用户名: 密码: 验证码:
鸡胸软骨Ⅱ型胶原的制备及功能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡骨是肉鸡加工的主要副产物,目前大量鸡骨没有得到充分的开发和利用,而是当作废弃物抛弃,造成极大的浪费,且污染环境。Ⅱ型胶原是鸡胸软骨中的主要成分,Ⅱ型胶原独特的结构和功能使其广泛应用于食品、医药及化工等领域。从鸡胸软骨中提取Ⅱ型胶原,不但充分利用了鸡骨资源,减少环境污染,解决了家禽加工资源综合利用的问题,同时也可以得到一种具有高附加值的生物活性物质,具有很大的理论意义和实用价值。
     本课题采用酶法从鸡胸软骨中制备Ⅱ型胶原,并对其生物活性和结构进行了研究,主要研究内容如下:
     采用高效液相色谱法建立了Ⅱ型胶原的测定方法。色谱条件为:流动相,A为5%乙腈、0.05%TFA,B为80%乙腈(v/v);采用线形梯度洗脱;检测波长,220 nm;流速,1 mL/min。柱温,35℃,进样量,10μL。高效液相色谱法对Ⅱ型胶原进行定量检测与传统的WoessnerⅠ法具有良好的相关性(R2>0.99)。高效液相色谱法在保证准确性和重现性的基础上,具有省去繁琐耗时的样品预处理、所需样品用量少、易于自动化的优点,从而为Ⅱ型胶原提供了一种新的测定方法。
     确定了从鸡胸软骨中制备Ⅱ型胶原的工艺路线。首先采用甲醇:氯仿(2:1)低温浸泡除去脂肪,使脂肪的残留率降至0.072%;再用1 mol/L的NaCl溶液浸泡骨料并缓慢搅拌除去大部分盐溶性的杂蛋白;采用胃蛋白酶切除Ⅱ型胶原的端肽,使Ⅱ型胶原由不溶性转为可溶性,胃蛋白酶解温度、时间及胃蛋白酶浓度显著影响Ⅱ型胶原的提取率及二级结构。胃蛋白酶提取鸡胸软骨Ⅱ型胶原的最佳工艺条件为:胃蛋白酶浓度为1%(w/v),酶解温度20℃,酶解时间36h,提取率为43.49%,Ⅱ型胶原保持着比较完整的三股螺旋结构。
     采用NaCl沉淀酶解液中的Ⅱ型胶原,Ⅱ型胶原最佳的盐析工艺条件为:氯化钠浓度为3 mol/L,盐析温度20℃,盐析时间为24h,回收率为85.93%。
     采用DEAE-sepharose CL 6B离子交换色谱分离Ⅱ型胶原与糖胺聚糖,由SDS - PAGE及RP-HPLC测定结果表明:鸡胸软骨Ⅱ型胶原样品与Sigma公司标准品及关节软骨Ⅱ型胶原样品的电泳谱带相同,具有较高的α带和少量的β二聚体。图谱上无其他杂带,经纯化后的Ⅱ型胶原的纯度较高。
     研究了Ⅱ型胶原的结构及理化性质。结果表明Ⅱ型胶原中甘氨酸、羟脯氨酸和丙氨酸含量最高,每1000个氨基酸残基中分别为310、117及115。组氨酸和酪氨酸含量较低,没有检测出色氨酸,为典型动物胶原的氨基酸组成。园二色性及红外测定结果表明Ⅱ型胶原是由三条相同的α链构成的螺旋。Ⅱ型胶原的变性温度为43.843℃,在220 nm附近产生最大的光吸收,在pH值为5.8时,溶解度达到最低。
     由AFM(原子力显微镜)测定结果表明,Ⅱ型胶原原纤维由一个个成念珠状的结构紧密连接而成,每个念珠即为一个横纹周期(D周期),平均每个周期为65 nm,每个胶原分子的长度约为300 nm,直径约为1.5 nm。Ⅱ型胶原的周期结构对应明带和暗带构成的高低起伏的波状结构,明带对应波峰,暗带对应波谷,每个周期的波峰和波谷有5 nm左右的高度差。
     以EDC/NHS为交联剂制备Ⅱ型胶原-硫酸软骨素支架,并对Ⅱ型胶原-硫酸软骨素支架修复软骨损伤的功能进行研究。结果表明,EDC/NHS交联增加了胶原支架的热稳定性及对胶原酶的抗性,并降低了游离氨基酸的含量及含水率,从而改善了胶原分子作为细胞支架易降解的缺点。最适的EDC的添加浓度为7 mg/mL。Ⅱ型胶原与硫酸软骨素复合后,细胞亲和性大大提高,软骨细胞能很好的在复合支架上粘附、生长和增殖,并保持软骨细胞特异分化的表型,分泌Ⅱ型胶原与蛋白多糖。培养14天后已有软骨样组织形成,这表明Ⅱ型胶原-硫酸软骨素支架适合作为软骨组织工程研究的细胞载体材料。
     通过建立大鼠类风湿性关节炎模型,研究了Ⅱ型胶原对人类类风湿性关节炎的防治作用。采用Ⅱ型胶原诱导的大鼠类风湿性关节炎症状主要表现为关节软骨破坏,增生性滑膜炎,并伴有单个核细胞浸润并持续存在于滑膜中。从测得的与RA紧密联系的三种炎性细胞因子水平来看,口服Ⅱ型胶原和氨基葡萄糖显著抑制了RA的发展,提示其治疗作用机理可能与抑制滑膜细胞分泌炎性细胞因子,纠正Th1和Th2细胞平衡失调有关,也进一步表明了Ⅱ型胶原和硫酸氨基葡萄糖作为防治类风湿性关节炎保健品的可行性。
Chick bone is the main by-products of chick manufacturing industry, most of chick bone have not been exploited and are directly discharged into estuaries resulting in environmental pollution. Type II collagen is the main structural component of chick sternal cartilage and is used in various food applications, pharmaceutical applications and chemical industrial with specific molecular structure. If the type II collagen can be extracted from the chick sternal cartilage, not only the polluting problem can be resolved, but also can obtain a kind of biological activity product with high appending value.
     Pepsin was used to extract type II collagen from chick sternal cartilage and the biological activities and the structure of type II collagen were studied in this paper. Major content of this paper as following:
     Reversed-phase high performance liquid chromatography (RP-HPLC) method was demonstrated to determine the content of type II collagen. Chromatography was performed with an injection volume of 10μl. The mobile phase consisted of two solvent: (A) 5% acetonitrile and 0.05% trifluoroacetic (TFA) and (B) 80% acetonitrile (v/v). The separation was performed using the linear gradient of A-B (v/v). Flow rate was maintained 1 ml/min. Absorbance was monitored at 220 nm. The RP-HPLC method had a good linearity correlation with Woessner I method (R2>0.99). As compared with the conventional method, the proposed method has proved to be convenient, sensitive, accurate and reproducible on base of avoiding the use of a time-consuming pretreatment procedure.
     Technical route of extracting type II collagen from chick sternal cartilage were confirmed. The chick sternal cartilage was defatted with chloroform-methanol (2:1, v/v) and the residual fat was 0.072%. Then, the sternal cartilage was extracted using 1.0 mol/L NaCl in 0.05 mol/L Tris-HCl (pH 7.5) at 4°C for 24 h to remove contaminating protein. After the extracts were aggregated by centrifugation, the digestion was tested by mixing precipitation with pepsin to assess the temperature, times and the ratio of enzyme to precipitation effect on the extracting ratio and secondary structure of type II collagen. The optimum technical parameters for pepsin digestion were studied: extraction times for 32h, pepsin concentration for 0.5% and temperature for 20°C. It seemed, therefore, the pepsin-solubilized type II collagen of higher stability and extracting ratio can be obtained (43.49%).
     NaCl was applied to precipitate type II collagen. The optimum technical parameters for NaCl salting out were studied: extraction times for 32h, pepsin concentration for 0.5%, temperature for 20°C and the recovery ratio was 85.93%.
     DEAE-sepharose CL 6B chromatography provided a rapid and efficient method for separating collagen from proteoglycans in cartilage extracts. The results of SDS-PAGE and RP-HPLC suggested the prepared type II collagen essentially was free from contaminating proteins by the method used in this study for purification. All these collagen samples purified had similar migration bands and consisted ofαchain and their dimers (βchains) with a subunit Mr of 110 kDa
     The structure and composition of type II collagen were studied. Type II collagen had a high content of glycine, hydroxyproline and proline residues, with 310, 117 and 115 residues per 1000 amino acids residues respectively, and small amounts of tyrosine, cysteine, histidine and methionine residues with 5, 18 and 10 residues per 1000 amino acids residues respectively. The Td was determined to be about 42°C for purified type II collagen and about 44°C for intact cartilage. The minimal difference between denaturation temperature of purified type II collagen and intact cartilage indicate that purification process has little influence for stability of collagen.
     Type II collagen molecules consisted of three polypeptide chains, which self-assemble into D-periodic cross-striated fibrils with 65 nm. Collagen molecules, forming the fibril, consisted of an uninterrupted right handed triple helix called tropocollagen, approximately 300 nm in length and 1.5 nm in diameter. The stagger of molecules gives rise to a characteristic band pattern of light and dark regions and viewed using an electron microscope.
     The porous type II collagen-chondroitin sulfate (CS) scaffold were prepared using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results suggested that EDC - crosslinking increased the denaturation temperature (Td) and resistance to enzymatic degradation by bacterial collagenase. A significant decrease in the swelling ratio and free amino groups per 1000 amino acid residues was also detected. The mechanical stability of collagen-CS scaffolds were improved with EDC concentration for 7 mg/ml. Then, isolated chondrocytes were cultured in porous type II collagen scaffolds either in the presence and/or absence of covalently attached CS up to 14 days. Cell proliferation and the total amount of proteoglycans and type II collagen retained in the scaffolds were higher in type II collagen-CS scaffolds. Histological analysis showed the formation of a denser cartilaginous layer at the scaffold periphery. Scanning electron microscopy revealed chondrocytes distributed the porous surface of both scaffolds maintained their spherical morphology. The results of the present study also indicate that type II collagen-CS scaffolds have potential for use in tissue engineering.
     The effect of type II collagen (CII) prepared from the chick sternal cartilage and Glucosamine Sulfate (GLS) on collagen-induced rat rheumatoid arthritis (RA) model (CIA) was studied. CIA was established in male Sprague-Dawley (SD) rats with intradermal injection of chicken type II collagen at the left hind paw of the animals, and then CIA rats were treated daily using oral administration of different doses of CII with or without GLS beginning on the day of the induction of arthritis (day 0, the prophylactic treatment) until day 45. Histopathologic sections of diarthrodial joints showed that injection of type II collagen with CFA produced a chronic proliferative synovitis which secondarily destroyed articular cartilage and bone. Synovium of the onset of arthritis showed marked edema and infiltration by dense aggregates of mononuclear cells and occasional neutrophils. Prophylactic treatment with type II collagen significantly suppressed the onset of arthritis and markedly reduced paw swelling even in the established CIA. The therapy may be achieved by restraining cytokines excreted by synoviocyte and balance the Th1 and Th2 cell. Hence, our studies demonstrate the quality, safety, and effectiveness of type II collagen as an anti-arthritic agent, which makes type II collagen a strong candidate for further clinical trials on rheumatoid arthritis (RA) patients.
引文
1. Gross, J. The behavior of collagen units as a model in morphogenesis[J]. J.Biophys. Biochem. Cytol, 2 (Suppl):261-265
    2.陈静涛,徐政,顾其胜.胶原蛋白研发的最新进展[J].上海生物医学工程, 2004,25(2):52-56
    3.李国英.胶原的类型及其结构特征[J].中国皮革, 2002,31(17):20-21
    4. Aigner T, St?ve J. Collagen-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair[J]. Advanced Drug Delivery Reviews, 2003, 55:1569-1593
    5. Hsiu O H, Lun H L, Ming T S. Characterization of collagen isolation and application of collagen gel as a drug carrier[J]. Journal of Controlled Release, 199744,103-112
    6.李国英,张忠楷,付强.胶原的形态分类及其生理机能[J].陕西科技大学学报, 2004,22(3):80-82
    7.罗克.家禽解剖学与组织学[M].福州:福建科学技术出版社, 1983. 33
    8. Orgel J P R O, Miller A, Irving T C, et al. The in situ supermolecular structure of type I collagen[J]. Structure, 2001, 9:1061-1069
    9. Gelse K, Poschl E, Aigner T. Collagen-structure, function, and biosynthesis[J]. Advanced Drug Delivery Review, 2003, 55:1531-1546
    10. Beck K, Brodsky. Supercoiled protein motifs:the collagen triple-helix and theα-helical coiled coil[J]. Journal of Structural Biology, 1998, 122:17-29
    11. Usha R, Ramasami T. Structure and conformation of intramolecularly cross-linked collage[J]. Colloids and Surfaces B:Biointerfaces, 2005,41:21-24
    12. Kambic H E, McDevitt C A. Spatial organization of type I and II collagen in the canine meniscus[J]. Journal of Orthopaedic Research, 2005,23:142-149
    13. Mitraki A, Miller S, Raaijs M J van. review:conformation and folding of novel beta-structural elements in viral fiber proteins:the triple beta-spiral and triple beta-helix[J]. Journal of Structural Biology, 2002,137:236-247
    14.刘苏锐,王坤余,琚海燕.猪皮Ⅰ型胶原蛋白的提取ZA及其结构表征[J].中国皮革,2007,36(7): 43-49
    15. Bruckner P, Rest M van der. Structure and function of cartilage collagens[J]. Microsc Res Tech, 1994, 28:378-384
    16. Mendler M, Eich-Bender S G, Vaughan L, et al. Cartilage contains mixed fibrils of collagen typesII, IX and XI[J]. J cell Biol, 1989,108:191-197
    17. Bachinger H P, Davis J M, Morris N P. Thermal stability and folding of the collagen triple helix and the effects of mutations in oseteogensis imperfecta on the triple helix of type Icollagen[J]. Am J Med Gen, 1993,45:152-162
    18. Cohen C, Bear R S. Helical polypeptides chain configuration in collagen[J]. J Am Chem Soc, 1953, 75:2783-2784
    19. Fields, G B. The collagen triple-helix:correlation of conformation with biological activities[J], Connect Tissue Res, 1995,31:235-243
    20. Fraser R D B, MacRae T P. conformation in fibrous proteins[J], Academic Press, New York, 1973
    21. Fraser R D B, MacRae T P, Suzuki E. Chain conformation in the collagen molecule[J]. J Mol Biol, 1979,129:463-481
    22. Jones E Y, Miller A. Analysis of structural design features in collagen[J]. J Mol Biol, 1991,
    218:209-219
    23. Kadler K. Extracellular matrix 1:fibril forming collagens[J]. protein profile,1994, 5: 519-638
    24. Ramachandran G N, Kartha G. Structure of collagen[J]. Nature,1954,174:269-270
    25. Rich A, Crick F H C. The molecular structure of collagen[J]. J Mol.Biol, 1961,3:483-506
    26.邵正中,杨新林,生物高分子(第8卷),化学工业出版社,2005,114
    27. Hay E D. Extracellular matrix[J]. J Cell Biol, 1981,91:205-223
    28. Ricard-blum S, Hartmann D J, Herbage D. Biochemical properties and immunolocalization of minor collagens in foetal calf cartilage[J]. FEBS Lett, 1982,146:343-347
    29. Muyonga J H, Cole G G B, Duodu K G. Extraction and physico-chemical characterization of Nile perch(Lates niloticus) skin and bone gelatin[J]. Food Hydrocolloids, 2004, 18: 581-592
    30. Visconti C S, Kavalkovich K, Wu J J, et al. Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens[J]. Archives of biochemistry and biophysics, 1996, 328(1): 135-142
    31.王英梅,李志强,陈敏等.原子力显微镜对天然猪皮胶原纤维精细结构的研究[J].中国皮革, 2002, 31(15):35-37
    32.王小燕,蔡继业,梁志红.应用原子力显微镜对不同种属Ⅰ型胶原纤维微观结构的研究[J].电子显微学报, 2003, 22(2):120-124
    33.顾其胜.胶原蛋白与临床医学[M].第二军医大学出版社, 2003: 109-118
    34.施强,桑立红,王在震.从骨胶中提取L-羟基脯氨酸和L-脯氨酸[J].食品科学, 1998,19(10):26-29
    35.冯志民,徐蘅.动物组织钟羟脯氨酸测定方法的建立及初步应用[J].南京铁道医学院学报, 1999,18(3): 168-170
    36.殷明文,南宇梅,王新民,分光光度法测定羟脯氨酸的改进,河南医科大学学报,1994,29(1):74-77
    37.刘智广,马海燕.胶原特异性氨基酸快速测定方法的研究及应用[J].氨基酸杂志, 1994,3: 8-12
    38. Lamprecht G. rapid method for the isolation of hydroxylysylpyridinoline and lysylpyridinoline from concentration bone hydrolysates by liquid chromatographic techniques[J]. Journal of Chromatography B, 1997, 691:297-304
    39. Reddy G K, Enwemeka C S. A simplified method for the analysis of hydroxyproline in biological tissues[J]. Clinical Biochemistry, 29(3):225-229
    40.蒋挺大.胶原与胶原蛋白[M].北京,化学工业出版社, 2006: 145
    41. Black D. Quantitative analysis of the pyridinium crosslinks of collagen in urine using ionpaired reversed-phase high-performance liquid chromatography[J].Chemical Abstracts,2002, 108(21):354
    42. Black C, Burrows D J. U S Patent, 1989,186433
    43.邹晓莉,黎源倩,曾红燕.反相高效液相色谱法测定人肌腱中的胶原蛋白[J].色谱, 2006, 24(3): 263-266
    44.李斯明,叶春婷,邹海燕.高纯度猪软骨Ⅱ型胶原的制备与检测[J].生物医学工程学杂志, 2001, 18(4): 592-594
    45.彭燕豪,叶春婷,邹海燕.猪软骨Ⅱ型胶原的制备及理化性能分析[J].生物医学工程与临床, 2001, 5(3):125-128
    46.胡胜,李志强,陈敏.猪皮胶原的酶法提取[J].中国皮革, 2003, 32(5): 6-10
    47.王碧,贾冬英,张铭让.色谱法在胶原蛋白分离分析中的应用[J].化学通报, 2001, 65(1):1-6
    48.蒋家新,蒋予箭,林佩剑.鱼皮胶原制备的研究[J].食品科学, 2001, 22(6):41-43
    49.吴国选,伍津津,朱堂友等.人肌腱胶原蛋白的提取及凝胶制备[J].实用医药杂志,2005, 22(3):227-229
    50.孟宪敏,赵淑惠,陈翠真.猪巩膜胶原的纯化及胶原膜制备的研究[J].中国药学杂志, 1998, 33(6): 344-347
    51. Sato K, Yoshinaka R, Sato M, et al. A simplified method determing collagen in fish muscle[J]. Bulletin of the Japanese society of Scientific Fisheries, 1986,52(5):889-893
    52.刘庆慧,王彩理,刘丛力等.鱼鳞胶原蛋白研究[J].海洋水产研究, 2000, 9: 57-61
    53.王建辉,李琦,刘在群等.鹿皮胶原的提取与性质[J].吉林大学自然科学学报, 2001, 1:106
    54.李彦春,靳立强,危东发等.酶法提取牛皮胶原蛋白的研究[J].中国皮革, 2002, 31(23):6-10
    55.胡胜,李志强,陈敏.猪皮胶原的酶法提取[J].中国皮革, 2003, 32(5):6-10
    56.陶研,王慥.乳状鱼蛋白的营养评价[J].氨基酸核生物资源, 2005, 27(1):19-21
    57. Kimura S, Tanaka H. Partial characterization of muscle collagen from prawns and lobster[J]. Food Sci, 1986, 51(2):330-332
    58.秦玉青,刘承初,王慥.鱿鱼皮胶原蛋白的提取利用[J].实验中医研究, 2002, 2: 20-21
    59. Montero P, Borderias J, Turnay J, et al. Characterization of hake (merluccius merlucciusl) and trout (Salmo irideus Gibb) collagen[J]. Agri.Food.Chem, 1990, 38:604~609
    60. Nagai T, Suzuki N. Isolation of collagen from fish waste material-skin, bone and fins[J]. Food Chemistry, 2000, 68:277-281
    61.李开雄,赵志远,刘霞.猪皮中胶原蛋白的提取及其应用[J].肉类研究, 1994, 4: 43-47
    62. Meullenet J F. Tectural properties of chicken frankfurters with added collagen fibers[J]. Journal of Food Science, 1994,59(4):729-734
    63.刘白玲.胶原在生物医学领域的应用[J].皮革科学与工程, 1999, 9(3):35-42
    64. Lotta H, Robert B, Erik W, et al. Side-chain and backbone amide bond requirements for glycopeptide stimulation of T-cells obtained in a mouse model for rheumatoid arthritis[J].Bioorganic & Medicinal Chemistry, 2006:5921-5932.
    65.张斌,姚浩群,程世高,戴闽.硫酸氨基葡萄糖治疗骨关节炎的应用研究进展[J].江西医学院学报, 2004(04):28-30
    66. Wang C, Dai,Y Yang J, et al. Treatment with total alkaloids from Radix Linderae reduces inflammation and joint destruction in type II collagen-induced model for rheumatoid arthritis[J]. Journal of Ethnopharmacology,2007:322-328
    67.韩晓枫,马宝骊,张继英等.鸡胶原II型诱导大鼠类风关模型的建立[J].上海免疫学杂志, 2001(06): 28-32
    68. Cai X, Zhou H, Wong Y F, et al. Suppression of the onset and progression of collagen-induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula[J].Journal of Ethnopharmacology, 2007:39-48
    69. Lee Y C, Kimb S H, Rohc S S, et al. Suppressive effects of Chelidonium majus methanol extract in knee joint, regional lymph nodes, and spleen on collagen-induced arthritis in mice[J]. Journal of Ethnopharmacology,2007(11): 3214-3221
    70. Holm L, Bockermann R, Wellner E ,et al. Side-chain and backbone amide bond requirements for glycopeptide stimulation of T-cells obtained in a mouse model for rheumatoid arthritis[J].Bioorganic & Medicinal Chemistry,2006(14):5921–5932
    71. Suh S J, Kim K S, Lee A R, et al. Prevention of collagen-induced arthritis in mice by Cervus Korean TEMMINCK var.mantchuricus Swinhoe[J].Environmental Toxicology and Pharmacology, 2007 (23):147–153.
    72.孙杰,于长隆.口服Ⅱ型胶原诱导免疫耐受对大鼠类风湿性关节炎和创伤性骨性关节炎的影响[J].中国运动医学杂志,2004(01):42-47
    73.唐传核,彭志英.胶原的开发及利用[J].肉类研究, 2000, 3: 41-43
    74. Dorotka R, Windberger U, Macfelda K, et al. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix [J]. Biomate, 2005, 26:3617-29
    75. Hutmacher D W. Scaffolds in tissue engineering bone and cartilage [J]. Biomater, 2000, 21:2529-25
    76. Miller E J. Isolation and characterization of a collagen from chick cartilage containing three identical chains[J]. Biochemistry, 9 (1971) :1652-1658
    77. Breinan H A, Martin S D, Hsu H P, et al. Healing of canine articular cartilage defects treated with microfracture, a type- II collagen matrix, or cultured autologous chondrocytes[J]. J Orthop Res, 2000, 18:781-9
    78. Bubnis W A, Ofner C M. The determination of epsilon-amino groups in soluble and proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid [J]. Anal Biochem, 1992, 207:129-33
    79. Lee C R, Grodzinsky A J, Spector M. The effect of cross-linking of collagen- glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis[J]. Biomater, 2001, 22:3145-54
    80. Pieper J S, Hafmans T, Veerkamp J H, et al. Development of tailor-made collagen - glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects[J]. Biomate, 2000, 21:581-93
    81. Pieper J S, Wachem van P B, Luyn van M J A, et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats[J]. Biomater, 2000, 21:1689-99
    82. Lee C R, Grodzinsky A J, Hsu H P, et al. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model[J]. J Orthop Res, 2003,
    21:272-81
    83. Gelse K, Poschl E, Aigner T. Collagens-structure, function, and biosynthesis[J]. Adv Drug Deliver Rev, 2003, 55:1531-46
    84. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes[J]. Biomater, 2003, 24:759-67
    85. Ohno T, Tanisaka K, Hiraoka Y, et al. Effect of typeⅠand type II collagen spongs as 3D scaffolds for hyaline cartilage-like tissue regeneration on phenotypic control of seeded chondrocytes in vitro[J]. Mat Sci Eng C, 2004, 24: 407-11
    86. Dorotka R, Windberger U, Macfelda K,et al. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix[J]. Biomater, 2005,26:3617-29
    87. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage[J]. Biomater, 2000, 21:2529-35
    88. Angele P, Abke J, Kujat R, et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices[J]. Biomater, 2004, 25: 2381-441
    89. Hobden J A, Reidy J J, O’callaghan R J, et al. Treatment of experimental pseudomonas kerat it is using collagen shields containing tobrmycin[J]. Archophthalmol, 1988, 106:1605-1607
    90.陈悦玲,甄兆忠,何志远.胶原膜在角膜手术忠应用的初步报告[J].中国实用眼科杂志, 1996, 14: 313-314
    91.王越.角膜胶原膜的研究进展[J].眼科, 2004, 13(6):367-371
    92.赵世红,王滨生,候勤英.角膜胶原膜的研制及临床应用[J].中国实用眼科杂志, 1998,16(12):731-732
    93. Bader A, Steinhoff G, Strobl K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix[J]. Transplantation, 2000, 70:7-14
    94. Teebken C E, Bader A, Steinhoff G, et al. Tissue engineering of vascular grafts:human cell seeding of decellularised porcine matrix[J]. Eur.Jvasc Endovasc Surg, 2000, 19:381-386
    95.武继民,叶萍,孙伟健等.胶原海绵及其止血性能的研究[J].生物医学工程学杂志, 1998, 15(1):63-65
    96. Huynh T, Abraham G, Murray J,et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel[J]. Nat Biotechnol, 1999, 17(11):1083-1086
    97.裘炳毅.生物技术制剂及其在化妆品中的应用[J].日用化学工业, 1996, 1: 52-56
    98.王远亮,魏小姬.胶原和明胶在化妆品中的应用[J],明胶科学与技术, 1987, 7(3): 103-112
    99.朱铁成.胶原蛋白在系列化妆品中的应用[J].北京日化, 2000, 4: 18-21
    100.穆畅通,林伟,胶原有关的化学研究进展[J].化学进展, 2000, 12(2):218-227c
    101. Zachariades,P A. Recherches sur la structure du tissue conjonctif, sensibilite du tendon aux acides[J]. C. R .hebd.Soc.Biol.Paris, 2001, 52: 182-184
    102. Tustanovskii, A A. Proteins of skin[J]. Biokhimiya, 1947, 12:285-290
    103. Gross J, Highberger J H, Schmidt F O. Extraction of collagen from connective tissue by neutral salt solutions[J], Proc. Natl. Acad.Sci, 1955,41:1-7
    104. Orekhovich V N, Tustanovskii A A, Orekhovich K D. The procollagen of hide[J]. Biokhimiya, 1948, 13:55-60
    105. Nishihara T. Solubilization of insoluble collagen fibers and reconstitution, patent, 1960:3034852
    106. Highberger J H. Extraction of collagen, U S Patent, 1961: 2979438
    107. Sturrock A G, Devore D P. Method for preparation of type II collagen. U S Patent, 1995:5840848
    108.赵苍碧,黄玉东,李艳辉.从牛腱中提取胶原蛋白的研究[J].哈尔滨工业大学学报,2004, 36(4):515-519
    109.傅燕凤,沈月新,杨承刚等.淡水鱼鱼皮胶原蛋白的提取[J].上海水产大学学报, 2004, 13(2):147-150
    110.李二凤,何小维,罗志刚.胶原蛋白的提取工艺研究[J].食品研究与开发, 2006, 27(3):64-66
    111.叶春婷,邹海燕,彭燕豪等.猪软骨II型胶原的生物相容性研究[J].中国临床康复,2002, 6: 797-800
    112.王彦宏,朱平,冷南等.离子交换色谱一步法纯化Ⅱ型胶原蛋白[J].细胞与分子免疫学杂志, 2000, 16(6):538
    113.张学余.中国养鸡业的生产现状与前景展望[J].中国禽业导刊, 2005, 22(17):14-16
    114.钟昔阳.我国畜产品加工现状及发展趋势[J].中国禽业导刊, 2003, 20((19):14-1
    1.顾其胜.胶原蛋白与临床医学[M].第二军医大学出版社,2003,109-118
    2.冯志民,徐蘅,动物组织钟羟脯氨酸测定方法的建立及初步应用[J].南京铁道医学院学报, 1999, 18(3):168-170
    3.殷明文,南宇梅,王新民.分光光度法测定羟脯氨酸的改进[J].河南医科大学学报, 1994, 29(1):74-77
    4.刘智广,马海燕.胶原特异性氨基酸快速测定方法的研究及应用[J].氨基酸杂志, 1994, 3: 8-12
    5. Lamprecht G. Rapid method for the isolation of hydroxylysylpyridinoline and lysylpyridinoline from concentration bone hydrolysates by liquid chromatographic techniques[J]. Journal of Chromatography B, 1997, 691:297-304
    6. Reddy G K, Enwemeka C S. A simplified method for the analysis of hydroxyproline in biological tissues[J]. Clinical Biochemistry, 29(3):225-229
    7.蒋挺大.胶原与胶原蛋白[M].北京,化学工业出版社,2006,145
    8. Black D. Quantitative analysis of the pyridinium crosslinks of collagen in urine using ionpaired reversed-phase high-performance liquid chromatography[J]. Chemical Abstracts, 108(21):354
    9. Black C, Burrows D J. U S Patent, 1989,186433
    10.邹晓莉,黎源倩,曾红燕.反相高效液相色谱法测定人肌腱中的胶原蛋白[J].色谱,2006,24(3):263-266
    11.刘芳,李德富,穆畅道等.羟脯氨酸含量德测定方法与应用[J].中国皮革, 2007, 36(15):51-54
    12.添静,吕坚.高效液相色谱法测定大鼠纤维化肝组织中羟脯氨酸含量[J].中国药房, 2003, 14(3):29-31
    13. Woessner J F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid[J]. Arch Biochem Biophys, 1961, 93:440-447
    14. Green G D, Reagan K. Determination of hydroxyproline by high pressure liquid chromatography[J]. Anal Biochem, 1992, 201:265-269
    15. Queslb J, Tellec C, Tecl C, et al. Amino acid determination in biological fluids by automated ion- exchange chromatography performance[J].Clinical Chemistry, 1997, 43(3):1421-1428
    16.关静,叶萍,武继民.胶原海绵的羟脯氨酸含量测定[J].氨基酸和生物资源, 2000, 22(1):52-54
    17. Hutson P R, Crawford M E, Sorkness R L. Liquid chromatographic determination of hydroxyproline in tissue samples[J]. Journal of Chromatography B, 2003, 791:427-430
    18.路平,张林生,曹让.动物脂肪组织中羟脯氨酸测定方法研究[J].氨基酸杂志, 1994, 16:45-47
    19.孙玮,潘峰,张正治等.胶原蛋白特异性氨基酸测定方法的改进[J].第三军医大学学报, 2001, 23(12):1485-1486
    20.刘道君,华锦明.骨转移瘤患者尿羟脯氨酸水平检测的临床意义[J].实用癌症杂志, 2003, 18: 611-613
    1. Gelse K, Poschl E, Aigner T. Collagens-structure, function, and biosynthesis[J]. Advanced drug delivery reviews, 2003, 55:1531-1546
    2. David E T, Alexander S T, Andrew H K. Autoimmunity to typeⅡcollagen: an experimental model of arthritis[J].The journal of experimental medicine, 1977, 146: 857-868
    3. David E T, Roselyn A. Effects of oral administration of type II collagen on Rheumatoid Arthritis[J]. Science, 1993,24: 1727-1729
    4. Pieper J S, Kraan Van der P M. Crosslinked typeⅡcollagen atrices: preparation, characterization, and potential for cartilage engineering[J]. Biomaterials, 2002,23: 3183-3192
    5. Bachmann L, Gomes A S L, Zezell D M. Collagen absorption bands in heated and rehydrated dentine[J]. Spectrochimica Acta Part A, 2005, 62: 1045-1049
    6. Baum B, Brodsky B. Folding of peptide models of collagen and misfolding in disease[J]. Current Opinion in Structural Biology, 1990,9: 122-128
    7. Nagai T, Suzuki N. Isolation of collagen from fish waste material–skin, bone and fins[J]. Food Chemistry, 2000,68: 277-281
    8. Miller J M. Isolation and characterization of a collagen from chick cartilage containing three identical chains[J]. Biochemistry, 1971, 9: 1652-1658
    9. Rigo C, Hartmann D J, Bairati A. Electrophoretic and immunochemical study of collagens from Sepia officinalis cartilage[J]. Biochemical et Biophysica Acta, 2002, 1572, 77-84
    10.钟朝辉,李春美,梁晋鄂等.鱼鳞蛋白提取工艺的优化[J].食品科学, 2006, 7: 162-166
    11.傅燕凤,沈月新,杨承刚等.淡水鱼鱼皮胶原蛋白的提取[J].上海水产大学学报, 2004, 2:146-150
    12.彭燕豪,叶春婷,邹海燕等.猪软骨Ⅱ型胶原的制备及理化性能分析[J].生物医学工程与临床, 2001, 3: 125-127
    13.叶春婷,李斯明,邹海燕等.Ⅱ型胶原的研制及其在软骨细胞培养中的应用[J].中国矫形外科杂志, 2001, 1: 50-53
    14. Beck K, Brodsky J. Supercoiled protein motifs: The collagen triple-helix and theα-helical coiled coil[J]. Journal of structural biology, 1998, 122: 17-29
    15. Hsiu O H, Lun H L, Ming T S. Characterization of collagen isolation and application of collagen gel as a drug carrier[J]. Journal of Controlled Release, 1997, 44:103-112
    16. Vasantha R, Sehgal P K, Rao K P. Collagen ophthalmic inserts for pilocarpine drug delivery system[J]. International journal of pharmaceutics, 1988,47: 95-102.
    17. Camilla S V, Karl K, Jiann-Jiu W, et al. Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens[J]. Archives of biochemistry and biophysics, 1996, 328: 135-142
    18. Helen E, Cahir A. Spatial organization of typeⅠandⅡcollagen in the canine meniscus[J]. Journal of Orthopaedic Research, 2005,23: 142-149
    19. Ikoma T, Kobayashi H, Tanaka J, et al. Physical proterties of typeⅠcollagen extracted from fish scales of Pagrus major and Oreochromis niloticas[J]. Internal journal of biological macromolecules, 2003,32: 199-204
    20. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage t4[J]. Nature, 1970, 227: 680-85
    21.刘苏锐,王坤余,琚海燕.猪皮Ⅰ型胶原蛋白的提取及其结构表征[J].中国皮革, 2007, 36(7):43-49
    22.胡胜,李志强,陈敏.猪皮胶原的酶法提取[J].中国皮革, 2003, 32(5):6-10
    23.蒋家新,蒋予箭,林佩剑.鱼皮胶原制备的研究[J].食品科学, 2001, 22(6):41-43
    24. Takaoka K, Koezuka M, Nakahara. Telopeptide-depleted bovine skin collagen as a carrier for bone morphogenetic protein[J]. Journal of orthop research, 1991,9: 902-907
    25. Friess W, Lee G. Basic thermoanalytical studies of insoluble colagen matrices[J]. Biomaterials, 1996, 17, 2289-2294
    26. Muyonga J H, Cole C G, Duodu K G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus)[J]. Food Chemistry, 2004, 86: 325-33
    27. Kelly S M, Price N C. The application of circular dichroism to studies of protein folding and unfolding[J]. Biochimica et Biophysian Acta, 1997, 1338: 161-185
    28. Usha R, Ramasami T. The effects of urea and n-propanol on collagen denaturation: using DSC, circular dicroism and viscosity[J]. Thermochimica Acta, 2004, 409: 201-206
    29. Usha R, Ramasami T. Structure and conformation of intramolecularly cross-linked collagen[J]. Colloids and surfaces B: Biointerfaces, 2005, 41:21-24
    30. Kwak J, Jefferson E A, Bhumralkar M, et al. Triple helical stabilities of guest-host collagen mimetic structure[J]. Bioorganic & Medicinal Chemistry, 1999,7: 153-160
    31. Jordi B, Brodsky B, Helen M B. Hydration structure of a collagen peptide[J]. Current Biology Ltd ISSN, 1995, 3: 893-906
    32. Usha R, Maheshwan R, Ramasami T. Structure influence of mono and polyhydric alcohols on the stabilization of collagen[J]. Colloids and surfaces B: Biointerfaces, 2006, 48: 101-105
    33. Miller E J. Isolation and characterization of the cyanogen bromide peptide from the chain of bovine and human cartilage collagen[J]. Biochemistry, 1973, 17:, 3153-3159
    34. Rossi A, Zanaboni G, Cetta G, et al. Stability of typeⅠcollagen CNBr peptide trimers[J]. Journal of Molecular Biology, 1997, 269: 488-493
    35.蒋挺大.胶原与胶原蛋白[M].北京,化学工业出版社, 2006, 145
    36.顾其胜.胶原蛋白与临床医学[M].第二军医大学出版社, 2003, 109-118
    1. Hsiu O H, Lin L H, Sheu M T. Characterization of collagen isolation and application of collagen gel as a drug carrier[J].Journal of Controlled Release, 1997,44:103-112
    2.王彦红,朱平,冷南等.离子交换色谱一步法纯化Ⅱ型胶原蛋白[J].细胞与分子免疫学杂志, 2000,16(6): 538-539
    3. Gelse K, Poschl E, Aigner T. Collagens-structure, function, and biosynthesis[J]. Advanced drug delivery reviews, 2003, 55:1531-1546
    4. Usha R, Ramasami, T. Structure and conformation of intramolecularly cross-linked collagen[J]. Colloids and surfaces B: Biointerfaces, 2005, 41, 21-24
    5. Brown C T, Lin P, Walsh M T. Extraction and purification of decorin from corneal stroma retain structure and biological activity[J]. Protein expression and purification, 2002, 25:389-399
    6. Wess T J, Orgel J P. Changes in collagen structure: drying, dehydrothermal treatment and relation to long term deterioration[J]. Thermochimica Acta, 2000, 365:119-128
    7. Steplewski A, Majsterek I, Mcadams E. Thermostability gradient in the collagen triple helix reveals its multi-domain structure[J]. J Mol Biol, 2004, 338:989-998
    8. Orgel J P R O, Miller A, Irving T C. The in situ supermolecular structure of type I collagen[J]. Structure, 2001, 9:1061-1069
    9.王小燕,蔡继业,梁志红.应用原子力显微镜对不同来源Ⅰ型胶原蛋白溶液聚集行为的研究[J].山东生物医学工程, 2002, 4: 17-20
    10.钟朝辉,李春美,顾海峰.原子力显微镜研究鱼鳞胶原蛋白的溶液聚集行为[J].精细化工, 2006, 10: 983-987
    11.叶春婷,李斯明,邹海燕等.Ⅱ型胶原的研制及其在软骨细胞培养中的应用[J].中国矫形外科杂志, 2001,8(1):50-52
    12. Kimura S, Omura Y, Ishida M, et al. Molecular characterization of fibrillar collagen from the body wall of starfish asterials amurensis[J]. Comparative Biochemical Physilogy, 1993,104B(4):663-668
    13. Ogawa M, Portier R J, Moody M W. Biochemical properties of bone Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus)[J]. Food Chemistry, 2004,88:495-501
    14.张达江,王亮.Ⅰ型胶原蛋白的结构、功能及其应用研究的现状与前景[J].生物技术通讯, 2006, 2: 265-269
    15.蒋挺大.胶原与胶原蛋白[M].北京,化学工业出版社, 2006, 145
    16. Miller, J. M. (1971). Isolation and characterization of a collagen from chick cartilage containing three identical chains. Biochemistry, 9, 1652-1658
    17.顾其胜.胶原蛋白与临床医学[M].第二军医大学出版社, 2003, 109-118
    18.刘义,钱和. 1,9-二甲基亚甲蓝光度法测定海参糖胺聚糖[J].分析实验室, 2005, 24(6):59-61
    19. Woessner J F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid[J]. Arch Biochem Biophys, 1961, 93:440~447
    20. Rigo C, Hartmann D J, Bairati A. Electrophoretic and immunochemical study of collagens from Sepia officinalis cartilage[J]. Biochemical et Biophysica Acta, 2002,1572, 77-84.
    21.胡胜,李志强,陈敏.猪皮胶原的酶法提取[J].中国皮革, 2003, 32(5):6-10
    22.彭燕豪,叶春婷,邹海燕等.猪软骨Ⅱ型胶原的制备及理化性能分析[J].生物医学工程与临床, 2001, 3: 125-127
    23. Helen E, Cahir A. Spatial organization of typeⅠandⅡcollagen in the canine meniscus[J]. Journal of Orthopaedic Research, 2005,23: 142-149
    24. Brown C T, Lin P, Walsh M T. Extraction and purification of decorin from corneal stroma retain structure and biological activity[J]. protein Expression and purification, 2002, 25:389-399
    25. Muyonga J H, Cole C G, Duodu K G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus)[J]. Food Chemistry, 2004, 86, 325-332
    26. Prystupa D A, Donald A M. Infrared study of gelatin conformations in gel and sol states[J]. Polymer Gels and Networks, 1996, 4, 87-110
    27.肖和兰,孙素芹,周群.温度对胶原蛋白结构影响的二维红外相关光谱的研究[J].原子与分子物理学报, 2003, 20(2):211-218
    28. Muyonga J H, Cole C G B, Duodu K G, Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch[J]. Food chemistry, 2004, 86:325-332
    29. Kelly S M, Price N C. The application of circular dichroism to studies of protein folding and unfolding. Biochimica et Biophysian Acta, 1997, 1338: 161-185
    30. Usha R, Ramasami T, The effect of urea and n-propanol on collagen denaturation: using DSC, ciruar discroism and viscosity, Thermochimica Acta, 2004, 409:201-206
    31. Surewicz W K, Mantsch H H. New insight into protein secondary structure from resolution enhanced infrared spectra. Biochimica er Biophysica Acta, 1988,952: 115-130
    32. Brown C T, Lin P, Walsh M T, et al. Extraction and purification of decorin from corneal stroma retain structure and biological activity[J]. Protein Expression and Purification, 2002, 25:389-399
    33. Warner L R, Blasick C M, Brown R J, et al. Expression, purification, and refolding of recombinant collagenα1(X1) amino terminal domain splice variants[J]. Protein Expression and Purification, 2007,52:403-409
    34. Cameron G J, Alberts I L, Laing J H. Structure of type I and III heterotypic collagen fibrils: an X ray diffraction study[J]. Journal of structural biology, 2002, 137:15-22
    35. Bachmann L, Gomes A S L, Zezell D M. Collagen absorption bands in heated and rehydrated dentine[J]. Spectrochimica Acta Part A, 2005, 62:1045-1049
    36. Miles C A, Bailey A J. Thermally labile domains in the collagen molecule[J]. micron, 2001, 32:325-332
    37. Beck K, Brodsky B, Supercoiled protein motifs: the collagen triple-helix and theα–helical coiled coil[J]. Journal of structural biology, 1998, 122:17-29
    38. Strasser S, Zink A, Janko M. Structural investigations on native collagen type I fibrils using AFM[J]. Biochemical and Biophysical Research Communications, 2007, 354:27-32
    39. Graham J S, Vomund A N, Philips C L. Structural changes in human type I collage fibrils investigated by force spectroscopy[J]. Experimental Cell Research, 2004, 299:335-342
    40. Ge J, Cui F Z, Wang X M. New evidence of surface minerlization of collagen fibrils in wild type zebrafish skeleton by AFM and TEM[J]. Materials Science and Engineering C, 2007, 27:46-50
    41. Bozec L, Groot J, Odlyha M, et al. Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption[J]. Ultramicroscopy, 2005, 105:79-89
    42. Nagai T, Suzuki N. Isolation of collagen from fish waste material-skin, bone and fins[J]. Food Chemistry, 2000,68:277-281
    43. Ignatieva N Y, Lunin V V, Averkiev S V. DSC investigation of connective tissue treated by IR-laser radiation[J]. Thermochimica Acta, 2004, 422:43-48
    44. Steplewski A, Ito H, Rucker E. Position of single amino acid substitutions in the collagen triple helix determines their effect on structure of collagen fibrils[J]. Journal of structural biology, 2004, 148:326-337
    1. Dorotka R, Windberger U, Macfelda K, et al. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix [J]. Biomater, 2005, 26:3617-29
    2. Hutmacher D W. Scaffolds in tissue engineering bone and cartilage [J]. Biomater, 2000, 21:2529-25
    3. Breinan H A, Martin S D, Hsu H P, et al. Healing of canine articular cartilage defects treated with microfracture, a type- II collagen matrix, or cultured autologous chondrocytes[J]. J Orthop Res, 2000, 18:781-9
    4. Dimicco M A, Sah R L. Integrative cartilage repair: adhesive strength is correlated with collagen deposition[J]. J Orthop Res, 2001,19(6): 1105-1112
    5. Wong M, Carter D R. Articular cartilage functional histomorphology and mechanobiology: a researchperspective[J]. Bone, 2003, 33(1): 1-13
    6. Kim Y J, Sah R L, Grodzinsky A J, et al. Mechanical regulationof cartilage biosynthetic behavior : Physical stimuli[J]. Arch Biochem Biophys, 1994, 311: 1-12
    7. Usha R, Ramasami T. Effect of crosslinking agent(basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre[J]. Thermochimica Acta, 2000, 356:59-66
    8. Wissink M J B, Beernink R, Pieper J S, et al. Immobilization of heparin to EDC/NHS -crosslinking collagen: characterization and in vitro evalution[J]. Biomater, 2001, 22:151-63
    9. Lee C R, Grodzinsky A J, Hsu H P, et al. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model[J]. J Orthop Res, 2003, 21:272-81
    10. Gelse K, Poschl E, Aigner T. Collagens-structure, function, and biosynthesis[J]. Adv Drug Deliver Rev, 2003, 55:1531-46
    11.刘白玲.胶原在生物医学领域的应用[J].皮革科学与工程, 1999, 9(3):35-42
    12. Pieper J S, Hafmans T, Veerkamp J H, et al. Development of tailor-made collagen - glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects[J]. Biomate,. 2000, 21:581-93
    13. Mauck R L, Soltz M A, Wang C C, et al. Functiongal tissue engineering of articular cartilage through dynamic loading chondrocyte-seeded ararose gels[J]. J Biochem Eng, 2000, 122(3): 252-260
    14. Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus[J]. Bioelectrochemistry, 2006, 69:133-141
    15. Lee C R, Grodzinsky A J, Spector M. The effect of cross-linking of collagen- glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis[J]. Biomater, 2001, 22:3145-54
    16. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage t4[J]. Nature,1970, 227:680-85
    17. Pieper J S, Kraan van der P M, Hafmans T, et al. Crosslinking type II collagen matrice: preparation, characterization, and potential for cartilage engineering[J]. Biomater, 2002, 23:3183-92
    18. Bubnis W A, Ofner C M. The determination of epsilon-amino groups in soluble and proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid [J]. Anal Biochem, 1992, 207:129-33.
    19.董明,曾正宏,陈桂阳.比色法测定复方硫酸软骨素片中硫酸软骨素含量[J].中国生化药物杂志, 2002, 23(4):191-192
    20. Brodkin K R, Garcia A J, Levenston M E. Chondrocyte phenotypes on differerent extracellular matrix monolayers[J]. Biomaterials, 2004, 25:5929-5938
    21.刘玲蓉,张立海,马瑞东等.碳化二亚胺交联的胶原-硫酸软骨素支架材料构建人工真皮的研究[J].中国修复重建外科杂志, 2003, 17(2):83-88
    22. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes[J]. Biomater, 2003, 24:759-67
    23.刘伟治,刘万顺,孟祥红等.天然可降解生物材料在组织工程中的应用研究进展[J].中国生物工程杂志, 2002, 22(6):54-59
    24.曹正国,李成章.常用蛋白质交联方法及其对胶原的影响[J].国外医学生物医学工程分册, 2001, 24(4):187-191
    25. Hosseinkhani H, Azzam T, Kobayashi H. Combination of 3D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells[J]. Biomaterials,2006,27:4269-4278
    26. Ohno T, Tanisaka K, Hiraoka Y, et al. Effect of typeⅠand type II collagen spongs as 3D scaffolds for hyaline cartilage-like tissue regeneration on phenotypic control of seeded chondrocytes in vitro[J]. Mat Sci Eng C, 2004, 24: 407-11
    27.何薇婧,黄玉东,李艳辉.交联胶原蛋白的降解表征[J].化学与黏合, 2005, 27(3):139-142
    28. pieper J S, Oosterhof A, Dijkstra P J,et al. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulfate[J]. Biomater, 1999, 20:847-58
    29. Miller E J. Isolation and characterization of the cyanogen bromide peptide from the chain of bovine and human cartilage collagen[J]. Biochem, 1973, 17:3153-59
    30. Pieper J S, Wachem van P B, Luyn van M J A,et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats[J]. Biomater, 2000, 21:1689-99
    31. Nehrer S, Breinan H A, Ramappa A. et al. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes[J]. Biomaterials, 1997, 18:769-776
    32. Angele P, Abke J, Kujat R, et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices[J]. Biomater, 2004, 25: 2381-441
    33. Badylak S F. The extracellular matrix as a biologic scaffold material[J]. Biomaterials, 2007, 28:3587-3593
    34. Galois L, Hutasse S, Cortial D. Bovine chondrocyte behaviour in three-dimensional type I collagen gel terms of gel contraction, proliferation and gene expression[J]. Biomaterials, 2006, 27:78-90
    35. Sung L Y, Lo W H, Chiu H Y. Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression[J]. Biomaterials, 2007,28: 3437-3447
    36. Taguchi T, Sawabe Y, Kobayashi H. Preparation and characterization of osteochondral scaffold[J]. Materials Science and Engineering C, 2004,24:881-885
    37.阎继红,刘玲蓉,李学敏等.胶原-透明质酸-硫酸软骨素复合三维支架体外构建组织工程软骨的实验研究[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2006, 20:130-133
    38. Stao T, Chen G, Ushida T, et al. Tissue-engineered cartilage by in vivo culturing of chondrocytes inPLGA-collagen hybrid sponge[J]. Materials Science and Engineering C, 2001,17:83-89.
    39. Susante L C van, Piper J, Buma P, et al., Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro[J], Biomaterials, 2001, 22: 2359-2369
    1. Holm L, Bockermann R, Wellner E, et al. Side-chain and backbone amide bond requirements for glycopeptide stimulation of T-cells obtained in a mouse model for rheumatoid arthritis[J].Bioorganic & Medicinal Chemistry, 2006:5921-5932.
    2. Wang C, Dai Y, Yang J, et al. Treatment with total alkaloids from Radix Linderae reduces inflammation and joint destruction in type II collagen-induced model for rheumatoid arthritis[J]. Journal of Ethnopharmacology,2007:322-328.
    3. Cai X, Zhou H, Wong Y F, et al. Suppression of the onset and progression of collagen - induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula[J].Journal of Ethnopharmacology, 2007:39-48.
    4. Lee Y C, Kimb S H, Rohc S S, et al. Suppressive effects of Chelidonium majus methanol extract in knee joint, regional lymph nodes, and spleen on collagen-induced arthritis in mice[J].Journal of Ethnopharmacology, 2007(12): 2312-2320
    5. Zhu P, Li X Y, Wang H K, et al., Oral administration of type II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis[J]. Clinical Immunology, 2007, 122: 75-84
    6. John S, Davies N, Worthington J. Genes for rheumatoid arthritis offer new insights into disease mechanisms[J]. Drug Discovery Today: Disease Mechanisms, 2005, 2:337-345
    7. Matsumoto T, Ametani A, Hachimura S, et al. Intranasal administration of denatured type II collagen and its fragments can delay the onset of collagen-induced Arthritis[J]. Clinical immunology and immunopathology, 1998,88(1):70-79
    8.张斌,姚浩群,程世高,戴闽.硫酸氨基葡萄糖治疗骨关节炎的应用研究进展[J].江西医学院学报, 2004(04):24-28
    9. Suh S J, Kim K S, Lee A Ret al. Prevention of collagen-induced arthritis in mice by Cervus Korean TEMMINCK var mantchuricus Swinhoe[J]. Environmental Toxicology and Pharmacology,2007(23):147-153.
    10.韩晓枫,马宝骊,张继英等.鸡胶原II型诱导大鼠类风关模型的建立[J].上海免疫学杂志, 2001(06):34-36
    11. Weyand C M, Fulbright J W, Goronzy J J. Immunosenescence, autoimmunity, and rheumatoid arthritis[J]. Experimental Gerontology, 2003,38:833~841
    12.成冰燕,王占.细胞因子与类风湿性关节炎治疗的研究进展[J].药学实践杂志, 2000(03):43-47
    13. Joe B, Wilder R L. Animal models of rheumatoid arthritis[J]. Molecular medicine today, 1999,5:367~369
    14.孙杰,于长隆.口服Ⅱ型胶原诱导免疫耐受对大鼠类风湿性关节炎和创伤性骨性关节炎的影响[J].中国运动医学杂志,2004(01):54-58.
    15.冷南,朱平,王彦红等.口服胶原蛋白诱导免疫耐受对大鼠佐剂性关节炎的治疗作用[J].第四军医大学学报, 2001, 22(8):701-704
    16.王志坚,万军梅,陈敏珠.白芍总苷对正常人与类风湿性关节炎患者单核细胞和淋巴细胞功能的影响[J].中国药理学通报, 1994, 10(3):197~20
    17.胡永秀,赵文明,钱娴娟等.口服CⅡ对类风湿性关节炎局部细胞因子的影响[J].免疫学杂志, 2002, (01): 32-37
    18.赵慧,顾立刚,陈小军等.桂枝芍药知母汤对Ⅱ型胶原诱导性关节炎大鼠血清肿瘤坏死因子、白细胞介素1β活性的影响[J].中国中医药信息杂志, 2005, 12(11)):27-29
    19. Ehab S E, Desoky M D. Pharmacotherapy of Rheumatoid Arthritis: an overview[J]. Current Therapeutic Research, 2001, 62 (2):92-112
    20. Myers L K, Rosloniec E F, Cremer M A. Collagen-induced arthritis, an animal model of autoimmunity[J]. Life Sciences, 61(19):1861-1878
    21. Sweeney S E, Firestein G S. Rheumatoid arthritis: regulation of synovial inflammation[J]. The International Journal of Biochemistry & Cell Biology, 2004(36):372-378
    22. Bourg V, Portales P, Fiorito S. Intracytoplasmic Th1 and Th2 cytokines in Rheumatoid Arthritis blood and synovial tissue[J]. Journal of Autoimmunity,1993(13):415-422
    23. Borysenko C W, Furey W F, Blair H C. Comparative modeling of TNFRSF25(DR3) predicts receptor destabilization by a mutation linked to rheumatoid arthritis[J]. Biochemical and Biophysical Research Communications, 2005(328):794-799
    24. Gray R E, Seng N, Mackay I R. Measurement of zntibodies to collagen II by inhibition of collagen fibril formation in vitro[J]. Journal of Immunological Methods, 2004(285):55-61
    25. Elliott M J, Feldmann M, Maini R N. TNFαblockade in rheumatoid arthritis: rationale, clinical outcomes and mechanisms of action[J]. Int. J. Immunopharmac., 1995, 17 (2):141-145
    26. Strand V. Recent advances in the treatment of Rheumatoid Arthritis[J]. Clinical Cornerstone, 2004(2):38-50
    27.查振刚,姚平,吴昊等.硫酸氨基葡萄糖预防兔骨关节炎的实验研究[J].中国新药杂志, 2004, 13: 793-797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700