用户名: 密码: 验证码:
离子束改性AZ31镁合金耐磨抗蚀复合性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用MEVVA 80-10型金属蒸发真空弧离子注入装置和TEMP-6型强流脉冲离子束(HIPIB)装置,分别开展了Al离子常温和高温注入、强流脉冲离子束辐照AZ31镁合金实验研究,揭示了离子束改性的表面成分、结构和性能变化规律,获得了具有耐磨抗蚀复合性能的改性表面,阐明了Al离子常温和高温注入、HIPIB辐照AZ31镁合金耐磨抗蚀复合改性机理。
     注入剂量分别为2×10~(16),6×10~(16)和1×10~(17)/cm~2的Al离子常温和300℃高温注入AZ31镁合金,1×10~(17)/cm~2注入剂量下,常温和300℃高温注入Al离子的峰值浓度分别为10 at.%和8 at.%,注入深度为840和1200 nm。原始试样主要由α-Mg相组成,同时还含有少量的金属间化合物β-Mg_(17)Al_(12)相和MgO相。常温1×10~(17)/cm~2注入剂量下,表面β相含量增加,300℃高温2×10~(16)/cm~2注入剂量下,即有新的β相析出。
     Al离子常温和300℃高温注入AZ31镁合金,在载荷为5 N和20 N,滑动速度为2mm/s的往复式干滑动磨损条件下,以及在pH=12的0.01-0.08 mol/l NaCl溶液中,获得了具有耐磨抗蚀复合性能的改性表面。载荷为5 N,磨损10 min,注入剂量为2×10~(16)/cm~2的常温注入试样,磨损量降低约20%。载荷为20 N,磨损20 min,注入剂量为2×10~(16)/cm~2的常温注入试样磨损量降低约30-40%,注入剂量为6×10~(16)/cm~2的300℃高温注入试样磨损量降低约15-20%。载荷为5 N条件下,原始镁合金呈现以显微切削为主的磨粒磨损机理,Al离子注入没有改变镁合金的磨损机理,但塑性变形程度和磨粒磨损倾向明显减小。载荷为20 N条件下,发生了从原始试样金属磨粒磨损到离子注入试样氧化磨损机理的转变。在pH=12的0.01 mol/l NaCl溶液中,Al离子注入试样阳极极化性能较原始试样明显改善,注入剂量为6×10~(16)/cm~2的Al离子300℃高温注入试样,具有优异的抗蚀性能,腐蚀电位和孔蚀击穿电位较原始试样分别提高约400和800 mV,维钝电流密度比原始试样降低了约一个数量级。在pH=12的0.08 mol/l NaCl溶液中,注入剂量为1×10~(17)/cm~2的Al离子常温和300℃高温注入试样,腐蚀电位较原始试样分别提高约180和280 mV,孔蚀击穿电位分别提高约150和220 mV。Al离子常温及300℃高温注入AZ31镁合金耐磨抗蚀复合性能的改善,主要归因于镁合金表面富集Al的固溶增强作用,以及β-Mg_(17)Al_(12)的第二相弥散增强作用。
     束流密度为100-300A/cm~2,辐照次数为1-10,HIPIB辐照AZ31镁合金表面形成了以局部烧蚀坑和熔融扰动为主要特征的烧蚀形貌。随着束流密度和辐照次数增加,熔化层和热影响区的显微组织较原始试样明显细化。由于HIPIB重复的快速熔化和凝固,镁合金表面化学成分趋于均匀化,显微结构细化,第二相β-Mg_(17)Al_(12)分布均匀。
     利用HIPIB辐照AZ31镁合金,在载荷为0.1-0.5 N,滑动速度为0.08 m/s,磨损时间为5 min的球盘式干滑动磨损条件下,以及在pH=12的0.01-0.5 mol/l NaCl溶液中,获得了具有耐磨抗蚀复合性能的改性表面。载荷为0.1 N条件下,300 A/cm~2,10次辐照试样具有最优的耐磨减摩性能,摩擦系数由原始试样的0.378减小到0.338,磨损量较原始试样降低约75%。载荷为0.2和0.5 N条件下,300 A/cm~2,10次辐照试样的摩擦系数分别由原始试样的0.364和0.361减小到0.334和0.313,磨损量较原始试样分别降低约40%和15%。HIPIB辐照镁合金试样仍然以磨粒磨损为主,但被辐照试样的磨粒磨损倾向较原始试样大大降低,主要表现为塑性变形程度的减轻和磨痕表面犁沟的变细变浅,同时磨痕局部呈现氧化磨损特征。在pH=12的0.01 mol/l NaCl溶液中,HIPIB辐照试样的阳极极化性能较原始试样明显改善,100 A/cm~2,5次辐照试样具有优异的抗蚀性能,腐蚀电位和孔蚀击穿电位较原始试样分别提高约560和630 mV。原始试样形成的大块腐蚀产物及在腐蚀过程中发生的开裂现象,在被辐照试样表面得到明显减轻,可观察到面积较大的未遭受腐蚀破坏的表面钝化特征。随着Cl~-浓度增大,原始试样和被辐照试样的抗蚀性能均降低,但被辐照试样的抗蚀性能仍然优于原始试样。被辐照表面化学成分的均匀化和显微组织的细化是HIPIB辐照AZ31镁合金耐磨抗蚀复合性能改善的主要原因。
Al ion implantation and HIPIB irradiation into AZ31 magnesium alloy are carried out in a MEVVA 80-10 ion implantation system and in TEMP-6 type HIPIB apparatus,respectively. The changes in composition,structure and properties of ion beams modified AZ31 magnesium alloy are revealed and the combined improvement in wear and corrosion resistance of AZ31 magnesium alloy is achieved.The modification mechanism in the wear and corrosion resistance of Al ion implanted and H1PIB irradiated AZ31 magnesium alloy are also illustrated in terms of the changes in composition,structure and properties of modified surface.
     The Al ion implantation into AZ31 magnesium alloys is carried out at an implantation dose of 2×10~(16),6×10~(16) and 1×10~(17) ions/cm~2 at room temperature and at 300℃.The concentration depth profiles of implanted Al in AZ31 magnesium alloys with an implantation dose of 1×10~(17) ions/cm~2 at room temperature and at 300℃C were a Gaussian-type distribution in the depth up to about 840 and 1200 nm with the maximum Al concentration up to about 10 and 8 at.%respectively,measured by using Rutherford backscattering spectrometry(RBS). The microstructure,which is mainly composed ofα-Mg phase,and small amount of intermetallicβ-Mg_(17)Al_(12) and MgO phase is also observed on the original and implanted samples by X-ray diffraction(XRD).The new diffraction peak ofβphase is observed on the Al ion implanted AZ31 magnesium alloys with the higher implantation dose of 1×10~(17) ions/cm~2 at room temperature,whereas the new diffraction peak ofβphase is observed on the Al ion implanted AZ31 magnesium alloys with the lower implantation dose of 2×10~(16) ions/cm~2 at 300℃.
     The combined improvement in wear and corrosion resistance is achieved for the Al ion implanted AZ31 magnesium alloys at room temperature and at 300℃using a reciprocating tribometer in a ball-on-flat configuration where the applied load is 5 and 20 N at a sliding speed of 2 mm/s and potentiodynamic polarization technology in the 0.01 mol/1 NaCl solution with a pH value of 12,respectively.For the Al ion implanted sample with a dose of 2×10~(16) ions/cm~2 at room temperature,the wear volume is reduced by 20%respectively,compared with that of the original sample under a load of 5 N for a sliding time of 10 min,and the wear volume is reduced by 30-40%under a load of 20 N for a sliding time of 20 min.For the Al ion implanted sample with a dose of 6×10~(16) ions/cm~2 at a temperature of 300℃,the wear volume is reduced by 1.5-20%under a load of 20 N for a sliding time of 20 min.Under a load of 5 N,the original sample exhibited a typical abrasive wear mechanism,characterized by microcutting and plastic deformation,and Al ion implantation did not change the wear mechanism of magnesium alloy.Under a load of 20 N for a sliding time of 20 min,the transitions in wear mechanism from severe metallic wear to oxidational wear for the Al ion implanted samples at room temperature and at 300℃were observed.The potentiodynamic polarization curves show that the corrosion resistance of Al ion implanted samples with an. implantation dose of 2×10~(16),6×10~(16) and 1×10~(17) ions/cm~2 at room temperature and at 300℃are superior to that of the original one in the 0.01 mol/l NaCl solution with a pH value of 12. The sample with an implantation dose of 6×10~(16) ions/cm~2 has the superior corrosion resistance,and the corrosion potential and pitting corrosion breakdown potential are 400 and 800 mV higher than those of the original sample,respectively.For the sample implanted with an implantation dose of 1×10~(17) ions/cm~2 at room temperature and at 300℃,corrosion potential is higher 180 and 280 mV,and the pitting corrosion breakdown potential is higher 150 and 220 mV than those of the original sample,in the 0.08 mol/l NaCl solution with a pH value of 12.It is believed that the combined improvement in wear and corrosion resistance for Al ion implanted samples at room temperature and at 300℃is attributed to the solid solution enhancing effects and the second phaseβenhancing effects induced by Al enrichment.
     HIPIB irradiation into AZ31 magnesium alloy at ion current densities of 100-300 A/cm~2 with shot number of 1-10 led to a typical surface morphology with crater formation and waviness features in local region due to a selective ablation and disturbance of the molten surface.Compared with the original sample,the microstructure of remelted layer and heat-affected layer are significantly refined with increasing the ion current density and the shot number.HIPIB irradiation results in the significant chemical homogeneity, microstructural refinement and the homogenous redistribution of the second phase ofβon the irradiated surface due to the repetitive rapid melting and resolidification of surface irradiated by HIPIB.
     The combined improvement in wear and corrosion resistance is achieved for HIPIB irradiated AZ31 magnesium alloys using a tribometer in a ball-on-disk configuration where the applied load is 0.1-0.5 N at a sliding speed of 0.08 m/s and potentiodynamic polarization technology in the 0.01-0.5 mol/1 NaC1 solution with a pH value of 12,respectively.The irradiated sample at 300 A/cm~2 with 10 shots exhibited the superior wear resistance,the friction coefficient decreased from 0.378 for original sample to 0.338,and the wear volume is reduced about 75%compared with the original one.The friction coefficient for the original and irradiated samples at 300 A/cm~2 with 10 shots decreases from 0.364 and 0.334 at a load of 0.2 N to 0.361 and 0.313 at a load of 0.5 N,and the wear volume is reduced about 40%and 15%compared with the original one,respectively.The wear mechanism for HIPIB irradiated samples is still typical of abrasive wear,however,the degree of abrasive wear is significantly reduced,and the improved wear resistance is characterized by reduced localized plastic deformation and shallower grooves,and the oxidational wear is observed on the local region of wear track.The apparent improvement in corrosion resistance is achieved for all the irradiated samples in 0.01 mol/l NaCl solution with a pH value of 12.The corrosion potential and pitting corrosion breakdown potential for the samples irradiated at 100 A/cm~2 with 5 shots are 560 and 630 mV higher than those of the original sample,respectively.Typical corroded surface morphologies for the original and irradiated samples revealed that the original sample suffered from a severe pitting corrosion attack,leading to the formation of voluminous corrosion products that crack severely during corrosion process.In contrast to the original sample,less pitting corrosion attack is observed for the irradiated samples,indicating the enhanced protective properties of surface formed on the irradiated samples due to remelted effect induced by HIPIB irradiation.Corrosion resistance for both the original and irradiated samples decreased with increasing the Cl~-concentration in NaCI solution,however,improved corrosion resistance of irradiated sample is still obtained in NaCl solution containing higher Cl~- concentration.The chemical homogeneity and microstructural refinement of the irradiated surface induced by HIPIB irradiation are the main reasons for the combined improvement in wear and corrosion resistance of AZ31 magnesium alloys.
引文
[1]B.B.Clow,Magnesium industry overview.Advanced Materials Processes,1996,150:33-34
    [2]余琨,黎文献,王日出,马正青.变形镁合金的研究、开发及应用.中国有色金属学报,2003,13:277-288
    [3]R.W Cahn,丁道云等译.非铁合金的结构与性能.科学出版社,1999
    [4]W.J.Huang,Y.Fu,J.Wang,Z.ELi,M.Liu.Effect of chemical structure of borates on the tribological characteristics of magnesium alloy during sliding.Tribology International,2005,38:775-780
    [5]Y.Kojima,T.Aizawa,K.Higashi,S.Kamado.Progressive steps in the platform science and technology for advanced magnesium alloys.Materials Science Forum,2003,419:3-20
    [6]G.L.Song,A.Atrens.Corrosion Mechanisms of Magnesium Alloys.Advanced Engineering Materials,1999,1:11-33
    [7]G.L.Makar,J.Kruger.Corrosion of magnesium,lnternationalMaterials Reviews,1993,38:138-153
    [8]G.L.Makar,J.Kruger.Corrosion Studies of rapidly solidified magnesium alloys.Journal of Electrochemistry Society,1990,137:414-421
    [9]G.L.Song,A.Atrens,X.Wu,Z.Bo,B.Zhang.Corrosion behaviour of AZ21,AZ501 and AZ91 in sodium chloride.Corrosion Science,1998,40:1769-1791
    [10]G.L.Song,A.Atrens,M.Dargusch.Influence of microstructure on the corrosion ofdiecast AZ91D.Corrosion Science,1999,41:249-273
    [11]C.B.Baliga,P.Tsakiropoulos.Development of corrosion resistant magnesium alloys Part 2 Structure of corrosion products on rapidly solidified Mg-16At alloys.Materials science and Technology,1993,9:513-519
    [12]H.Umehara,S.Terauchi,M.Takaya.Structure and corrosion behavior of conversion coatings on magnesium alloys.Materials Science Forum,2000,350-351:273-282
    [13]F.Hollstein,R.Wiedemann,J.Scholz.Characteristics of PVD-coatings on AZ31hp magnesium alloys.Surface and Coatings Technology,2003,162:261-268
    [14]A.Yamamoto,A.Watanabce,K.Sugahara,H.Tsubakino,S.Fukumoto.Improvement of corrosion resistance of magnesium alloys by vapor deposition.Scripta Materialia,2001,44:1039-1042
    [15]D.S.Tawil.Magnesium technology.The institute of metals,London,1987,p.66-67
    [16]J.Chen,D.H.Bradhurst,S.X.Dou,H.K.Liu.The effect of chemical coating with Ni on the electrode properties of Mg_2Ni alloy.Journal of Alloys and Compounds,1998,280:290-293
    [17]C.Y.Wang,P.Yao,D.H.Bradhurst,H.K.Liu,S.X.Dou.Surface modification of Mg_2Ni alloy in an acid solution of copper sulfate and sulfuric acid.Journal of Alloys and Compounds,1999,285:267-271
    [18]I.Shigematsu,M.Nakamura,N.Saitou,K.Shimojima.Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letters, 2000, 19: 473-475
    [19] L. Q. Zhu, G. L. Song. Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating. Surface and Coatings Technology, 2006, 200: 2834-2840
    [20] A. Koutsomichalis, L. Saettas, H. Badekas. Laser treatment of magnesium. Journal of Materials Science, 1994, 29: 6543-6547
    [21] T. M. Yue, A. H. Wang, H. C. Man. Improvement in the corrosion resistance of magnesium ZK60/SiC composite by excimer laser surface treatment. Scripta Materialia, 1998, 38: 191-198
    [22] T. M. Yue, A. H. Wang, H. C. Man. Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:Yag laser cladding. Scripta Materialia, 1999, 40: 303-311
    [23] D. Dube, M. Fiset, A. Couture, I. Nakatsugawa. Characterization and performance of laser melted AZ91D and AM60B. Materials Science and Engineering A, 2001, 299: 38-45
    [24] J. D. Majumdar, R. Galun, B. L. Mordike, 1. Manna. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Materials Science and Engineering A, 2003, 361: 119-129
    [25] J. D. Majumdar, B. R. Chandra, B. L. Mordike, R. Galun, I. Manna. Laser surface engineering of a magnesium alloy with Al+Al_2O_3. Surface and Coatings Technology, 2004, 179: 297-305
    [26] G. Abbas, Z. Liu, P. Skeldon. Corrosion behaviour of laser-melted magnesium alloys. Applied Surface Science, 2005,247: 347-353
    [27] G. Abbas, L. Li, U. Ghazanfar, Z. Liu. Effect of power diode laser surface melting on wear resistance of magnesium alloys. Wear, 2006, 260: 175-180
    [28] A. H. Wang, H. B. Xia, W. Y. Wang, Z. K. Bai, X. C. Zhu, C. S. Xie. YAG laser cladding of homogenous coating onto magnesium alloy. Materials Letters, 2006, 60: 850-853
    [29] S. Akavipat, C. E. Habermann, P. L. Hagans, E. B. Hale, in E. McCafferty, C. R. Clayton, and J. Oudar (eds.). Proc. Int. Symp. on Fundamental Aspects of Corrosion Protection by Surface Modification. Electrochemical Society, NJ, 1984, p. 52-61
    [30] S. Akavipat, E. B. Hale, C. E. Habermann, P. L. Hagans. Effects of iron implantation on the aqueous corrosion of magnesium. Materials Science and Engineering A, 1985, 69: 311-316
    [31] I. Nakatsugawa, R. Martin, E. J. Knystautas. Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantation. Corrosion, 1996, 52: 921-926
    [32] M. Vilarigues, L. C. Alves, I. D. Nogueira, N. Franco, A. D. Sequeira, R. C. Silva. Characterisation of corrosion products in Cr implanted Mg surfaces. Surface and Coatings Technology, 2002, 158-159: 328-333
    [33] X. B. Tian, C. B. Wei, S. Q. Yang, R. K. Y. Fu, P. K. Chu. Corrosion resistance improvement of magnesium alloy using nitrogen plasma ion implantation. Surface and Coatings Technology, 2005, 198:454-458
    [34] A. N. Valyaev, M. K. Kylyshkanov, A. D. Pogrebnjak, A. A. Valyaev, S. V. Plotnikov. Modification of mechanical and tribological properties of R6M5 steel and Be by intense pulsed-ion and pulsed-electron beams.Vacuum,2000,58:53-59
    [35]J.Piekoszewski,Z.Werner,W.Szymczyk.Application of high intensity pulsed ion and plasma beams in modification of materials.Vacuum,2001,63:475-481
    [36]D.J.Rej,H.A.Davis,J.C.Olson,G.E.Remnev,A.N.Zakoutaev,V.A.Ryzhkov,V.K.Struts,I.F.Isakov,V.A.Shulov,N.A.Nochevnaya,R.W.Stinnett,E.L.Neau,K.Yatsui,W.Jiang.Materials processing with intense pulsed ion beams.Journal of Vacuum Science and Technology A,1997,15:1089-1097
    [37]M.K.Lei,Z.L.Zhang.Plasma source ion nitriding:A new low-temperature nitriding approach.Journal of Vacuum Science and Technology A,1995,13:2986-2990
    [38]M.K.Lei,Z.L.Zhang.Plasma source ion nitriding of pure iron:formation of an iron nitride layer and hardened diffusion layer at low temperature.Surface and Coating Technology,1997,91:25-31
    [39]G.W.Malaczyski,L.H.Chi,A.A.Elmoursi.Characterization of surface modified α-iron by nitrogen plasma immersion ion implantation:a microstructural study.Materials Science and Engineering A,1999,262:289-299
    [40]S.T.Knight,P.J.Evans.M.Samandi.Titanium aluminide formation in Ti implanted Aluminum alloy.Nuclear Instruments and Methods in Physics Research B,1996,119:501-504
    [41]R.C.Da Silva,M.F.Da Silva,A.A.Melo,J.C.Soares.Diffusion and corrosion behavior of Tungsten-implanted aluminum and the A1W phase.Nuclear Instruments and Methods in Physics Research B,1990,504:23-427
    [42]C.Z.Ji,T.H.Zhang,H.X.Zhang,X.J.Dong,A.M.Wang.Metallic ion implantation by using a MEVVA ion source.Radiation of Effects and Deflects in solids,1994,129:161-172
    [43]K.Y.Gao,B.X.Liu.Surface hardening of Al by high current Fe-ion implantation.Journal of Applied Physics,1997,82:2209-2214
    [44]B.X.Liu,K.Y.Gao.High Current Ni- and Fe-ion implantation into an AI surface to modify the mechanical properties.Materials Chemistry and Physics,1998,54:309-312
    [45]L.M.Prudencio,R.C.da Silva,M.F.da Silva,M.F.da Silva,J.C.Soares,O.Conde,R.Vilar.Modification and characterization of Al surfaces implanted with Cr ions.Surface and Coating Technology,2000,128-129:166-169
    [46]K.Hiratsuka,A.Enomoto,T.Sasada.Friction and wear of Al_2O_3,ZrO_2 and SiO_2 rubbed against pure metals.Wear,1992,153:361-373
    [47]P.J.Blau,M.Walukas.Sliding friction and wear of magnesium alloy AZ91 produced by two different methods.Tribology International,2000,33:573-579
    [48]H.Chen,A.T.Alpas.Sliding wear map for the magnesium alloy Mg-9Al-0.gZn(AZ91).Wear,2000.246:106-116
    [49]D.S.Mehta,S.H.Masood,W.Q.Song.Investigation of wear properties of magnesium and aluminum alloys for automotive applications.Journal of Materials Processing Technology,2004,155-156:1526-1531
    [50]J.P.Van Devender,D.L.Cook.Inertial confinement fusion with light ion beams.Science,1986,232:831-836
    [51]D.J.Johnson,G.W.Kuswa,A.V.Farnsworth,Jr.,J.P.Quintenz,R.J.Leeper,E.J.T.Burns,S.Humphries,Jr.Production of 0.5-TW proton pulses with a spherical focusing magnetically insulated diode.Physical Review Letters,1979,42:610-613
    [52]K.Kasuya,M.Watanabe,D.ldo,T.Adachi,K.Nishigori,T.Ebine,H.Okayama,M.Funatsu,H.Sunami,C.Wu,E.Hotta,S.Miyamoto,K.Yasuike,S.Nakai,S.Kawata,T.Okada.K.Niu.Production,diagnostic and application of pulsed ion beams with light and medium mass.LIB(and MIB) program in Japan.Fusion Engineering and Design,1999,44:319-326
    [53]王淦昌,袁之尚.惯性约束核聚变.安徽教育出版社,1996
    [54]H.A.Davis,G.E.Remnev,R.W.Stinnett,K.Yatsui.Intense ion-beam treatment of materials.Materials Research Socienty Bulletin,1996,21:58-62
    [55]R.W.Stinnett,R.G.Buchheit,E.L.Neau,M.T.Crawford,K.P.Lamppa,T.J.Renk,J.B.Greenly,I.Boyd,M.O.Thompson,D.J.Rej.Ion beam surface treatment:a new technique for thermally modifying surfaces using intense pulsed ion beams,by W.L.Baker GC.Proceeding of the 10th IEEE International Pulsed Power Conference,IEEE Piscataway,NJ,USA,1995.p.46-55
    [56]A.D.Pogrebnjak,G.E.Remnev,I.B.Kurakin,A.E.Ligachev.Structural,physical and chemical changes induced in metals and alloys exposed to high power ion beams.Nuclear Instruments and Methods in Physics Research B,1989,36:286-305
    [57]石磊,何小平,张嘉生,邱爱慈,王永昌,吴祖堂,丛培天.一台小型强流脉冲离子加速器.强激光与粒子束,2000,12:382-384
    [58]W.J.Zhao,G.E.Remnev,S.Yan,M.S.Opekounov,X.Y.Le,V.M.Matvienko,B.X.Han,J.M.Xue,Y.G Wang.Intense pulsed ion beam sources for industrial applications.Review of Scientific Instruments,2000,71:1045-1048
    [59]X.Y.Le,S.Yan,W.J.Zhao,B.X.Han,Y.G.Wang,J.M.Xue.Computer simulation of thermal-mechanical effects of high intensity pulsed ion beams on a metal surface.Surface and Coatings Technology,2000,128-129:381-386
    [60]X.P.Zhu,M.K.Lei,T.C.Ma.Surface morphology of titanium irradiated by high-intensity pulsed ion beam.Nuclear Instruments and Methods in Physics Research B,2003,211:69-79
    [61]S.M.Miao,M.K.Lei.Numerical analysis of ablated behaviors on titanium irradiated by high-intensity pulsed ion beam.Nuclear Instruments and Methods in Physics Research B,2005,229:381-391
    [62]Z.H.Dong,Z.Zhang,C.Liu,X.P.Zhu,M.K.Lei.Droplets from the metal surfaces irradiated by a high-intensity pulsed ion beam.Applied Surface Science,2006.253:2557-2564
    [63]G.E.Remnev,I.F.Isakov,M.S.Opekounov,V.M.Matvienko,V.A.Ryzhkov,V.K.Struts,I.I.Grushin,A.N.Zakoutayev,A.V.Potyomkin,V.A.Tarbokov,A.N.Pushkaryov,V.L.Kutuzov,M.Yu.Ovsyannikov.High intensity pulsed ion beam sources and their industrial applications.Surface and Coatings Technology,1999,114:206-212
    [64]X.P.Zhu,M.K.Lei,Z.H.Dong,S.M.Miao,T.C.Ma.Crater formation on the surface of titanium irradiated by a high-intensity pulsed ion beam.Surface and Coatings Technology,2003,173:105-110
    [65]A.D.Pogrebnjak,A.G.Lebed,Y.E Ivanov.Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam.Vacuum,2001,63:483-486
    [66]A.Hiroshi,Y.Mitsuyasu.Simulation of surface temperature of metals irradiated by intense pulsed electon,ion and laser beams.Surface and Coatings Technology,2003,169-170:219-222
    [67]S.M.Miao,M.K.Lei.Numerical analysis of ablated behaviors on titanium irradiated by high-intensity pulsed ion beam.Nuclear Instruments and Methods in Physics Research B,2005,229:381-391
    [68]雷明凯,苗收谋.强流载能束与材料表面相互作用的热效应.热科学与技术,2003,2:106-111
    [69]A.D.Pogrebnjak,I.E Isakov,M.S.Opekunov,Sh.M.Ruzimov,A.E.Ligachev,A.V.Nesmelov,I.B.Kurakin.Increased wear resistance and positron annihilation in Cu exposed to high power ion beam.Physics Letters A,1987,123:410-412
    [70]A.D.Pogrebnjak,Sh.M.Ruzimov.Increased microhardness and positron annihilation in Al exposed to a high-power ion beam.Physics Letters A,1987,120:259-261
    [71]I.E Isakov,A.E.Ligachev,A.D.Pogrebnjak,G.E.Remnev.Changed structure and improved operation characteristics of metals and alloys exposed to high power ion beams.Nuclear Instruments and Methods in Physics Research B,1987,28:37-40
    [72]A.D.Pogrebnjak.Metastable states and structural phase changes in metals and alloys exposed to high power pulsed ion beams.Physica Status Solidi A-Applied Research,1990,117:18-51
    [73]G.E.Remnev,V.A.Shulov.Application of high-power ion beams for technology.Laser and Particle Beams,1993,11:707-731
    [74]C.A.Meli,K.S.Grabowski,D.D.Hinshelwood,S.J.Stephanakis,D.J.Rej,W.J.Waganaar.Film deposition and surface modification using intense pulsed ion beams.Journal of Vacuum Science and Teehnologe A,1995,13:1182-1187
    [75]M.Watanabe,H.Okayama,M.Funatsu,K.Kasuya.Diagnostics of ablation process induced by pulsed ion beam.Fusion Engineering and Design,1999,44:267-270
    [76]K.Yatsui,X.D.Kang,T.Sonegawa,T.Matsuoka,K.Masugata,Y.Shimotori,T.Satoh,S.Furuuchi,Y.Ohuchi,T.Takeshita,H.Yamamoto.Applications of intense pulsed ion beam to materials science.Physics of Plasmas,1994,1:1730-1737
    [77]W.Jiang,N.Hashimoto,H.Shinkai,K.Ohtomo,K.Yatsui.Characteristics of ablation plasma produced by pusled light ion beam interaction with targets and applications to materials science.Nuclear Instruments and Methods in Physics Research A,1998,415:533-538
    [78]S.Couturier,T.de Resseguier,M.Hallouin,J.P Romain,F.Bauer.Shock profile induced by short laser pulses.Journal of Applied Physics.1996,79:9938-9942
    [79]K.Masugata,T.Nakayama,Y.Inazumi.K.Konno,M.Nakabaru.S.Takano.M.Matsui.J.Irisawa.K. Yatsui.Generation and focussing of intense pulsed light-ion beam at Nagaoka -ETIGO Project.Japanese Journal of Applied Physics,1981,20:L347-L350
    [80]V.V.Kremnev.Optimization of the SF_6-N_2 gas mixture composition in a high-power nanosecond bipolar voltage generator,by G.Mesyats BK,G.Remnev.Proceedings oflst International Congress on Radiation Physics,High Current Electronics,and Modification of Materials,Tomsk Polytechnic University,Tomsk,2000.p.111-114
    [81]S.A.Chistjakov,A.D.Pogrebnjak,G.E.Remnev.Dynamical processes and changes in metal structure induced by high power beams.Nuclear Instruments and Methods in Physics Research B,1989,42:342-345
    [82]Y.Shimotori,M.Yokoyama,S.Harada,K.Masugata,K.Yatsui.Quick deposition of ZnS:Mn electroluminescent thin films by intense,pulsed,ion beam evaporation.Japanese Journal of Applied Physics,1989,28:468-472
    [83]周南,牛胜利,丁升,邱爱慈.强脉冲离子束辐照热-力学效应研究.强激光与粒子束,2000,12:249-253
    [84]苗收谋,雷明凯.强流脉冲离子束辐照金属Ti相变传热的数值分析.金属学报,2004,40:1221-1226
    [85]D.J.Rej,H.A.Davis,M.Nastasi,J.C.Olson,E.J.Peterson,R.D.Reiswig,K.C.Walter,R.W.Stinnett,G.E.Remnev,V.K.Struts.Surface modification of AISI-4620 steel with intense pulsed ion beams.Nuclear Instruments and Methods in Physics Research B,1997,127-128:987-991
    [86]B.X.Han,S.Yah,X.Y.Le,W.J.Zhao,G.E.Remnev,M.S.Opekounov,I.E Isakov,I.I.Grushin.The phase and microstmcture changes in 45# steel irradiated by intense pulsed ion beams.Surface and Coatings Technology,2000,128-129:387-393
    [87]W.Biller,D.Heyden,D.Miller,G.K.Wolf.Modification of steel and aluminum by pulsed energetic ion beams.Surface and Coatings Technology,1999,116-119:537-542
    [88]X.Wang,X.G.Han,M.K.Lei,J.S.Zhang.Materials Science and Engineering A,2007,457:84-89
    [89]M.K.Lei,Z.H.Dong,Z.Zhang,Y.E Hu,X.R Zhu.Wear and corrosion resistance of Ti6A14V alloy irradiated by high-intensity pulsed ion beam.Surface and Coatings Technology,2007,201:5613-5616
    [90]T.Feurer,S.Wahl,H.Langhoff.Modification of polyimide surfaces using intense proton pulses.Journal of Applied Physics,1993,74:3523-3530
    [91]J.Kucinski,J.Langner,J.Piekoszewski,M.Adami,A.Miotello,L.Guzman.Glazing of ceramic surfaces with high-intensity pulsed ion beams.Surface and Coatings Technology,1996,84:329-333
    [92]R.Fastow,J.W.Mayer.High-energy-density pulsed ion-beam irradiation of Co/Si,Pt/Si,and Au/Si.Journal of Applied Physics,1987,61:175-181
    [93]A.D.Pogrebnjak,G.E.Remnev,S.V.Plotnikov.High-power ion-beam-induced melting and mixing in deposited structures.Materials Science and Engineering A.1989,115:175-179
    [94]V.Bystritskii.E.Garate,V.Grigoriev,A.Kharlov.E.Lavernia.X.Peng.The high power pulsed ion beam mixing of a titanium layer with an aluminum substrate.Nuclear Instruments and Methods in Physics Research B,1999,149:61-66
    [95]F.Brenscheit,J.Piekoszewski,E.Wieser,J.Langner,R.Grotzschel,H.Reuther.Modification of silicon nitride ceramics with high intensity pulsed ion beams.Materials Science and Engineering A,1998,253:86-93
    [96]T.Sonegawa,K.Yatsui.Stoichiometric and dielectric properties of BaTiO_3 thin films prepared by backside pulsed ion-beam evaporation.Journal of Materials Science Letters,1998,17:1685-1687
    [97]G.P.Johnston,P.Tiwari,D.J.Rej,H.A.Davis,W.J.Waganaar,R.E.Muenchausen,K.C.Walter,M.Nastasi,H.K.Schmidt,N.Kumar,B.Lin,D.R.Tallant,R.L.Simpson,D.B.Williams,X.Qiu.Preparation of diamondlike carbon films by high-intensity pulsed-ion-beam deposition.Journal of Applied Physics,1994,76:5949-5954
    [98]梅显秀.强流脉冲离子束类金刚石薄膜沉积及高速钢辐照处理研究.大连理工大学博士学位论文,2002
    [99]K.Yatsui,C.Grigoriu,H.Kubo,K.Masugata,Y.Shimotori.Synthesis of nanosize powders of alumina by ablation plasma produced by intense pulsed light-ion beam.Applied Physics Letter,1995,67:1214-1216
    [100]K.Yatsui,C.Grigoriu,K.Masugata,W.Jiang,T.Sonegawa.Preparation of thin films and nanosize powders by intense pulsed ion beam evaporation.Japanese Journal of Applied Physics,1997,36:4928-4934
    [101]Y.Nakagawa,C.Grigoriu,K.Masugata,W.Jiang,K.Yatsui.Synthesis of TiO_2 and TiN nanosize powders by intense light ion-beam evaporation.Journal of Materials Science,1998,33:529-533
    [102]T.H.Zhang,Z.C.Ji.Surface modification of steel by high-dose pulse-ion implantation of titanium,tungsten,molybdenum and carbon.Nuclear Instruments and Methods in Physics Research B,1991,59-60:828-833
    [103]H.W.Chang,M.K.Lei.Mass Transfer of metal ion implantation into metal targets at elevated temperatures.Computational Materials Science,2005,33:459-466
    [104]S.H.Valiev,T.S.Pugacheva,F.G.Jurabekova,S.A.Lem,Y.Miyagawa.The radiation stimulated diffusion role in high dose,low energy,high temperature ion implantation.Nuclear Instruments and Methods in Physics Research B,1997,127-128:265-268
    [105]Y.Yamamura.Dynamic MC simulation of low-energy ion implantation.Nuclear Instruments and Methods in Physics Research B,1999,153:410-414
    [106]D.A.Rigney,X.Y.Fu,J.E.Hammerberg,B.L.Holian,M.L.Falk.Examples of structural evolution during sliding and shear of ductile materials.Scripta Materialia,2003,49:977-983
    [107]G.L.Song,A.L.Bowles,D.H.Stjohn.Corrosion resistance of aged die cast magnesium alloy AZ91D.Materials Science and Engineering A,2004,366:74-86
    [108]J.J.Wert,S.A.Singerman,S.G.Caldwell,D.K.Chaudhuri.An X-ra.v diffraction study of the effect of stacking fault energy on the wear behavior of Cu-Al alloys.Wear,1983,92:213-229
    [109]D.K.Chaudhuri,R.Verma.Engineered materials for advanced friction and wear applications.ASM International,Metals Park,OH,1988,p.191-202
    [110]F.Hehmann,F.Sommer,H.Jones,R.G.J.Edyvean.Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing.Journal of Materials Science,1989,24:2369-2379
    [111]R.Ambat,N.N.Aung,W.Zhou.Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91 magnesium alloy.Journal of Applied Electrochemistry,2000,30:865-874
    [112]G.L.Song,A.Antrens.Understanding magnesium corrosion.Advanced Engineering Materials,2003,5:837-858
    [113]朱小鹏.强流脉冲离子束特性及其烧蚀作用的实验研究.大连理工大学博士学位论文,2003
    [114]B.P.Wood,A.J.Perry,L.J.Bitteker,W.J.Waganaar.Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam.Surface and Coatings Technology,1998,108-109:171-176
    [115]董志宏.强流脉冲离子束特性优化及辐照力学效应研究.大连理工大学博士学位论文,2007
    [116]王旭.强流脉冲离子束辐照316L不锈钢结构及性能研究.大连理工大学博士学位论文,2007
    [117]B.X.Han,H.To Zhang,W.J.Zhao,S.Yan,X.Y.Le,W.Xiang,T.M.Wang,G.E.Remnev.A study on microstructure and service property of Ni3A1 base alloy irradiated by intense pulsed ion beams.Surface and Coatings Technology,2002,158-159:482-487
    [118]A.D.Korotaev,S.V.Ovchinnikov,Yu.I.Pochivalov,A.N.Tyumentsev,D.A.Shchipakin,M.V.Tretyjak,I.F.Isakov,G.E.Remnev.Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams.Surface and Coatings Technology,1998,105:84-90
    [119]V.A.Shulov,N.A.Nochovnaya.Crater formation on the surface of metals and alloys during high power ion beam processing.Nuclear Instruments and Methods in Physics Research B,1999,148:154-158
    [120]Y.Sun,T.Bell.Sliding wear characteristics of low temperature plasma nitrided 316 austenitic stainless steel.Wear,1998,218:34-42
    [121]A.M.Lafront,W.Zhang,S.Jin,R.Tremblay,D.Dube,E.Ghali.Pitting corrosion of AZglD and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques.Electrochirnica Acta,2005,51:489-501
    [122]L.R Wang,Y.M.Lin,Z.X.Zeng,W.M.Liu,Q.J.Xue,L.T.Hu,J.Y.Zhang.Electrochemical corrosion behavior of nanocrystalline Co coatings explained by higher grain boundary density.Electrochimica Acta,2007.52:4342-4350
    [123]N.Li,Y.Li,S.G.Wang,F.H.Wang.Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel.ElectrochimicaActa,2006,52:760-765
    [124]Y.Li,T.Zhang,F.H.Wang.Effect of microcrystallization on corrosion resistance of AZ91D alloy.Electrochimica Acta.2006.51:2845-2850
    [125]L.Liu,Y.Li,F.H.Wang.Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl.Electrochimica Acta,2007,52:7193-7202
    [126]R.M.Wang,A.Eliezer,E.Gutman.Microstructures and dislocations in the stressed AZ91D magnesium alloys.Materials Science and Engineering.A,2002,344:279-287
    [127]S.L.Sin,D.Dube,R.Tremblay.Characterization of A1-Mn particles in AZ91D investment castings.Materials Characterization,2007,58:989-996
    [128]A.Pardo,M.C.Merino,A.E.Coy,R.Arrabal,F.Viejo,E.Matykina.Corrosion behaviour of magnesium aluminium alloys in 3.5 wt.%NaC1.Corrosion Science,2008,50:823-834

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700