用户名: 密码: 验证码:
汽车转向节锻造智能设计系统的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业是国民经济的支柱产业,作为制造汽车受力件和关键件主要手段的锻造工艺在汽车零部件制造中占有重要地位。转向节是汽车上的重要零件,品种多,用量大,目前主要通过锻造工艺进行生产。转向节是汽车锻件中最难生产的锻件之一,其锻造设计水平代表了汽车锻件的最高设计水平。转向节在锻造分类上属于枝杈类锻件,此类锻件锻造工序多,锻造工艺复杂,对其锻造工艺与模具设计要求高。
     目前,转向节锻造生产面临的主要问题是:锻件材料利用率低,锻造能耗高;转向节新品开发主要依靠设计者的经验,开发周期长,费用高,风险大。针对以上问题,本文重点研究转向节的锻造工艺设计和锻造智能化设计。通过有限元分析和实验研究相结合的方法,以省材节能为目的,进行转向节锻造工艺优化与开发;开发转向节锻造设计专家系统,用来指导转向节的锻造工艺与模具设计,实现转向节新品的短周期、低费用和高质量的开发模式。
     本文采用有限元软件DEFORM-3D对典型转向节锻造过程进行了数值模拟。通过锻造过程金属流动分析、锻件和模具应力/应变场分析、锻件温度场分析和成形过程力能曲线分析,获得了转向节锻造过程的成形规律。同时分析了摩擦因子等工艺参数对转向节锻造过程的影响。通过以上研究,给出了转向节锻造过程中可能出现的缺陷及原因,为转向节锻造工艺优化与模具设计提供指导。
     本文开发了一种复杂枝权类锻件的锻造新工艺,能够实现该类锻件在热模锻压力机上的一火锻造。通过数值模拟和实验相结合的方法,以SK2锻件为例,设计了合理的制坯工序,开发了封闭飞边闭式模锻工艺用于预锻工序,实现了该锻件的一火锻造,降低了能耗。本文同时针对长杆类转向节卧式锻造工艺进行研究,以SK1锻件为例,开发了一种新的锻造工艺。该工艺采用直接挤出杆部的制坯工艺,使预制坯的材料分配更为合理;同时开发了控制飞边闭式模锻工艺用于预锻工序。新工艺显著提高了材料利用率。
     本文针对转向节锻造设计神经网络的关键技术进行研究。提出了单元和形状因子的概念,用来描述锻件特征,建立锻件特征信息模型。所建锻件特征信息模型既包含了特征尺寸,又包含了特征形状。为建立转向节锻件不同特征形状对锻造过程影响的统一评判标准,定义了六种单元类型,并对不同类型单元的成形过程进行了研究。在保证体积不变的前提下,建立了不同类型单元的成形模型,通过对比成形过程最大打击能量,得到了不同类型单元对成形过程影响的程度。在此基础上,计算得到单元形状因子的大小,通过形状因子对单元尺寸的修正得到锻件特征信息。将转向节锻件和模具特征信息分别作为神经网络的输入和输出向量,建立了转向节锻造设计神经网络模型,该模型不仅考虑了锻件特征尺寸对成形过程的影响,也考虑了特征形状的影响,同时将特征形状的影响数值化。本文同时针对转向节锻造设计神经网络的类型、控制参数和训练算法进行了研究。研究了在不同网络类型、控制参数和训练算法下神经网络的收敛情况和预测精度,给出了确定神经网络参数的建议。
     本文研究了神经网络专家系统的基本结构、知识表示和推理方式,在此基础上,将转向节锻造设计理论和经验知识同人工智能理论有机地结合在一起,开发了汽车转向节锻造设计专家系统FDesign-SK。研究了三十多组不同型号的转向节锻造实例,总结了其中的设计经验,并将这些经验知识存储在系统中。该系统实现了神经网络和专家系统的协同式集成,克服了传统的专家系统具有的推理单调性、知识获取比较困难及不存在统一的知识表示方法等缺陷。该系统采用模块化设计,界面友好,操作简单。系统采用开放式设计,具备良好的自学习功能,可以根据需要不断扩充和完善训练样本库,用来扩大系统的应用范围,提高预测精度和稳定性。本文最后通过锻造实例,给出了利用FDesign-SK系统、数值模拟和反求技术相结合的方法,进行转向节锻造设计。该方法是一种有效的锻造设计方法,可以大幅缩短转向节新品开发周期,降低开发费用,减少设计人员的工作量。
The automobile industry is the pillar industry in national economy. The forging process, which is the main method of manufacturing the key and the load-bearing automobile parts, plays an important role in the manufacture of automobile components. The steering knuckle, with many varieties and usage quantities, is mainly made from the forging process now. The steering knuckle is one of the most difficulty automobile forging parts, and the forging design level of the steering knuckle is regard as the highest of automobile forging parts. In the forging classification the steering knuckle belong to the category of fork parts. The forging process of the fork parts is muti-stages and complex forging process, so the forging design of the fork parts is very difficult.
     At present there are two problems in the forging manufacture of the steering knuckle. The forging process of the steering knuckle has low material utilization and high energy consumption; The new product development of the steering knuckle mainly depends on the designers' experience, which will bring the long cycle, the high cost and the large risk. This paper focuses on the studies of the forging process design and the forging intelligent design of the steering knuckle. The new forging process of the steering knuckle is developed to decrease the material utilization and energy consumption by using FEM simulations and experimental investigations. In order to find a new product development method of short-cycle, low-cost and high-quality, the expert system of the forging design of the steering knuckle is developed to supervise forging process and die design.
     Using finite element code DEF0RM-3D, the forging process of the typical steering knuckle is analyzed in this paper. The metal flow, the stress/strain fields, the temperature field and the load/energy curves are provided, and the forming discipline of the forging process of the steering knuckle is achieved. Moreover, the influence on forming process of the friction factor is analyzed. On the base of the analyses, the forming defect of the steering knuckle is provided to supervise forging process optimization and die design.
     In this paper the new forging process of a type of complex fork part is proposed to realize one-time forging on the hot die-forging press. Taking the case of SK2 forging part, the proper preforming is arranged, the blanking impression is designed, and the closed-die forging with closed-flash process for the preforging is proposed. This new process design realizes one-time forging and decreases energy consumption. Meanwhile, the horizontal forging process of the steering knuckle is studied. Taking the case of SK1 forging part, the new forging process is proposed. The new process is composed of preforming process of extruding staff and preforging process of the closed-die forging with controlled-flash. The material utilization increases significantly in the new forging process.
     The key technique of the neural network (NN) of the forging design of the steering knuckle is studied in this paper. The unit and the shape factor are defined to describe the feature of the forging part. The feature information of forging part is composed of both feature size and feature shape. The judging criterion is proposed to evaluate the influence on forming process of the different feature shape. Six kinds of units are defined, and the forging process of these units is studied. The forming model of the different kinds of the units is made in terms of equal volume. The shape factor is calculated by contrasting with the max energy in the forging process. The unit size revised by the shape factor is used to describe feature information of the forging part. The feature information of forging part and die are regarded as the inputting and outputting vector respectively to make the NN model of the forging process of the steering knuckle. The model includes the influence on forming process of the different feature size and feature shape. Architectures, controls parameter and learning algorithms of the NN of the forging process of the steering knuckle are also studied in the paper. The convergence and the prediction precision of the NN under different architectures, controls parameter and learning algorithms are provided, and the suggestion how to choose the parameter of the NN is proposed.
     Basic architecture, knowledge express and reasoning mode of the NN-based expert system is studied in this paper. The design theories and experience knowledge of the forging process and artificial intelligence technology are unified to develope the self-developed software FDesign-SK for expert system of the forging design of the steering knuckle. The experiential knowledge extracted from more than thirty kinds of forging samples of the steering knuckle is stored in this system. The system is realized with the cooperation integration of the NN and the expert system, which could avoid the default of the monotonous reasoning, difficult knowledge acquisition, no uniform knowledge representation, and et al. The framework of the system is modularization, which makes the interface operate easily. FDesign-SK is a system of opening design, and it has the good self-learning function. Therefore, the learning samples could be expanded to improve forecast accuracy and stability of the system. At last, the forging design method of application of FDesign-SK software, FEM simulation and reverse technology is proposed, which could shorten development period, lower cost and reduce workload of the designer.
引文
1 彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999
    2 刘建生,陈慧琴,郭晓霞.金属塑性成形加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003
    3 Lee C H,Kobayashi S.New solutions to rigid-plastic deformation problems using a matrix method[J].Journal of Engineering for Industry-Transactions of the ASME,1973,95:865-873
    4 Walters J.Application of finite element methid in forging an industry perspective[J].Journal of Materials Processing Technology,1991,27:43-41
    5 Oh S I,Wu W T,Tang J P.Simulation of cold forging process by the DEFORM system [J].Journal of Materials Processing Technology,1992,35:357-372
    6 胡忠.材料加工过程计算机模拟的现状与未来[J].塑性工程学报,1998,5(2):1-8
    7 L.Tricadco,M.De Cosmo.Analysis of an industrial net shape forming application through numerical and experimental approach[C].Proceedings of the 6th ICTP,Precision Forging,Italy,1999:759-764
    8 H.J.Haepp,K Roll.Future perspectives and limits for the mathematical modelling of metal forming processes in automotive industry[C].Proceedings of the 6th ICTP,Modelling and Simulation,Germany,1999:481-496
    9 Hyunkee Kim,Tetsuji Yagi,Masahito Yamanaka.FE simulation as a must tool in cold/warm forging process and tool design[J].Journal of Materials Processing Technology,2000,98:143-149
    10 Bramley A N,Mynors.The use of forging fimulation tools[J].Materials and Design,2000,(21):279-286
    11 董湘怀,郑莹,兰箭,等.金属塑性成形计算机模拟的若干进展[J].金属成形工艺,2000,18(1):1-4
    12 詹梅.面向带阻尼台叶片精锻过程的三维有限元数值模拟研究[D].西安:西北工业大学博士学位论文,2000
    13 赵健,陈拂晓,上官林健,等.金属体积成形模拟技术[J].热加工工艺,2001,(3):49-52
    14 O.C.Zienkiewicz,P.N.Godbole.A penalty function approach to problems of plastic flow of metals with large surface deformations[J].The Journal of Strain Analysis for Engineering Design,1975,10(3):180-183
    15 P.Perzyna.Fundamental problems in viscoplasticity[J].Advances in Applied Mechanics,1969,9:243
    16 S.I.Oh,N.M.Rebelo,S.Kobayashi.Finite element formulation for the analysis of plastic deformation of rate-sensitive materials in metal forming[C].Metal Forming Plasticity(Proc.Conf.) IUTAM Symposium,Tutzing/Germany,1978:273-291
    17 A.Makinouchi.Finite element modeling of draw-bending process of sheet metal[C].Proceedings of NUMIFORM'86,Gothenburg,Sweden,1986:327-332
    18 N.M.Wang,S.C.Tang.Analysis of bending affection sheet forming operations[C]. Proceedings of NUMIFORM'86,Gothenburg,Sweden,1986:71-76
    19 董湘怀.轴对称及三维金属板料成形过程的有限元模拟[D].武汉:华中理工大学博士论文,1991
    20 邢会林.板材超塑成形过程的数值模拟及微机控制[D].哈尔滨:哈尔滨工业大学博士论文,1994
    21 柳玉起.板材成形塑性流动规律及起皱破裂回弹的数值研究[D].长春:吉林工业大学博士论文,1995
    22 曾元松.椭圆球壳整体液胀成形过程的研究[D].哈尔滨:哈尔滨工业大学博士论文,1997
    23 杨光,胡平,吴志强.板材冲压切边回弹有限元模拟中的切边处理技术[J].塑性工程学报,2004,(5):5-8
    24 S.Kobayashi,S.I.Oh,T.Altan.Metal forming and the finite element method[M].London:Oxford University Press,1989
    25 S.I.Oh.Finite element analysis of metal forming processes with arbitrarily shaped dies [J].International Journal of Mechanical Sciences,1982,24(8):479-488
    26 B.I.Tomov,V.I.Gagov,R.H.Radev.Numerical simulations of hot die forging processes using finite element method[J].Journal of Materials Processing Technology,2004,153-154:352-358
    27 B.Tomov,R.Radev,V.Gagov.Influence of flash design upon process parameters of hot die forging[J].Journal of Materials Processing Technology,2004,157-158:620-623
    28 F.Fereshteh-Saniee,M.Jaafari.Analytical,numerical and experimental analyses of the closed-die forging[J].Journal of Materials Processing Thchnology,2002,125-126:334-340
    29 G.C.Wang,G.Q.Zhao,X.H.Huang,et al.Analysis and design of a new manufacturing process for a support shaft using the finite element method[J].Journal of Materials Processing Technology,2002,121:259-264
    30 M.S.Jouna,J.H.Chungb,R.Shivpuric.An axisymmetric forging approach to preform design in ring[J].International Journal of Machine Tools & Manufacture,1998,38:1183-1191
    31 Yohng J.Kim,Naunit R.,Chitkara.Determination of preform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process[J].International Journal of Mechanical Sciences,2001,43:853-870
    32 J.H.Song,Y.T.Im.Process design for closed die forging of bevel gear by finite element analyses[J].Journal of Materials Processing Technology,2007,192-193:1-7
    33 E.Ervasti,U.St(?)hlberg.A quasi-3D method used for increasing the material yield in closed-die forging of a front axle beam[J].Journal of Materials Processing Technology,2005,160:119-122.
    34 V.Vazquez,T.Altan.Die design for flashless forging of complex parts[J].Journal of Materials Processing Technology,2000,98:81-89.
    35 A.D.Santos,J.F.Duarte,A.Reis.The use of finite element simulation for optimization of metal forming and tool design[J].Journal of Materials Processing Technology,2001, 119:152-157.
    36 赵国群.锻造过程的正反向数值模拟[D].上海:上海交通大学博士学位论文,1991
    37 赵国群,张鸿光.锻造过程刚.粘塑性有限元模拟系统[J].机械工程学报,1992,(6):14-19
    38 卫原平,彭颗红,阮雪榆.金属塑性成形过程的计算机模拟系统[J].上海交通大学学报,1996,(3):132-137
    39 J.J.Park,S.Kobayashi.Three-dimension finite element analysis of block compression [J].International Journal of Mechanical Sciences,1984,26(3):165-176
    40 J.H.Yoon,D.Y.Yang.Rigid-plastic finite element analysis of three-dimensional forging by considering friction on continuous curved dies with initial guess generation [J].International Journal of Mechanical Sciences,1988,(30):887-898
    41 王忠金.模锻过程的三维模拟及连杆终锻成形规律的研究[D].长春:吉林工业大学博士学位论文,1995
    42 蒋浩民.锻造过程三维数值模拟系统H-FORGE3D的开发与应用[D].哈尔滨:哈尔滨工业大学博士学位论文,1998
    43 左旭.集成于CAD系统的汽车零件多工位体积成形三维CAE仿真[D].上海:上海交通大学博士学位论文,1998
    44 胡亚民,夏华.摩托车带爪齿轮坯的精锻成形数值模拟与工艺研究[J].塑性工程学报,2006,13(2):48-50
    45 吕成,张立文.重型燃机叶片锻造过程的三维热力耦合有限元模拟[J].塑性工程学报,2006,13(4):54-58
    46 蔡旺,刘郁丽,杨合,等.叶片精锻三维刚粘塑性热力耦合有限元模拟系统[J].上海交通大学学报,2005,39(1):1-5
    47 K.Iwata,K.Osakada.Analysis of hydrostatic extrusion by the finite element method [J].Journal of Engineering for Industry-Transactions of the ASME,1972,(94):697-703
    48 S.N.Shah,S.Kobayashi.A theory on Metal Flow in Axisymmetfic Piercing and Extrusion[J].Journal of Production Engineer,1977,(1):73-78
    49 E.H.Lee,R.L.Mallett.Stress and deformation analysis of the metal extrusion process [J].Computer Methods in Applied Mechanics and Engineering,1977,(10):339-353
    50 谢水生,王祖唐.弹塑性有限元法分析不同型线凹模静液挤压时的应力和应变状态[J].机械工程学报,1985,(2):19-23
    51 Y.M.Guo,Y.Yokouchi.Analysis of hot forward-backward extrusion by the visco-plastic finite element method[J].Journal of Materials Processing Technology,1993,(38):103-114
    52 X.Y.Ruan,Y.H.Peng.The FEM simulation of bimetal forming process[C].Proceedings of the 5th ICTP,Columbus,Ohio,USA,1996:271-278
    53 H.Long,R.Balendra.FE simulation of the influence of thermal and elastic effects on the accuracy of cold-extruded components[J].Journal of Materials Processing Technology,1998,84(1-3):247-260
    54 J.T.Oden,D.R.Bhandari.A new approach to the finite element formulation and solution of a class of problems in coupled thermoelasto visco-plasticity of crystalline solids[J].Nuclear Engineering and Design,1973,(24):420-435
    55 N.Rebelo,S.Kobayashi.A coupled analysis of viscoplastic deformation and heat transfer[J].International Journal of Mechanical Sciences,1980,(22):688-705
    56 O.C.Zienkiewicz,E.Onate.A general formulation for coupled thermal flow of metals using finite elements[J].International Journal for Numerical Methods in Engineering,1981,(17):1497-1514
    57 N.Soyris,J.J.Brioist.Three dimensional finite element calculation of the whole forging process of an automotive part[C].Proceedings of the 3rd ICTP,Tokyo,Japan,1990:165-170
    58 S.Shamasundar,A.A.Tseng.Numerical and experimental study of the thermal behavior of coining and upsetting processes[J].Journal of Materials Processing Technology,1993,36(2):199-221
    59 詹艳然,王仲仁.塑性成形数值模拟中温度边界条件的处理[J].塑性工程学报,2001,(1):4-7
    60 马新武.体积成形过程数值模拟与优化技术及其系统开发研究[D].济南:山东大学博士学位论文,2002
    61 蔡自兴,约翰.德尔金,等.高级专家系统:原理、设计及应用[M].北京:科学出版社,2005
    62 D.J.Kim,B.M.Kim.Application of neural network and FEM for metal forming processes[J].International Journal of Machine Tools & Manufacture,2000,40:911-925.
    63 S.H.Hsiang,H.L.Ho.Application of finite element method and artificial neural network to the die design of radial forging processes[J].International Journal of Advanced Manufacturing Technology,2004,24:700-707
    64 A.Downes,P.Hartley.Using an artificial neural network to assist roll design in cold roll-forming processes[J].Journal of Materials Processing Technology,2006,177:319-322
    65 Dae-Cheol Ko,Dong-Hwan Kim,Byung-Min Kim.Application of artificial neural network and Taguchi method to preform design in metal forming considering workability[J].International Journal of Machine Tools & Manufacture,1999,39:771-785
    66 Shashi Kumar,Sanjeev Kumar,Prakash,et al.Prediction of flow stress for carbon steels using recurrent self-organizing neuro fuzzy networks[J].Expert Systems with Applications,2007,32:777-788
    67 Rosa Di Lorenzo,Giuseppe Ingarao,Fabrizio Micari.On the use of artificial intelligence tools for fracture forecast in cold forming operations[J].Journal of Materials Processing Technology,2006,177:315-318
    68 Roberts SM,Kusiak J,Liu YL,et al.Prediction of damage evolution in forged aluminum metal matrix composites using a neural network approach[J].Journal of Materials Processing Technology,1998,80-81:507-512
    69 Trowsdale AJ,Usherwood TW,Wadsworth JEJ,et al.Neural network for providing on-line access to discretised modeling techniques[J].Journal of Materials Processing Technology,1998,80-81:475-480
    70 Manabe K,Yang M,Yoshihara S.Artificial intelligence identification of process parameters and adaptive control system for deep drawing process[J].Journal of Materials Processing Technology,1998,80-81:421-426
    71 Kim DH,Kim DJ,Kim BM.The application of neural networks and statistical methods to process design in metal forming processes[J].International Journal of Advanced Manufacturing Technology,1998,15:886-894
    72 Pilani R,Narasimhan K,Maiti SK,et al.A hybrid intelligent system approach for die design in sheet metal forming[J].International Journal of Advanced Manufacturing Technology,2000,16:370-375
    73 Ko BD,Kim DJ,Lee SH,et al.The influence of die geometry on the radial extrusion processes[J].Journal of Materials Processing Technology,2001,113:09-114
    74 Kong LX,Nahavandi S.On-line tool condition monitoring and control system in forging processes[J].Journal of Materials Processing Technology,2002,125-126:464-470
    75 Carla A.Schwartz,Jordan M.Berg.Neural-network feedback control of an extrusion [J].IEEE transactions on control systems technology,1998,6(2):180-187
    76 刘庆斌,刘宏.H型件锻造神经网络专家系统[J].计算机工程与应用,1998,(6):54-55
    77 李淼泉,张兴全,曾凡昌.锻件锻后组织和性能的自适应预测[J].材料工程,1998,(1):42-45
    78 崔令江,杨玉英,朱玉萍.利用神经网络构建方盒件成形数值模拟模型[J].塑性工程学报,2005,12(1):20-23
    79 高军,季廷炜,赵国群,等.模糊人工神经网络在冷挤压工艺设计中的应用研究[J].塑性工程学报,2005,12(3):22-26
    80 高军,赵国群,季廷炜,等.基于人工神经网络的冷挤压工艺设计系统的知识自动获取研究[J].塑性工程学报,2005,12(5):58-61
    81 高军,张承瑞,季廷炜,等.基于正交设计的神经网络训练样本的选择方法及其在冷挤压工艺设计中的应用研究[J].塑性工程学报,2006,13(5):32-35
    82 潘江峰,钟约先,袁朝龙,等.基于人工神经网络技术的板料拉深成形工艺优化的数值建模[J].塑性工程学报,2007,14(5):1-4
    83 井维峰,孙锡红.模糊神经网络技术在精锻模具智能设计中的应用[J].电加工与模具,2003,(1):37-40
    84 林高用,周佳,张永宁,等.铝型材挤压模具导流孔结构优化[J].中南大学学报(自然科学版),2007,38(2):225-231
    85 娄路亮,李付国.锻造模具的随机疲劳损伤分析[J].机械强度,2002,24(1):104-108
    86 王玉,邢渊.锻造缺陷智能诊断与咨询系统研究[J].锻压技术,2001,2:3-6
    87 黄瑶,刘全坤.基于BP神经网络的挤压模具磨损预测[J].塑性工程学报,2006,13(2):64-66
    88 郭斌,戴护民.基于人工神经网络的锻造性能预报的研究[J].哈尔滨工业大学学报,1998,30(5):16-19
    89 张延华,王国栋.BP神经网络和数学模型在中厚板板凸度预报中的综合应用[J].塑性工程学报,2005,12(4):58-61
    90 戴护民,李赞,夏巨谌,等.拉深孔成形的工艺参数优化与实验研究[J].中国机械工程,2006,17(15):1627-1629
    91 LIU Yu-Hong,LI Fu-Guo.Analog circuit model of FGH96 superalloy hot deformation behaviors based on artificial neural network[J].Chinese Journal of Aeronautics,2005,18(1):3-6
    92 贾春玉,刘宏民.基于模糊修正的Elman动态递归网络板形高精度预报[J].中国机械工程,2005,16(13):1142-1145
    93 韩丽丽,张洛明,孟令启.中厚板轧机宽展的神经网络预测[J].中国机械工程,2006,17(18):1948-1950
    94 J.Zhao,F.Wang.Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces[J].Journal of Materials Processing Technology,2005,166:387-391
    95 李萍,薛克敏.基于人工智能的钛合金热变形工艺参数优化[J].中国有色金属学报,2006,16(7):1202-1206
    96 张洛明,孟令启,马金亮,等.基于神经网络的金属变形抗力预测[J].塑性工程学报,2007,14(1):6-9
    97 薛隆泉,徐国宁,刘荣昌,等.基于神经网络的曲轴残余应力预测[J].铸造技术,2007,28(5):686-689
    98 张庭芳,陶勇新,黄菊花,等.利用神经网络技术对板料成形摩擦系数进行预测[J].塑性工程学报,2005,12(6):67-70
    99 王丹民,李华德,周建龙,等.热轧带钢力学性能预测模型及其应用[J].北京科技大学学报,2006,28(7):687-690
    100 李军红,周天瑞,郑荣,等.人工智能在冷轧带肋钢筋工艺参数优化中的应用[J].塑性工程学报,2005,12(2):65-68
    101 王雷刚,孙宪萍,黄瑶.神经网络在模具型腔温升预测中的应用[J].塑性工程学报,2008,15(2):80-83
    102 赵新海.基于有限元模拟的锻造过程优化设计方法研究[D].济南:山东大学博士学位论文,2001
    103 张清萍.齿轮精锻过程三维数值模拟及关键工艺技术研究[D].济南:山东大学博士学位论文,2004
    104 杨青春,于沪生,余宁.汽车转向节成形过程的有限元数值模拟[J].塑性工程学报,1996,9(3):47-53
    105 李尊荣,傅翔.现代锻造生产线的设计[J].锻压技术,1996,(3):7-12
    106 王红卫,黄文彬.基于有限变形的转向节锻造成形过程模拟[J].塑性工程学报,2007,14(5):76-78
    107 蒋鹏,方刚,曹世金,等.奔驰重卡转向节挤压锻造复合工艺的有限元分析[J].锻压技术,2005,(1):22-27
    108 周杰,孙小孟,权国政,等.异形转向节工艺设计及成形分析[J].锻压装备与制造技术,2005,(5):37-39
    109 G.Hirta,R.Cremera,T.Witulskia,et al.Lightweight near net shape components produced by thixoforming[J].Materials & Design,1997,18:315-321
    110 赵德颖,孙惠学.轿车转向节闭塞挤压成形过程研究[J].塑性工程学报,2006,13(6):11-14
    111 谷志飞,吴伯杰.滑动叉无飞边锻造工艺有限元模拟研究[J].塑性工程学报,2005,12(5):38-42
    112 张运军,胡道才.汽车转向节的锤上模锻工艺[J].锻压机械,1999,(1):26-28
    113 董之社.轿车转向节锻件半封闭挤压工艺[J].锻压技术,2000,(6):9-10
    114 傅翔.“闭式预锻,开式终锻”模锻工艺[J].锻压机械,1999,(6):34-35
    115 毛厚军.汽车转向节的少飞边锻造技术[J].锻压技术,1998,(5):16-19
    116 Tahir Altinbalik,H.Erol Akata,Yilmaz Can.An approach for calculation of press loads in closed-die upsetting of gear blanks of gear pumps[J].Materials and Design,2007,28:730-734
    117 G.Samotyk,Z.Pater.Use of SLFET for design of flash gap with V-notched lands in a closed-die forging[J].Journal of Materials Processing Technology,2005,162-163:558-563
    118 E.Doege,R.Bohnsack.Closed die technologies for hot forging[J].Journal of Materials Processing Technology,2000,98:165-170
    119 夏巨谌,韩凤麟,赵一平,等.中国模具设计大典锻模与粉末冶金模设计[M].南昌:江西科技出版社,2003
    120 刘助柏,倪利勇,刘国晖,等.大型轴类锻件的特殊锻造法[J].中国机械工程,2006,7(8):877-879
    121 B.Tomov.A new Shape complexity factor[J].Journal of Materials Processing Technology[J],1999,92-93:439-443.
    122 G.Zhao,E.Write,R.Grondiani.Forging preform design with the shape complexity control in simulation backward deformation[J].International Journal of Machine Tools and Manufacture,1995,35(9):1225-1239
    123 Guoqun Zhao,Guangchun Wang,Ramana V.Grandhi.Die cavity design of near flashless forging process using FEM-based backward simulation[J].Journal of Materials Processing Technology,2002,121:173-181
    124 Guoqun Zhao,Zhenduo Zhao,Tonghai Wang,et al.Preform design of a generic turbine disk forging process[J].Journal of Materials Processing Technology,1998,84:193-201
    125 Nagarajan Thiyagarajan,Ramana V.Grandhi.Multi-level design process for 3-D preform shape optimization in metal forming[J].Journal of Materials Processing Technology,2005,170:421-429
    126 S.R.Lee,Y.K.Lee,C.H.Park,et al.A new method of preform design in hot forging by using electric field theory[J].International Journal of Mechanical Sciences,2002,44:773-792
    127 F.R.Biglari,N.P.O'Dowd,R.T.Fenner.Optimum design of forging dies using fuzzy logic in conjunction with the backward deformation method[J].International Journal of Machine Tools & Manufacture,1998,38:981-100
    128 C.F.Castro,C.A.C.Antnio,L.C.Sousa.Optimisation of shape and process parameters in metal forging using genetic algorithms[J].Journal of Materials Processing Technology,2004,146,356-364
    129 Satish Kumar.Neural Networks[M].北京:清华大学出版社,2006
    130 Fredric M.Ham.Ivica Kostanic.Principles Of neurocomputing for science &engineering[M].北京:机械工业出版社,2003
    131 胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006
    132 闻新,周露,李翔,等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003
    133 董红军,邓修瑾,王艳玮.基于面向对象技术的CAPP系统分析[J].机械科学与技术,1999,18(5):852-854
    134 董红军,乔建明,邓修瑾,等.面向对象的CAPP专家系统研究[J].西北工业大学学报,2000,18(4):522-525
    135 陈纲,陈军,阮雪榆.基于事例推理的汽车覆盖件CAPP系统中的事例表达模型[J].中国机械工程,2004,15(12):1099-1103
    136 陈军,石晓祥,陈纲,等.基于模型的推理技术在汽车覆盖件冲压可加工性分析中的应用[J].中国机械工程,2003,14(16):1425-1428
    137 于同敏,李冠华,姜开宇.基于事例推理的模具分型面设计方法研究[J].中国机械工程,2004,15(13):1167-1170
    138 郝泳涛.基于特征编码组和人工神经网络的模式化智能工艺设计系统关键技术研究[D].上海:上海交通大学博士学位论文,1999
    139 张先宏,彭颖红,阮雪榆.基于特征的冷挤压件设计过程模型研究[J].机械科学与技术,2001,20(6):954-956
    140 方勇,李付国,聂蕾,等.汽车车身覆盖件特征的表达[J].西北工业大学学报,2002,20(2):188-191
    141 M.T.Hagen.Training feed forward networks with the Levenberg-Marquardt algorithm [J].IEEE Transactions on Neural Networks,1994,5(6):989-993
    142 F.Griosi,T.Poggio.Networks and the best approximation property[J].Biological Cybernetics,1990,63:169-176
    143 王欣.精密锻造及其模具设计与制造技术[J].塑性工程学报,2002,9(4):60-64
    144 曹育红,王宝雨,胡正寰.基于KBE的楔横轧模具设计关键技术研究[J].中国机械工程(增刊),2006,17:254-256
    145 黄纬.基于工程对象的专家系统开发技术[J].江苏大学学报(自然科学版),2007,28(6):520-523
    146 陈剑,吴彤,夏巨谌,等.基于人工神经网络的气门电热镦粗工艺专家系统[J].塑 性工程学报,2007,14(1):62-65
    147 孙旭霞,李生民,石争浩,等.水平连铸工艺参数优化设置专家系统[J].计算机工程,2005,31(7):200-201
    148 李章刚,李冰,张士宏,等.合金管材铸轧工艺设计专家系统的开发及应用[J].中国机械工程,2005,16(23):2101-2105
    149 易子馗,谢敬华,侯玲珑.熔融拉锥工艺参数的优化及其系统实现[J].中国机械工程,2007,18(6):738-741
    150 陆垚光,毛涛涛,王正林,等.精通MATLAB GUI设计[M].北京:电子工业出版社,2008
    151 程伟良.广义专家系统[M].北京:北京理工大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700