用户名: 密码: 验证码:
能量辅助水萃取及联用技术在环境和食品分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
样品预处理是环境、食品等复杂样品中痕量有机污染物分析过程中极为重要的步骤。减少或不使用有毒有机溶剂,开发准确、快速、简便且环境友好的绿色样品预处理技术已成为现代分析化学研究的热点之一。
     近年来以环境友好的水作为萃取溶剂,分别采用加热加压、微波和超声波能量辅助的亚临界水萃取、微波辅助水萃取和超声辅助水萃取等样品预处理技术已逐渐受到广大分析工作者的重视。其中通过加热加压实现的亚临界水萃取技术具有高效、快速、选择性好、操作简便、环境友好等优点,在环境分析中已有广泛应用,但在食品安全快速检测中的应用还较少。微波和超声波具有各自特殊的能量作用模式,能大大提高萃取体系的传质效率,因而将微波和超声作为水萃取的辅助能量,将有利于提高水溶液的萃取速率和萃取效率。
     对环境和食品等样品中有机污染物残留的分析,采用各种能量辅助水萃取得到的萃取液通常不能直接满足色谱等仪器进样的要求,需要与其他预处理技术联用而实现进一步的净化、富集或溶剂转换等。将溶剂棒微萃取、分子印迹固相萃取等现代绿色预处理技术与能量辅助水萃取技术相结合,将有利于实现各种复杂样品中有机污染物的高选择性、高灵敏度、高效、快速、环境友好的痕量分析。
     本论文以水作为萃取剂,采用加热加压、微波和超声波等辅助技术,并结合其他绿色预处理技术和仪器检测方法,研究建立了一系列简便、快捷、灵敏、高效、环境友好的以能量辅助水萃取为核心技术的绿色样品预处理方法,并应用于环境和食品等复杂样品中痕量有机污染物的分析。主要研究内容包括:
     (1)将超声辅助水萃取与溶剂棒微萃取联用,并结合高选择性、高灵敏度的GC-MS检测技术,研究建立了土壤中氯苯的绿色分析新方法。该方法检出限低、回收率高、精密度好、测定速度快、操作简单、绿色环保、成本低,优于传统的索氏提取、浸泡振荡以及溶剂超声萃取等样品预处理技术。土壤中1,2,3-三氯苯、1,2,3,4-四氯苯、六氯苯和1-氯-4-硝基苯的方法检出限分别为1.3、0.7、27.3和1.9μg kg~(-1),实际土壤的加标回收率93—105%,相对标准偏差(RSD)1.56—6.29%。
     (2)以动物饲料样品为对象,采用亚临界水同时萃取其中的土霉素、四环素和氯霉素等多种抗生素,萃取液通过简单过滤后直接进高效液相色谱(HPLC)—紫外(UV)检测,通过对萃取及检测条件的优化研究,建立了一种用于动物饲料中多残留抗生素同时萃取、简便、快速且环境友好的分析新技术。饲料样品中三种抗生素的方法回收率为82.1—90.0%,RSD为1.6—4.8%,优于传统超声萃取技术,满足痕量分析要求。
     (3)以氯霉素为模板分子,采用沉淀聚合法合成了分子印迹聚合物微球(MIPMs),并对其合成条件、结合性能及结合动力学等进行了研究和评价。以动物饲料样品中的氯霉素(CAP)残留为分析对象,样品经亚临界水萃取后,采用合成的MIPMs制备的固相萃取小柱进行选择性萃取,固相萃取洗脱液采用HPLC-UV测定。通过各个条件的优化研究建立了一种饲料中氯霉素的简单、快速、高选择性的分析新技术。该技术将亚临界水萃取与分子印迹固相萃取技术相结合,对复杂样品中的CAP具有很好的选择性,可以有效去除萃取液中的杂质组分,从而降低背景干扰,降低检出限,与直接亚临界水萃取后HPLC-UV检测方法相比,方法检出限约为后者的1/10。
     (4)将亚临界水萃取与快速检测技术相结合,研究建立了蔬菜中灭多威农药的亚临界水萃取-酶抑制法快速检测技术。研究表明,在萃取温度70℃,萃取时间5min,提取液的pH为8.0,提取液体积为5mL的情况下,灭多威有最高萃取效率。分别应用于测定模拟样品和实际样品,结果表明亚临界水萃取的回收率和精密度都要高于国家标准方法中的手摇振荡萃取。
     (5)以沉积物样品中的2-氯酚(2-CP)、2,4-二氯酚(2,4-DCP)、4-氯酚(4-CP)和五氯酚(PCP)污染物为分析对象,研究建立了以氢氧化钠水溶液作为萃取溶剂的亚临界水萃取(SWE)和微波辅助水萃取(MAWE)两种环境友好的绿色样品预处理方法,并对两种方法的操作条件及分析性能进行了比较。在相同的仪器(GC-μECD)检测条件下,SWE和MAWE两种方法的操作条件和萃取回收率等性能均优于传统的索氏提取及微波辅助溶剂萃取技术,其中SWE采用电炉加热,成本低,操作简单,萃取时间大大低于索氏提取法,但较MAWE长;MAWE采用专门的微波萃取设备,尽管价格贵,但萃取时间很短,操作条件也较容易控制,且对于低浓度氯酚较其他方法具有更好的萃取效率,有利于大批样品的分析测试。将建立的两种方法成功地用于实际沉积物样品中氯酚的测定,获得满意的结果。
Extraction,clean-up and preconcetration of the analytes are very important procedures in trace analysis of organic pollutants in complex environment and food samples before instrumental analysis.Recently,the development of accurate,rapid,simple,and environmental friendly sample preparation methods is one of the hot points in modern analytical chemistry.
     Water,as a cheap and environmental acceptable solvent,is suitable for avariety of sample preparation processes,but water extractions without auxiliary energies are very slow and low efficient.Recently,water extraction assisted by high temperature-high pressure,microwave and ultrasound has been reported in preparation of different samples. These methods have the advantages of time saving,high efficiency,high selectivity,simple and environmental friendly,and thus successfully used in separation of analytes from complex samples.Water extraxtion at high temperature-high pressure,i.e.subcritical water extraction,has been widely applied in environmental analysis,but rarely in the rapid detection of food samples.Water has also been used,although in a minor extent,for microwave and ultrasound assisted extractions,the potential of the energies for assisting water extraction surpasses that of the other conventional auxiliary energy sources.
     Generally,the extractant of the water extraction can not be injected into the instrument directly without further clean-up,enrichment or solvents exchanging.The combination of auxiliary energies assisted water extraction with other green sample preparation processes, such as solvent bar microextraction and molecular imprinting solid-phase extraction,is beneficial to develop a series of rapid,simple,high selectivity and high sensitivity new analytical methods for determination of trace organic pollutants in complex samples.
     The objective of this dissertation is to develop a series of new green analytical methods based on the water extraction assisted by auxiliary energies such as high temperature-high pressure;microwave and ultrasound combined with other green sample preparation steps and instrument detection techniques for determination of trace organic pollutants in environmental and food samples.The major contents of this dissertation are described as follows:
     (1) A novel green analytical method for determination of trace chlorobenzenes in soil samples,based on ultrasound-assisted water extraction combined with solvent bar microextraction and high selective and sensitive GC-MS was developed.Compared with traditional methods,such as Soxhlet extraction,ultrasound assisted solvent extraction and shaking extraction,this method is simpler,cheaper,more rapid and friendly for environment.Under the optimized conditions,the method detection limits for 1,2,3-Trichlorobenzene(1,2,3-TCB),1,2,3,4-Tetrachlorobenzene(1,2,3,4-TeCB), Hexachlorobenzen(HCB) and 1-Chloro-4-Nitrobenzene(1-C-4-NB) were 1.3,0.7,27.3 and 1.9μg kg~(-1),respectively,and recoveries between 93%and 105%with relative standard deviation ranging between 1.56%and 6.29%were achieved from spiked soil samples.
     (2) A rapid analytical method for the determination of oxytetracycline(OTC), tetracycline(TC) and chloramphenicol(CAP) antibiotics in animal feeds has been developed based on subcritical water extraction(SWE) without further sample clean-up followed by high performance liquid chromatography(HPLC) with ultraviolet(UV) detection.Recoveries between 82.1%and 90.0%with relative standard deviations ranging between 1.6%and 4.8%were achieved from spiked animal feed samples by using this method.Compared with the traditional ultrasonic extraction,this procedure was remarkably more efficient in extracting OTC,TC and CAP,simpler to perform,and there was no use of toxic organic solvents.
     (3) A high selective and simple analytical method for the determination of chloramphenicol(CAP) in animal feeds has been developed based on subcritical water extraction(SWE),followed by molecularly imprinted solid-phase extraction(SPE) and high performance liquid chromatography(HPLC) with ultraviolet(UV) detection. Molecularly imprinted polymer microspheres(MIPMs) were prepared by precipitation polymerization using CAP as template.The synthetic conditions,kinetics and binding properties of CAP MIPMs were studied.After the evaluation of the selectivity of the CAP imprinted MIPMs,the performance of these materials as SPE sorbents was investigated. Compared with SWE-HPLC method,the SWE-MIPMsSPE-HPLC procedure has higher selectivity and sensitivity,LOD was 0.5μg g~(-1),as well as better precision(RSD below 6.0 %) and recovery(>80%).
     (4) A rapid analytical method for the determination of methomyl pesticide in vegetables has been developed based on subcritical water extraction(SWE) and acetylcholinesterase inhibition assay.The optimum extraction conditions were obtained by using 5mL of water(pH=8) as the extractant at 70℃with 5 min static extraction. Compared with manual shaking extraction,subcritical water extraction has higher extraction efficiency and better precision in determination of spiked and real samples.
     (5) Two environmental friendly sample preparation methods have been developed based on subcritical water extraction and microwave assisted water extraction respectively for determination of 2-chlorophenol(2-CP),2,4-dichlorophenol(2,4-DCP),4-chlorophenol (4-CP) and pentachlorophenol(PCP) in sediment samples.Sodium hydroxide solution was used as the extractant in these methods.Under the same instrument(GC-μECD) detection conditions,the operating conditions and the analytical characters of SWE and MAWE both are superior to the traditional techniques,such as Soxhlet extraction and microwave-assisted solvent extraction.SWE use electric cooker to heat,which is cheaper, simpler,and more rapid than Soxhlet extraction.MAWE use of specialized equipment, which is more expensive,but the extraction time is very short,the operating conditions are easier to control,and the extraction efficiency especially for low concentrations of chlorophenols(CPs) is higher than other methods.These methods were applied successfully to the analysis of CPs in real sediment samples.
引文
[1]Zwir-Ferenc A.,Biziuk M..Solid phase extraction technique-trends,opportunities and applications.Polish Journal of Environmental Studies,2006,15:677-690.
    [2]Camel V..Solid - phase extraction.Comprehensive Analytical Chemistry,2003,41:393-457.
    [3]Haginaka J.,Selectivity of affinity media in solid-phase extraction of analytes.Trends in Analytical Chemistry,2005,24:407-415.
    [4]Poole C.F.New trends in solid-phase extraction.Trends in Analytical Chemistry,2003,22:362-373.
    [5]安丽,顾国维,陈祖奇.活性炭纤维及其在环境保护领域中的应用.四川环境,2000,19:23-26.
    [6]Kawata K.,Ibaraki T.,Tanabe A.,et al.Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fiber felt.Journal of chromatography A,2001,911:75-83.
    [7]郭宇姝,谢剑炜,胡绪英.分子印记聚合物技术在固相萃取中的应用及影响因素.国外医学药学分册,2001,28:300-304.
    [8]Xiong Y.,Zhou H.,Zhang Z..Molecularly imprinted on-line solid-phase extraction combined with flow-injection chemiluminescence for the determination of tetracycline.Analyst,2006,131:829-34.
    [9]Rao T.P.,Daniel S.,Gladis J.M..Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction(IIP-SPE).Trends in Analytical Chemistry,2004,23-28.
    [10]Basheer C.,Alnedhary A.A.,Rao B.S.M.,et al.Development and Application of Porous Membrane-Protected Carbon Nanotube Micro-Solid-Phase Extraction Combined with Gas Chromatography/Mass Spectrometry.Analytical Chemistry (Technical Note),2006,78:2853-2858.
    [11]Marek T.,Analytical applications of carbon nanotubes:a review.Trends in Analytical Chemistry,2006,25:480-489.
    [12]Barbosa A.F.,Segatelli M.G.,Pereira A.C.,et al.Solid-phase extraction system for Pb(Ⅱ) ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry.Talanta,2007,71(4):1512-1519.
    [13]Cai Y.,Jiang G.,Liu J.,et al.Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A,4-n-Nonylphenol,and 4-tert-Octylphenol.Analytical Chemistry(Technical Note),2003,75:2517-2521.
    [14]Seneviratne J.,Cox A.J..Sol-gel materials for the solid phase extraction of metals from aqueous solution.Talanta,2000,52:801-806.
    [15]Cooper C.,Burch R..Mesoporous materials for water treatment processes.Water Research,1999,33(18):3689-3694.
    [16]Bruzzoniti M.C.,Mentasti E.,Sarzanini C.,et al.Retention properties of mesoporous silica-based materials.Analytica chimica acta,2000,422:231-238.
    [17]Hartmann M.,Ordered Mesoporous Materials for Bioadsorption and Biocatalysis.Chemistry of Materials,2005,17:4577-4593.
    [18]徐丽,冯钰锜,达世禄,施治国.有序介孔材料在分离科学中的应用.分析化学,2004,3:374-380.
    [19]http://www.science.uwaterloo.ca/chemistry/pawliszyn/People/Faculty/jp.html.
    [20]Lopez B.M.C.,Cancho G.B.,Simal G.J..Comparison of solid-phase extraction and solid-phase microextraction for carbofuran in water analyzed by high-performance liquid chromatography-photodiode-array detection.Journal of chromatography A,2002,963:117-23.
    [21]Garcia D.D.L.C.,Reichenbaher M.,Denzer K.,et al.Analysis of wine bouquet components using headspace solid-phase microextraction capillary gas chromatography.HRC-Journal of High Resolution Chromatography,1998,21:373-377.
    [22]Lucia G.,Roberto C.,Enrico D.,et al.Quantitative analysis of 2-furfural and 5-methylfurfural in different Italian vinegars by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry using isotope dilution.Journal of chromatography A,2003,1017:141-9.
    [23]Jan L.,Milan S.,Rychtecka N.A.,et al.Solid phase microextraction and gas chromatography with ion trap detector(GC-ITD) analysis of amitraz residues in beeswax after hydrolysis to 2,4-dimethylaniline.Analytica chimica acta,2006,571:40-44.
    [24]Jinno K.,Muramatsu T.,Saito Y.,et al.Analysis of pesticides in environmental water samples by solid-phase micro-extraction-high-performance liquid chromatography. Journal of chromatography A, 1996,754: 137-144.
    [25] Kataoka H., Lord H. L., Pawliszyn J.. Automated in-tube solid-phase microextraction-liquid chromatography-electrospray ionization mass Spectrometry for the determination of ranitidine. Journal of chromatography. B, Biomedical sciences and applications, 1999,731(2): 353-359.
    [26] Kataoka H., Narimatsu S., Lord H. L., et al. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass Spectrometry for the determination of beta-blockers and metabolites in urine and serum samples. Analytical chemistry, 1999, 71: 4237-4244.
    [27] Ai J.. Solid Phase Microextraction for Quantitative Analysis in Nonequilibrium Situations. Analytical Chemistry, 1997,69: 1230-1236.
    [28] Lord H., Pawliszyn J., Evolution of solid-phase microextraction technology. Journal of Chromatography, A, 2000, 885: 153-193.
    [29] Eisert R., Pawliszyn J., Design of automated solid-phase microextraction for trace analysis of organic compounds in aqueous samples. Journal of Chromatography A, 1997, 776: 293-303.
    [30] Bruheim L, Liu X. C., Pawliszyn J.. Thin-film microextraction. Analytical Chemistry, 2003,75: 1002-1010.
    [31] Wang J. X., Jiang D. Q., Gu Z. Y., et al. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. Journal of Chromatography A, 2006, 1137 (1): 8-14.
    [32] Gorecki T., Pawliszyn J.. Sample introduction approaches for solid phase microextraction. Analytical Chemistry, 1995, 67: 3265-3274.
    [33] Zhang Z., Pawliszyn J.. Quantitative extraction using an internally cooled solid phase microextraction device. Analytical Chemistry, 1995,67: 34-43.
    [34] Guo F., GoRecki T., Irish D., et al. Solid-phase microextraction combined with electrochemistry. Analytical Communications, 1996, 33(10): 361-364.
    [35] Wu J., Mullett W. M., Pawliszyn J.. Electrochemically Controlled Solid-Phase Microextraction Based on Conductive Polypyrrole Films. Analytical Chemistry, 2002, 74: 4855-4859.
    [36] Gbatu T. P., O. Ceylan, Sutton K. L., Rubinson J. F, et al. Electrochemical control of solid phase micro-extraction using unique conducting polymer coated fibers. Analytical Communications, 1999, 36(5): 203-205.
    [37] Yates B. J., Temsamani K. R., Ceylan O., et al. Electrochemical control of solid phase micro-extractionxonducting polymer coated film material applicable for preconcentration/analysis of neutral species. Talanta, 2002, 58: 739-745
    [38] Liljegren G., Pettersson J., Markides K. E., et al. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device. The Analyst, 2002, 127(5): 591-597
    [39] Liljegren G., Nyholm Leif.. Electrochemically controlled solid-phase microextraction and preconcentration using polypyrrole coated microarray electrodes in a flow system. The Analyst, 2003,128(3): 232-236
    [40] Tamer U., Yates B., et al. Electrochemically Aided Control of Solid Phase Micro-Extraction (EASPME) Using Conducting Polymer-Coated Solid Substrates Applicable to Neutral Analytes. Microchimica Acta, 2003, 143: 205-215
    [41] Baltussen E, Sandra P, David F, et al. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles, Journal of Microcolumn Separations. 1999,11 (10): 737-747.
    [42] Ridgway K., Lalljie S. P. D., Smith R. M., Sample preparation techniques for the determination of trace residues and contaminants in foods. Journal of Chromatography, A, 2007,1153: 36-53 .
    [43] Tredoux A. G J., Lauer H. H., Heideman T, et al. The determination of benzoic acid in lemon flavored beverages by Stir Bar Sorptive Extraction-CGC-MS. HRC-Journal of High Resolution Chromatography, 2000,23 (11): 644-646.
    [44] Kreck M., Scharrer A., Bilke S., et al. Stir bar sorptive extraction (SBSE)-enantio-MDGC-MS-a rapid method for the enantioselective analysis of chiral flavour compounds in strawberries. European Food Research and Technology. 2001, 213 (4-5): 389-394.
    [45] Wennrich L., Popp P., Koller G., et al. Determination of organochlorine pesticides and chlorobenzenes in strawberries by using accelerated solvent extraction combined with sorptive enrichment and gas chromatography/mass Spectrometry. Journal of AOAC International, 2001, 84 (4): 1194-1201.
    [46] Ochiai N., Sasamoto K., Takino M., et al. Determination of trace amounts of off-flavor compounds in drinking water by stir bar sorptive extraction and thermal desorption GC-MS. Analyst, 2001,126 (10): 1652-1657.
    [47] Popp P., Bauer C., Wennrich L.. Application of stir bar sorptive extraction in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 2001, 436 (1): 1-9.
    [48] Vercauteren J., Peres C., Devos C., et al. Stir bar sorptive extraction for the determination of ppq-level traces of organotin compounds in environmental samples with thermal desorption-capillary gas Chromatography - ICP mass Spectrometry. Analytical Chemistry, 2001, 73 (7): 1509-1514.
    [49] Kawaguchi M., Ito R., Saito K., et al. Novel stir bar sorptive extraction methods for environmental and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006,40(3): 500-508.
    [50] Benijts T., Vercammen J., Dams R., et al. Stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass Spectrometry applied to the analysis of polychlorinated biphenyls in human sperm. Journal of Chromatography B, 2001, 755(1-2): 137-142.
    [51] Bicchi C., Cordero C., Liberto E., et al. Dual-phase twisters: A new approach to headspace sorptive extraction and stir bar sorptive extraction. Journal of Chromatography, A, 2005,1094(1-2): 9-16.
    [52] Bicchi C., Iori C., Rubiolo P., et al. Headspace Sorptive Extraction (HSSE), Stir Bar Sorptive Extraction (SBSE), and Solid Phase Microextraction (SPME) Applied to the Analysis of Roasted Arabica Coffee and Coffee Brew. Journal of Agricultural and Food Chemistry, 2002, 50(3): 449-459.
    [53] Xie T.M., Hulthe B., Folestad S.. Determination of partition coefficients of chlorinated phenols, guaiacols and catechols by shake-flask GC and HPLC. Chemosphere, 1984,13: 445-460.
    [54] Jeannot M. A., Cantwell F. F.. Solvent microextraction into a single drop. Analytical Chemistry, 1996, 68: 2236-2240.
    [55] He Y., Lee H. K.. Liquid phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Analytical Chemistry, 1997,69 (22): 4634-4640.
    [56] Wang Y., Kwok Y. C., He Y., et al. Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water by using a conventional microsyringe. Analytical Chemistry, 70 (21): 4610-4614.
    [57] Hou L., Lee H. K.. Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2002,976 (1-2): 377-385.
    [58] Liu W. P., Lee H. K.. Continuous-flow microextraction exceeding 1000-fold concentration of dilute analytes. Analytical Chemistry, 2000,72,4462-4467.
    [59] Yazdi A. S., Assadi H.. Determination of trace of methyl tert-butyl ether in water using liquid drop headspace sampling and GC. Chromatographia, 2004, 60 (11-12): 699-702.
    [60] Kokosa J. M., Przyjazny A.. Headspace microdrop analysis - an alternative test method for gasoline diluent and benzene, toluene, ethylbenzene and xylenes in used engine oils. Journal of Chromatography A, 2003, 983 (1-2): 205-214.
    [61] de Jager L. S., Andrews A. R. J.. Preliminary studies of a fast screening method for cocaine and cocaine metabolites in urine using hollow fibre membrane solvent microextraction (HFMSME). Analyst, 2001,126 (8): 1298-1303.
    [62] Zhao L. M., Lee M. K., Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass Spectrometry. Analytical Chemistry, 2002, 74 (11): 2486-2492.
    [63] Zhu L. Y., Ee K. H., Zhao L. M., et al. Analysis of phenoxy herbicides in bovine milk by means of liquid-liquid-liquid microextraction with a hollow-fiber membrane. Journal of Chromatography A, 2002,963 (1-2): 335-343.
    [64] Pedersen-Bjergaard S., Rasmussen K. E.. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 1999, 71 (14): 2650-2656.
    [65] Rasmussen K. E., Pedersen-Bjergaard S., Krogh M., et al. Development of a simple in-vial liquid-phase microextraction device for drag analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography. Journal of Chromatography A, 2000, 873 (1): 3-11.
    [66] Ugland H. G., Krogh M., Rasmussen K. E.. Liquid-phase microextraction as a sample preparation technique prior to capillary gas chromatographic-determination of benzodiazepines in biological matrices. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2000, 749 (1): 85-92.
    [67] Jiang X. M., Lee H. K.. Solvent bar microextraction. Analytical Chemistry, 2004, 76 (18): 5591-5596.
    [68] Melwanki M. B., Huang S. D.. Three-phase system in solvent bar microextraction: An approach for the sample preparation of ionizable organic compounds prior to liquid chromatography. Analytica Chimica Acta, 2006,555 (1): 139-145.
    [69] Chia K. J., Huang S. D.. Analysis of organochlorine pesticides in wine by solvent bar microextraction coupled with gas chromatography with tandem mass spectrometric detection. Rapid Communications in Mass Spectrometry, 2006,20 (2): 118-124.
    [70] Xia L. B., Hu B., Jiang Z. C, et al. Single-drop microextraction combined with low-temperature electrothermal vaporization ICPMS for the determination of trace Be, Co, Pd, and Cd in biological samples. Analytical Chemistry, 2004, 76: 2910
    [71] Chimuka L., Megersa N., Norberg J.. Incomplete Trapping in Supported Liquid Membrane Extraction with a Stagnant Acceptor for Weak Bases. Analytical Chemistry, 1998, 70: 3906-3911.
    [72] Basheer C., Balasubramanian R., Lee H. K.. Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-phase microextraction combined with gas chromatography-mass Spectrometry. Journal of Chromatography A, 2003,1016: 11-20.
    [73] Psillakis E., Kalogerakis N.. Hollow fiber liquid phase microextraction of phthalate esters from water. Journal of Chromatography A, 2003,999, 145.
    [74] Psillakis E., Mantzavinos D., Kalogerakis N.. Development of a hollow fiber liquid phase microextraction method to monitor the sonochemical degration of explosives in water. Analytica Chimica Acta, 2004, 501(1): 3-10.
    [75] Barri T, Bergstrom S., Norberg J.. Miniaturized and automated sample pretreatment for determination of PCBs in environmental aqueous samples using an on-line microporous membrane liquid-liquid extraction-gas chromatography system. Analytical Chemistry, 2004,76(7): 1928-1934.
    [76] Tani H., Kamidate T., Watanabe H.. Micelle-mediated extraction. Journal of Chromatography A, 1997, 780 (1-2): 229-241.
    [77] Martinez R. C., Gonzalo E. R., Jimenez M. G. G. Determination of the fungicides folpet, captan and captafol by cloud-point preconcentration and high-performance liquid chromatography with electrochemical detection. Journal of Chromatography A, 1996, 754 (1-2): 85-96.
    [78] Fernandez A. E., Ferrera Z. S., Rodriguez J. J. S.. Determination of polychlorinated biphenyls by liquid chromatography following cloud-point extraction. Analytica ChimicaActa, 1998, 358 (2): 145-155.
    [79] Wu Y. C., Huang S. D., Cloud point preconcentration and liquid chromatographic determination of aromatic amines in dyestuffs. Analytica Chimica Acta, 1998, 373 (2-3): 197-206.
    [80] Casero I., Sicilia D., Rubio S., et al. An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Analytical Chemistry, 1999,71 (20): 4519-4526.
    [81] Bai D. S., Li J. L., Chen S. B., et al. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution. Environmental Science & Technology, 2001, 35 (19): 3936-3940.
    [82] Silva M. F., Fernandez L., Olsina R. A., et al., Cloud point extraction, preconcentration and spectrophotometric determination of erbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol. Analytica Chimica Acta, 1997, 342 (2-3): 229-238.
    [83] Oliveros M. C. C., de Blas O. J., Pavon J. L. P., et al. Cloud point preconcentration and flame atomic absorption Spectrometry: application to the determination of nickel and zinc. Journal of Analytical Atomic Spectrometry, 1998,13 (6): 547-550.
    [84] Akita S., Rovira M., Sastre A. M., et al. Cloud-point extraction of gold(III) with nonionic surfactant - Fundamental studies and application to gold recovery from printed substrate. Separation Science and Technology, 1998, 33 (14): 2159-2177.
    [85] Tani H., Matsuda A., T. Kamidate, et al. Extraction of proteins based on phase separation in aqueous triblock copolymer surfactant solutions. Analytical Sciences, 1997, 13 (6): 925-929.
    [86] Liu C. L., Kamei D. T, King J. A., et al., Separation of proteins and viruses using two-phase aqueous micellar systems. Journal of Chromatography B, 1998, 711 (1-2): 127-138.
    [87] Sirimanne S. R., Patterson D. G., Ma L., et al. Application of cloud-point extraction-reversed-phase high-performance liquid chromatography - A preliminary study of the extraction and quantification of vitamins A and E in human serum and whole blood. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1998, 716 (1-2): 129-137.
    [88] Ma Y., Yan Z., Huang J. X.. Cloud-point extraction and its applications to the separation and analysis of biopolymers. Progress in Chemistry, 2001,13 (1): 25-32.
    [89] Hawthorne S. B., Yang Y., Miller D. J.. Extraction of Organic Pollutants from Environmental Solids with Sub- and Supercritical Water. Analytical Chemistry, 1994, 66: 2912-2920.
    [90] Miller D. J., Hawthorne S. B.. Solubility of Liquid Organics of Environmental Interest in Subcritical (Hot/Liquid) Water from 298 K to 473 K. J. Chem. Eng. Data , 2000,45:78-81.
    [91] Miller D. J., Hawthorne S. B.. Solubility of Polycyclic Aromatic Hydrocarbons in Subcritical Water from 298 K to 498 K. J. Chem. Eng. Data, 1998,43: 1043-1047.
    [92] Konda L. N., Fuleky G., Morovjaan G. Subcritical Water Extraction to Evaluate Desorption Behavior of Organic Pesticides in Soil. Journal of Agricultural and Food Chemistry, 2002,50: 2338-2343.
    [93] Luque-Garcia J.L., Luque de Castro M.D.. Coupling continuous subcritical water extraction, filtration, preconcentration, chromatographic separation and UV detection for the determination of chlorophenoxy acid herbicides in soils. Journal of Chromatography A, 2002, 959: 25-35
    [94] Fernandez-Perez V., Luque de Castro M.D., Micelle formation for improvement of continuous subcritical water extraction of polycyclic aromatic hydrocarbons in soil prior to high-performance liquid chromatography-fluorescencd detection. Journal of Chromatography A, 2000,902: 357-367.
    [95] Richter P., Sepulveda B., Oliva R., et al. Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography -mass Spectrometry. Journal of Chromatography A, 2003,994: 169-177.
    [96] Hawthorne S.B., Trembley S., Moniot C. L., et al. Static subcritical water extraction with simultaneous solid-phase extraction for determining polycyclic aromatic hydrocarbons on environmental solids. Journal of Chromatography A, 2000, 886: 237-244.
    [97] Morales-Munoz S., Luque-Garcia J. L., de Castro M. D. L.. Acidified pressurized hot water for the continuous extraction of cadmium and lead from plant materials prior to ETAAS. Spectrochim Acta B, 2003, 58 (1): 159-165.
    [98] Fedotov P. S., Bauer C., Popp P., et al. Dynamic extraction in rotating coiled columns, a new approach to direct recovery of polycyclic aromatic hydrocarbons from soils. Journal of Chromatography A, 2004, 1023 (2): 305-309.
    [99] Kronholm J., Revilla-Ruiz P., Porras S. P., et al. Comparison of gas chromatography-mass Spectrometry and capillary electrophoresis in analysis of phenolic compounds extracted from solid matrices with pressurized hot water. Journal of Chromatography A, 2004,1022 (1-2): 9-16.
    [100] Luque-Garcia J. L., de Castro M. D. L., Coupling of pressurized liquid extraction to other steps in environmental analysis. Trac-Trend in Analytical Chemistry, 2004, 23 (2): 102-108.
    [101] Chienthavorn O., Insuan W.. Superheated water extraction of lime peel: A comparison with conventional methods. Analytical Letters, 2004, 37 (11): 2393-2409.
    [102] Morales-Riffo J. J., Richter P.. Rapid determination of inorganic elements in airborne particulate matter by using acidified subcritical-water extraction and inductively-coupled plasma-optical-emission Spectrometry. Analytical and Bioanalytical Chemistry, 2004, 380 (1): 129-134.
    [103] Deng C. H., Yang X. H., Zhang X. M.. Rapid determination of panaxynol in a traditional Chinese medicine of Saposhnikovia divaricata by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography-mass Spectrometry. Talanta, 2005, 68 (1): 6-11.
    [104] Richter P., Toral M. I., Toledo C. Subcritical water extraction and determination of nifedipine in pharmaceutical formulations. The Journal of AOAC International, 2006, 89 (2): 365-368.
    [105] Japon-Lujan R., de Castro L., et al. Superheated liquid extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A, 2006, 1136 (2): 185-191.
    [106] Konda L. N., Fuleky G., Morovjaan G. Subcritical Water Extraction to Evaluate Desorption Behavior of Organic Pesticides in Soil. Journal of Agricultural and Food Chemistry, 2002, 50,2338-2343
    [107] Yang Y., Belghazi M., Lagadec A., et al. Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A, 1998, 810(1-2): 149-159
    [108] Hartonen K., Inkala K., Kangas M., et al. Extraction of polychlorinated biphenyls with water under subcritical condition. Journal of Chromatography A, 1997, 785(1-2): 219-226.
    [109] Konda L. N., Fuleky G., Morovjaan G. Subcritical Water Extraction to Evaluate Desorption Behavior of Organic Pesticides in Soil. Journal of Agricultural and Food Chemistry, 2002, 50: 2338-2343.
    [110] Hawthorne S. B., Grabanski C. B., Hageman K. J., et al. Simple method for estimating polychlorinated biphenyl concentrations on soils and sediments using subcritical water extraction coupled with solid-phase microextraction. Journal of Chromatography A, 1998,814(1-2): 151-160.
    [111] McGowin A. E., Adorn K. K., Obubuafo A. K.. Screening of compost for PAHs and pesticides using static subcritical water extraction. Chemosphere, 2001,45, 857-864.
    [112]Arcand Y., Hawaii J., Guiot S. R.. Solubility of pentachlorophenol in aqeous solutions: the pH effect. Pergamon, 1995,29: 131-136.
    [113] Curren M. S. S., King J. W.. Ethanol-Modified Subcritical water extraction combined with solid-phase microextraction for determining atrazine in beef kidney. Journal of Agricultural and Food Chemistry, 2001,49: 2175-2180.
    [114] Kondo T., Yang Y., Lamm L.. Separation of polar and non-polar analytes using dimethyl sulfoxide-modified subcritical water. Analytica Chimica Acta, 2002,460(2): 185-191.
    [115] Field J., Reed R.. Subcritical (hot) water/ethanol extraction of nonylphenol polyethoxy carboxylates from industrial and municipal sludges. Environmental Science & Technology, 1999, 33(16): 2782-2787
    [116] Yang Y., Bowadt S., Hawthorne S. B., et al. Subcritical water extraction of polychlorinated biphenyls from soil and sediment. Analytical Chemistry, 1995, 67: 4571-4576.
    [117] Hartonen K., Inkala K., Kangas M., et al. Extraction of polychlorinated biphenyls with water under subcritical condition. Journal of Chromatography A, 1997, 785(1-2): 219-226.
    [118] Lamm L. J., Yang Y.. Off-Line coupling of subcritical water extraction with subcritical water chromatography via a sorbent trap and thermal desorption. Analytical Chemistry, 2003, 75: 2237-2242.
    [119] Li B., Yang Y., Gan Y. X., Eaton C. D., et al., On-line coupling of subcritical water extraction with high- performance liquid chromatography via solid-phase trapping. Journal of Chromatography A, 2000, 873(1-2): 175-184.
    [120] Ozel M. Z., Gogus F., Lewis A. C. Subcritical water extraction of essential oils from Thymbra spicata. Food Chemistry, 2003, 82: 381-386.
    [121] Luque-Garcia J. L., Luque de Castro M. D.. Coupling continuous subcritical water extraction, filtration, preconcentration, chromatographic separation and UV detection for the determination of chlorophenoxy acid herbicides in soils. Journal of Chromatography A, 2002, 959(1-2): 25-35.
    [122] Luthje K., Hyotylainen T., Riekkola M. L.. Comparison of different trapping methods for pressurised hot water extraction. Journal of Chromatography A, 2004, 1025: 41-49.
    [123] Hashimoto S., Watanabe K., Nose K., et al. Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere, 2004, 54(1): 89-96.
    [124] Kubaatovaa A., Herman J., Steckler T. S., et al. Subcritical (Hot/Liquid) Water Dechlorination of PCBs (Aroclor 1254) with Metal Additives and in Waste Paint. Environmental Science & Technology, 2003, 37: 5757-5762.
    [125] Priego-Lapez E., Luque de Castro M. D., Demetalisation of soils by continuous acidified subcritical water extraction. Talanta, 2002, 58: 377-385.
    [126] Yak H. K., Wenclawiak B.W., Cheng I. F., et al. Reductive Dechlorination of Polychlorinated Biphenyls by Zerovalent Iron in Subcritical Water. Environ.Sci.Technol, 1999,33: 1307-1310.
    [127] Kluyev N., Cheleptchikov A., Brodsky E., et al. Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water. Chemosphere, 2002,46(9-10): 1293-1296.
    [128] Konda L. N., Fuleky G., Morovjaan G., Subcritical Water Extraction to Evaluate Desorption Behavior of Organic Pesticides in Soil. Journal of Agricultural and Food Chemistry, 2002, 50: 2338-2343.
    [129] Yang Y., Belghazi M., Lagadec A., et al. Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A, 1998, 810(1-2): 149-159.
    [130] Krieger M. S., Wynn J. L., Yoder R. B.. Extraction of cloransulam-methyl from soil with subcritical water and supercritical CO_2. Journal of chromatography A, 2000, 897(1-2): 405-413
    [131] Hartonen K., Inkala K., Kangas M., et al. Extraction of polychlorinated biphenyls with water under subcritical condition. Journal of Chromatography A, 1997, 785(1-2): 219-226.
    [132]Curren M.S.S.,King J.W..New sample preparation technique for the determination of avoparcin in pressurized hot water extracts from kidney samples.Journal of Chromatography A,2002,954(1-2):41-49.
    [133]Richter P.,Sepǖlveda B.,Oliva R.,et al.Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography-mass spectrometry.Journal of Chromatography A,2003,994(1-2):169-177.
    [134]Santos M.,Batlle R.,Salafranca J.,et al.Subcritical water and dynamic sonication-assisted solvent extraction of fluorescent whitening agents and azo dyes in paper samples.Journal of Chromatography A,2005,1064(1-2):135-141.
    [135]Hawthorne S.B.,Grabanski C.B.,Martin E.,et al.Comparisons of Soxhlet extraction,pressurized liquid extraction,supercritical fluid extraction and subcritical water extraction for environmental solids,recovery,selectivity and effects on sample matrix.Journal of chromatography A,2000,892(1-2):421-433.
    [136]AyalalR.S.,Luque de Castro M.D..Continuous subcritical water extraction as a useful tool for isolation of edible essential oils.Food Chemistry,2001,75:109-113.
    [137]Ozel M.Gogus Z.,F.,Lewis A.C..Subcritical water extraction of essential oils from Thymbra spicata.Food Chemistry,2003,82:381-386.
    [138]微波密闭消解样品方法参考(汇编),上海新仪微波化学科技有限公司,2006.
    [139]Mudgett R.E.,Microwave properties and heating characteristics of foods.Food Technology,1986,6:84-93.
    [140]Heitkamp N.D.,Merkery S.L.,Stungis G.E..Enhancement of flavor and aroma by microwave treatment.US Patent 3,870,053,1975.
    [141]Luque-Garcia J.L.,Luque de Castro M.D..Water Soxhlet Extraction Assisted by Focused Microwaves:A Clean Approach.Analytical Chemistry,2001,73(24):5903-5908.
    [142]Luque-Garcia J.L.,Morales-Mǚnoz S.,Luque de Castro M.D..Microwave-assisted water extraction of acid herbicides from soils coupled to continuous filtration,pre-concentration,chromatographic separation and UV detection.Chromatographia.2002,55:117-122.
    [143]Torres P.,Ballesteros E.,Luque de Castro M.D..Microwave-assisted robotic method for the determination of trace metals in soil.Analytica Chimica Acta,1995,308: 371-377.
    [144] Herrera M. C., Luque de Castro M. D.. Dynamic approach based on iterative change of the flow direction for microwave-assisted leaching of cadmium and lead from plant prior to GF-AAS. Journal of Analytical Atomic Spectrometry, 2002, 17(11): 1530-1533.
    [145] Fernandez-Perez V., Garcia-Ayuso L. E., Luque de Castro M. D.. Focused microwave Soxhlet device for rapid extraction of mercury, arsenic and selenium from coal prior to atomic fluorescence detection. Analyst, 2000, 125: 317-322.
    [146] Falqui-Cao C., Wang Z., Urruty L., et al. Focused Microwave Assistance for Extracting Some Pesticide Residues from Strawberries into Water before Their Determination by SPME/HPLC/DAD. Journal of Agricultural and Food Chemistry, 2001,49(11): 5092-5097.
    [147] Xiong G. H., Tang B.Y., He X.Q., et al. Comparison of microwave-assisted extraction of triazines from soils using water and organic solvents as the extractants. Talanta, 1999,48 (2): 333-339.
    [148] Xiong G. H., Liang J., Zou S., et al. Microwave-assisted extraction of atrazine from soil followed by rapid detection using commercial ELISA kit. Analytica Chimica Acta, 1998, 371 (1): 97-103.
    [149] Vallejo-Pecharrom'an B., Garcia-Ayuso L.E., Luque de Castro M. D., Efficient extraction of PAHs in aqueous organised media assisted by focused microwaves. Chromatographia, 2001, 53: 5-10.
    [150] Pino V., Ayala J. Gonz'alez H., V.. Determination of polycyclic aromatic hydrocarbons in marine sediments by high-performance liquid chromatography after microwave-assisted extraction with micellar media. Journal of chromatography A, 2000, 869 (1-2): 515-522.
    [151] Eiguren-Fern'andez A., Sosa-Ferrera Z., Santana-Rodr'iguez J. J.. Application of microwave-assisted extraction using micellar media to the determination of polychlorinated biphenyls in marine sediments. Analytica Chimica Acta, 2001,433 (2): 237-244.
    [152] Eiguren-Fern'andez A., Sosa-Ferrera Z., Santana-Rodr'iguez J. J.. Microwave-assisted extraction of organochlorine compounds in marine sediments with organized molecular systems. Chromatographia, 2001, 53: 375-379.
    [153]刘彤,姚子伟,李洪等.海洋环境样品中PCBs的测定.交通环保,2000,(4):11-14.
    [154]蒋新,许士奋.长江南京段水、悬浮物及沉积物中多氯有毒有机物.中国环境科学,2000,20(3):193-197.
    [155]SW-846 METHOD 3550C(revision 3),Ultrasonic extraction,United States Environmental Protection Agency,2000.
    [156]Suslick K.S.,The Chemical Effects of Ultrasound.Scientific American,1989,(2):80-86.
    [157]Carvalho L.R.F.,Souza S.R.,Martinis B.S.,et al.Monitoring of the ultrasonic irradiation effect on the extraction of airborne particulate matter by ion chromatography.Analytica Chimica Acta,1995,317(1-3):171-179.
    [158]Wakerford C.A.,Blackburn R.,Lickiss P.D..Effect of ionic strength on the acoustic generation of nitrite,nitrate and hydrogen peroxide.Ultrasonics Sonochemistry.1999,6(3):141-148.
    [159]James B.R.,Petura J.C.,Vitale R.J.,et al.Hexavalent Chromium Extraction from Soils:A Comparison of Five Methods.Environmental Science & Technology,1995,29(9):2377.
    [160]Wang J.,Ashley K.,Marlow D..Field Method for the Determination of Hexavalent Chromium by Ultrasonication and Strong Anion-Exchange Solid-Phase Extraction.Analytical Chemistry,1999,71(5):1027.
    [161]Nascentes C.C.,Kom M.,Arruda M.A.Z.,A fast ultrasound-assisted extraction of Ca,Mg,Mn and Zn from vegetables.Microchem.J.2001,69(1):37-43.
    [162]Lavilla I.,Perez-Cid B.,Bendicho C..Leaching of Heavy Metals from an Aquatic Plant(Lagarosiphon Major) used as Environmental Biomonitor by Ultrasonic Extraction.Int.J.Environ.Anal.Chem.1998,72:47-57.
    [163]Filgueiras A.V.,Capelo J.L.,Lavilla I.,et al.Comparison of ultrasound-assisted extraction and microwave-assisted digestion for determination of magnesium,manganese and zinc in plant samples by flame atomic absorption spectrometry.Talanta,2000,53(2):433-441.
    [164]Pino V.,Ayala J.H.,Afonso A.M.,V.Gonzalez,Ultrasonic micellar extraction of polycyclic aromatic hydrocarbons from marine sediments.Talanta,2001,54(1):15-23.
    [165]Voznakova Z.,Podehraska J.,Kohlickova M..Determination of nitrophenols in soil.Chemosphere,1996,33(2):285-291.
    [166]Luque-Garcia J.L.,Luque de Castro M.D..Continuous ultrasound-assisted extraction of hexavalent chromium from soil with or without on-line preconcentration prior to photometric monitoring.Analyst,2002,127:1115-1120.
    [167]Caballo-Lopez A.,Luque de Castro M.D..Continuous ultrasound-assisted extraction coupled to on line filtration-solid-phase extraction-column liquid chromatography-post column derivatisation-fluorescence detection for the determination of N-methylcarbamates in soil and food.Journal of chromatography A,2003,998(1-2):51-59.
    [168]Ruiz-Jimenez J.,Lugue de Castro M.D.,Dynamic ultrasound-assisted extraction of cadmium and lead from plants prior to electrothermal atomic absorption spectrometry.Analytica Chimica Acta,2003,480(2):231-237.
    [169]htto://www.bbepb.gov.cn/Article/ShowArticle.asp?ArticleID=1391
    [170]GB 3838-2002,地表水环境质量标准.2002.
    [171]GB 5749-2006,生活饮用水卫生标准.2006.
    [172]NY 1614-2008,农田灌溉水中4-硝基氯苯、2,4-二硝基氯苯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯的最大限量.2008.
    [173]GB 15618-1995,土壤环境质量标准,1995.
    [174]王琳玲,王力,陆晓华.点源排放六氯苯在多环境介质中的分布研究.环境科学与技术,2007,30(2):5-7
    [175]SW-846 Method 8081,Organochlorine pesticides by gas chromatography.1996.
    [176]GB 11938-89,水源水中氯苯系化合物卫生检验标准方法—气相色谱法.1989.
    [177]SW-846 Method 3540C(revision 3),Soxhlet extraction.1996.
    [178]SW-846 Method 3550C(revision 3),Ultrasonic extraction.2000.
    [179]Morales-Munoz S.,J.L.Luque-Garcia,M.D.Luque de Castro.Pure and modified water assisted by auxiliary energies:An environmental friendly extractant for sample preparation.Analytica Chimica Acta,2006,557:278-286.
    [180]Psillakis E,Kalogerakis N.Developments in liquid-phase microextraction.Trac Trends Anal Chem.,2003,22(10):565-574;
    [181]Andersen S,Halvorsen T G,Pedersen-Bjergaard S,Rasmussen K E.Liquid-phase microextraction combined with capillary electrophoresis,a promising tool for the determination of chiral drugs in biological matrices.J.Chramatogr A,2002,963(1/2):303-312
    [182]王超英,陶敬奇,李碧芳,马志玲,李攻科.固相微萃取-高效液相色谱联用分析环境水样中的痕量屈.色谱,2002,20(1):59-62.
    [183]Dimitra A.Lambropoulou,Triantafyllos A.Albanis.Liquid-phase Micro-extraction Techniques in Pesticide Residue Analysis.Luque de Castro M.D.,2006.
    [184]王力,王琳玲,赵天珍等.超声萃取沉积物中六氯苯的研究.分析科学学报,2006,22(6):663-666.
    [185]Wegener H.C..Antibiotics in animal feed and their role in resistance development.Curr.Opin.Microbiol.,2003,6:439.
    [186]Commission Decision 2003/181/EC of 13 March 2003,off.J.Eur.Commun.L 2003,71:17.
    [187]http://www.xmtbt-sps.gov.cn/jp_mhlw/jpmhlw.asp
    [188]GB 13109-1991,Method for determination of tetracyclines residue in honey.1991.
    [189]Anurak Cheoymang,David Hudchinton,Deborah Kioy,Kesara Na-Bangchang.Bioassay for determination of fosmidomycin in plasma and urine:Application for pharmacokinetic dose optimization.Journal of Microbiological Methods,2007,69:65-69.
    [190]Medina M.B.,Development of a fluorescent latex immunoassay for detection of a spectinomycin antibiotic.Journal of Agricultural and Food Chemistry,2004,52(11):3231.
    [191]Hisao Oka,Yuko Ito,Hiroshi Matsumoto.Chromatographic analysis of tetracycline antibiotics in foods.Journal of chromatography A,2000,882(1-2):109-133.
    [192]Badar Shaikh,William A.Moats.Liquid chromatographic analysis of antibacterial drug residues in food products of animal origin.Journal of chromatography A,1993,643(1-2):369-378.
    [193]Pilar Vinas,Nuria Balsalobre,Manuel Hernandez-Cordoba.Determination of chloramphenicol residues in animal feeds by liquid chromatography with photo-diode array detection.Analytica Chimica Acta,2006,558(1-2):11-15.
    [194]Gentili A.,Perret D.,S.Marchese.Liquid chromatography-tandem mass spectrometry for performing confirmatory analysis of veterinary drugs in animal-food products. Trac-Trends in Analytical Chemistry, 2005, 24 (7): 704-733.
    [195] Carmen Garcia-Ruiz, Maria Luisa Marina. Recent advances in the analysis of antibiotics by capillary electrophoresis. Electrophoresis, 2006, 27: 266-282.
    [196] Collin R. Anderson, Heidi S. Rupp, Wen-Hsin Wu. Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. Journal of chromatography A, 2005, 1075 (1-2): 23-32.
    [197] Stolker A.A.M., Brinkman U.A.Th.. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review. Journal of chromatography A, 2005, 1067 (1-2): 15-53.
    [198] Rick W. Fedeniuk, Phyllis J. Shand. Theory and methodology of antibiotic extraction from biomatrices. Journal of chromatography A, 1998, 812 (1-2) 3-15.
    [199] Junior, Dario, Krug, Francisco, Pereira, Madson, Korn, Mauro. Currents on Ultrasound Assisted Extraction for Sample Preparation and Spectroscopic Analytes Determination. Appl. Spectrosc, 2006,41 (3): 305-321.
    [200] Morales-Munoz S., Luque de Castro M. D.. Dynamic ultrasound-assisted extraction of colistin from feeds with on-line pre-column derivatization and liquid chromatography-fluorimetric detection. Journal of chromatography A, 2005, 1066 (1-2): 1-7.
    [201] Bogialli S., Corcia A. Di.. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs. J. Biochem. Biophys. Methods, 2007, 70 (2) 163-179.
    [202] Smith R.M.. Extractions with superheated water. Journal of chromatography A, 2002, 975 (1): 31-46.
    [203] Ramos L., Kristenson E. M., Brinkman U. A. Th.. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of chromatography A, 2002, 975 (1) 3-29.
    [204] Jose A.M., Herrero M., Cifuentes A., et al. Use of compressed fluids for sample preparation: Food applications. Journal of chromatography A, 2007, 1152 (1-2): 234-246.
    [205] Bogialli S., Curini R., Corcia A. Di, et al. Confirmatory analysis of sulfonamide antibacterials in bovine liver and kidney: extraction with hot water and liquid chromatography coupled to a single- or triple-quadrupole mass spectrometer. Rapid Communications in Mass Spectrometry, 2003, 17(11): 1146-56.
    [206] Bogialli S., Curini R., Di Corcia A., et al. A liquid chromatography-mass Spectrometry assay for analyzing sulfonamide antibacterials in cattle and fish muscle tissues. Analytical Chemistry, 2003,75(8): 1798-804.
    [207] Bogialli S., Curini R., Di Corcia A.,et al. Rapid Confirmatory Assay for Determining 12 Sulfonamide Antimicrobials in Milk and Eggs by Matrix Solid-Phase Dispersion and Liquid Chromatography-Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4225-4232.
    [208] Bogialli S., Di Corcia A., Lagana A., et al. A simple and rapid confirmatory assay for analyzing antibiotic residues of the macrolide class and lincomycin in bovine milk and yoghurt: hot water extraction followed by liquid chromatography/tandem mass Spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21(2): 237-246.
    [209] Bogialli S., Coradazzi C., Di Corcia A., et al. A rapid method based on hot water extraction and liquid chromatography-tandem mass Spectrometry for analyzing tetracycline antibiotic residues in cheese. Journal of AOAC International, 2007, 90(3): 864-871.
    [210] Bogialli S., Curini R., Di Corcia A., et al. Evaluation of a Method for Assaying Sulfonamide Antimicrobial Residues in Cheese: Hot-Water Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2006,54(13): 4537-4543.
    
    [211]GB-T 8381.9-2005, 饲料中氯霉素的测定 气相色谱法. 2005
    [212] GB/T 5009.116-2003, Determination of oxytetracyline, tetracyline and chlortetracycline residues in meat (HPLC). Ministry of Public Health of the People's Republic of China, 2003
    [213] Mitscher L.A. (Ed.), The Chemistry of the Tetracycline Antibiotics, first ed., Marcel Dekker, New York, (1978). 125
    
    [214] http://www.vetscite.org/publish/items/000398/index.html
    [215] Georage W. C. Food Safety first. Advocate, 2002, 5(1): 2-4.
    [216] NY 5070-2002, 无公害食品 水产品中渔药残留限量, 2002.
    [217] Hans R. M., Galbraith M., Alguani W. G In analytical microbiology. FK aranagh (Ed.) Academic press New York, NY, 1983,271-281.
    [218] Arnold, Somogyi.Trace analysis of chloramphenicol residues in eggs, milk and meat: comparsion of gas chromatography and radioimmunoassay. Assoc of Anal. Chem., 1985,68(5):984-989.
    [219]Van de water C.,Haagsma N.Analysis of chloramphenicol residues in swine tissues and milk:comparative study using different screening and quantitative methods.Journal of chromatography A,1991,566(1):173-185.
    [220]Allen E.H.Review of chromatographic methods for chloramphenicol in milk,egg and tissues from food-producing animals.Joumal of AOAC International,1985,68(5):990-999.
    [221]Nagata,Saeki.Simultaneous determination of thiampernicol,florfenicol and chloramphenicol residues in muscles of animals and cultured fish by liquid chromatography.Liquid Chromatography,1992,15(12):52-56.
    [222]中华人民共和国水产行业标准,SC/T 3018-2004,水产品中氯霉素残留量的测定气相色谱法.
    [223]中华人们共和国国家标准,GB/T 8381.9-2005,饲料中氯霉素的测定 气相色谱法.
    [224]Suarez-Rodriguez J.L.,Diaz-Garcia M.E..Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers.Biosensors &Bioelectronics,2001,16(9-12):955-961.
    [225]Dumont V.,Huet A.C.,Traynor I.,et al.A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol,florefenicol,florefenicol amine and chloramphenicol residues in shrimps.Analytica Chimica Acta,2006,567:179-183.
    [226]Rebecca S.Nicolicha,Eduardo Werneck-Barrosob and Marlice A.Sipoli Marques.Food safety evaluation:Detection and confirmation of chloramphenicol in milk by high performance liquid chromatography-tandem mass spectrometry.Analytica Chimica Acta,2006,565(1):97-102.
    [227]Shi X.Z.,Wu A.,Zheng S.,et al.Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods.Journal of Chromatography B,2007,850(1-2):24-30.
    [228]Ramos M.,Munoz P.,Aranda A.,et al.Determination of chloramphenicol residues in shrimps by liquid chromatography-mass spectrometry.Journal of Chromatography B,2003,791(1-2):31-38.
    [229]吕玄文,梁敏思,党志,杨琛,鱼塘沉积物中氯霉素的超声萃取、净化与测定,农 业环境科学学报,2007,(3).
    [230]Mohamed,R.,Richoz-Payot,J.,Gremaud,E.,et al.Advantages of Molecularly Imprinted Polymers LC-ESI-MS/MS for the Selective Extraction and Quantification of Chloramphenicol in Milk-Based Matrixes.Comparison with a Classical Sample Preparation.Analytical Chemistry,2007,79(24):9557-9565.
    [231]Scott McNiven,Maiko Kato,Raphael Levi,et al.Chloramphenicol sensor based on an in situ imprinted polymer.Analytica Chimica Acta,1998,365(1-3):69-74.
    [232]Lei Ye,Peter A.,Cormack G.,et al.Molecular imprinting on microgel sphere.Analytica Chimica Acta,2001,435(1):187-196.
    [233]何美仙,贾春蕾,罗军.“无公害食品行动计划”与农药的发展方向.有机农业与食品科学,2004,20(3):62.
    [234]SN 0582-1996.出口粮谷及油籽中灭多威残留量检验方法.中华人民共和国进出口商品检验局.1996.
    [235]GB/T 5009.199-2003.蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测.中华人民共和国卫生部.2003.
    [236]NY/T 448-2001.蔬菜上有机磷和氨基甲酸酯类农药残毒快速检测方法.中华人民共和国农业部.2001.
    [237]郭梅,黄卫红,陆晓华等.亚临界水萃取—固相萃取联用技术对沉积物中有机氯农药的萃取研究.分析科学学报,2004,20(3):257-259.
    [238]苏明伟,郑严波,杨海等.果蔬中农药残留检测的预处理和检测条件优化研究.食品科学,2006,27(5):199-201.
    [239]陆晓华,杨海,王琳玲等,多通道手持式食品安全检测仪.中国:ZL 200420065191.1,2006.
    [240]陆晓华,王琳玲,杨海等.一种用于环境及食品监测的便携式样品快速预处理装置.中国:ZL 200520095604.5,2006.
    [241]国家环保局《水和废水监测分析方法》编委会,水和废水监测分析方法(第四版),中国环境科学出版社,2002,458。
    [242]SW-846 Method 3510C(revision 3),Separatory funnel liquid-liquid extraction,United States Environmental Protection Agency,1996.
    [243]Karen D.Buchholz,Janusz Pawliszyn.Optimization of solid-phase microextraction conditions for determination of phenols. Analytical Chemistry, 1994, 66: 160-167
    [244] R.M. Smith, Superheated water: the ultimate green solvent for separation science. Anal. Bioanal. Chem., 2006, 385: 419-421.
    [245] Linling Wang, Weihong Huang, Xiumei Shao and Xiaohua Lu, An Organic Solvent-Free Microwave-Assisted Extraction of Some Priority Pollutants of Phenols in Lake Sediments, Analytical Sciences, 2003,19: 1487-1490
    [246] Vioria Lopez-Avila, Richard Yang, Beckert W.F., et al. Microwave-assisted extraction of organic compounds from standard reference soils and sediments. Anal Chem, 1994, 66(7): 1097-1106.
    [247] Rodriguez, M.I. Turnes, M.C. Mejuto, et al. Determination of chlorophenols at sub-ppb level in tap water using derivatization, solid-phase extraction and gas chromatography with plasma atomic emission detection. Journal of Chromatography A., 1996,721:297-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700