛文铁.氧化铝陶瓷缓进给磨削机理的研究.精密制造与自动化,2002,152:22~24
    [92]I.Inasaki. High-Efficiency grinding of advanced ceramics. Annals of the CIRP,1986,35(1):211~214
    [93]I.Inasaki. Grinding of hard and brittle materials. Annals of the CIRP,1987,36(2):463~471
    [94]姜荣超.降低金刚石工具成本,积极开拓国际市场.金刚石与磨料磨具工程,2002(132):33~36
    [95]肖鸿.中国金刚石锯片在国外市场需求分析.石材,1999(2):30~32
    [96]Wolfgang Tillmann. Trends and Market Prespectives for Diamond tools in the Construction Industry. International Journal of Refractory Metals &Hard Materials, 2000 (18):301~306
    [97]傅玉灿.花岗岩切削加工研究. [硕士学位论文],泉州,华侨大学,1996
    [98]张绍和,刘志环,肖尊群.金刚石锯片锋利性试验研究.粉末冶金技术,2006,24(2):110~113
    [99]Bailey M W. Sawing in the stone and civil engineering industries. Industrial Diamond Review ( IDR) , 1979, 39 (2) : 56 ~ 60
    [100]方从富,马云善,徐西鹏.锯切花岗石中金刚石节块形貌变化过程跟踪.金刚石磨料磨具工程,2006,155(5):20~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700