用户名: 密码: 验证码:
污水及其碳氢资源回用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统污水的资源化主要是研究水本身的回用,回用水主要用于绿化、洗涤、工业冷却水等。污水回用技术,从一定程度上缓解了水资源的紧张,但是忽略了污水中含有的丰富的碳氢资源,将这些更有用的资源当作“垃圾”处理掉,降低了污水的可利用价值。污水中的COD是一种含能有机碳氢物质,从污染方面来看是污染物,然而从资源方面如果利用得当的话是丰富的有机碳氢资源。如何通过技术本身降低污水处理成本,同时将有机碳氢资源从污水中分离、富集并转化成能源产生利润反馈于污水处理,达到污水处理、水资源回用、碳氢资源回收的多重目的,是污水循环经济研究的重点。污水中资源的价值分两部分,一部分是水资源回用价值;一部分是污水中有机碳氢资源价值。如果能在污水处理的同时获得能源,则可以一举两得,真正实现可持续发展。
     论文针对目前污水处理现状,围绕循环经济主题,提出以回收生活污水中机碳氢资源价值为主要目的的污水循环经济新思路和具体模式。本文重点研究了污水碳氢资源回收和水回用技术,使污水循环经济更具有可行性。通过对生物质锯末物理化学性质及其环境效应的讨论,将生物质锯末这种农林废弃资源作为一种新型环境材料,用于有机废水的处理,并将吸附了有机质的锯末进行碳氢资源循环研究;利用生物质催化气化技术和厌氧发酵技术,实现碳氢资源的循环;结合人工湿地作为后续工艺,使经锯末吸附-人工湿地法处理的生活污水达到国家中水回用水的标准,实现生活污水的资源化。
     通过大量的研究,获得的主要成果如下:
     (1)针对目前水处理现状存在的问题,分析了循环经济和污水处理的关系,提出了污水处理新思路,即污水及其碳氢资源回用技术思想和模式。
     (2)通过锯末对生活污水TOC的静态吸附实验和动态吸附试验研究,对锯末的吸附特性及对生活污水TOC的去除效果和吸附量进行系统的分析,并对其吸附机理进行了分析探讨。试验结果表明锯末对生活污水具有较好的吸附性能,为污水及其碳氢资源回用技术奠定理论基础。
     (3)将生物质吸附塔放大,结合人工湿地等处理单元,形成中水回用和碳氢资源回收系统。研究了系统对对色度,浊度,CODcr、BOD5、NH3-N的处理效果,经系统处理的出水的指标均达到了《生活杂用水水质标准》(CJ/48-1999),实现污水回用和碳氢资源回收双重目标。
     (4)利用生物质裂解气化和催化重整技术,确定工艺条件,将碳氢资源进行能源回收利用。吸附前锯末气体产量为1.19m3/kg,富集有机物的锯末催化气化气体产量1.50m3/kg,比原始锯末气体产量提高26.1%,氢产量也增加38.8%,热值增加1349kJ/Nm3,显然吸附后的锯末其他产量远大于吸附前的锯末;此外,吸附后的锯末的产氢量也高于吸附前锯末。由此可见,在相同试验条件下,富集有机物的锯末产气量和产氢量均高于原始未吸附过的锯末,这部分是由富集和截留的有机物所贡献的。
     (5)采用厌氧发酵系统,利用被吸附的有机物和锯末作为碳、氮源进行了吸附前后锯末的厌氧发酵试验,生产有用的发酵产品。通过三组实验对照,空白样产甲烷量只有0.87L,未吸附锯末产气量是3.94L,吸附后锯末总产气量为18.70L,是未吸附的4倍多,吸附工艺回收的锯末日产气量明显高于原始锯末,产气总量远远大于原始锯末。试验结果证明用低成本的生物质净化处理城市生活污水,浓缩富集污水中的碳氢资源,并用吸附后的生物质作为厌氧发酵原料产生沼气能源,具有理论和实践的价值。通过SEM图片和傅立叶变换红外光谱图分析了碳氢能源循环的机理。
Traditional wastewater utilization is focused on the study of water reuse itself and easing the tension of water resources to a certain extent. However, the abundant hydrocarbon resource in wastewater is overlooked and treated as“rubbish”, which lower the value available in wastewater. Actually, the effluent COD is a kind of energy resource, which is regarded as pollutant commonly from the point of pollution. How to lower treatment costs through technology itself, condense the hydrocarbon resource in wastewater and reuse the resource is the focus of this study, with the purpose of wastewater treatment, water reuse and hydrocarbon resource recycling. Wastewater resource includes two parts, value of water reuse and organic hydrocarbon resource reuse. If the sewage treatment and clean energy can be obtained at the same time, they can kill two birds with one stone and sustainable development would be realized in wastewater treatment.
     In response to the situation of wastewater treatment, the idea and mode of the effluent hydrocarbon energy recycling technology were brought out in this paper, with the main purpose of hydrocarbon recycling. The research was focused on water reuse and hydrocarbon recycling technology, which make wastewater recyling more feasible. The physical and chemical nature and environmental effects of sawdust were discussed and analyzed,and it was studied as a new environmental material for the treatment of organic wastewater. At the same time, the utilization of the adsorbed organic matter and the sawdust itself was researched through steam catalytic gasification of biomass and anaerobic fermentation technology, which made the hydrocarbon energy circular. On the other side, the discharge could reach the state standards for reuse water after the treatment of sawdust adsorption, combined with artificial wetlands as a follow-up process, realizing wastewater reutilization.
     Through a lot of experiments and researches, the main achievements were obtained as follows:
     (1) In view of the current status of wastewater problems, the relationship between circular economy and wastewater treatment was analyzed, and a new wastewater treatment idea was proposed for the first time, namely the idea of sewage hydrocarbon resource recycling technology and its demonstration pattern.
     (2) Static and dynamic adsorption experiments on TOC removal were studied; further adsorption characteristic and mechanism were analyzed, which showed that sawdust had good adsorption properties for municipal wastewater. These established a theoretical basis for the wastewater carbon hydrogen energy recycling technology..
     (3) The effluent water quality of BOD5,chroma and CODCr and ammonia-nitrogen reached or even excelled to the " daily miscellaneous water quality standards" (CJ/48-1999) after the treatment of sawdust adsorption and secondary treatment of constructed wetland, which realize the objects of water reuse and hydrocarbon concentratation.
     (4) Sawdust and organic material adsorbed could be used for energy recovery through steam catalytic gasification technology. Fuel gas yield was 1.5m3/kg with used sawdust rich in organics, which was 26.1% higher than that of original sawdust, 1.19m3/kg. The hydrogen yield of former was also 38.8% higer. In the same way, the lower heat value of fuel gas of used sawdust was 1349 kJ/m3 more than that of original sawdust. Thus, the same experimental conditions, the used sawdust rich in organics had higher gas production rate and hydrogen production rate than that of the original sawdust, which was contributed to the accumulation of organic matter adsorbed.
     (5) The sawdust and adsorbed carbon hydrogen was used to produce methane through anaerobic fermentation system. The original sawdust and used sawdust rich in organics were experimented. The methane production of used sawdust was 18.70L, more than 4 times of original sawdust. Gas production volume of used sawdust was much higher than that of original sawdust. SEM photographs and infrared mapping of different column revealed hydrocarbon energy recycling mechanism.
引文
[1]经世.世界水资源危机[J].城市公用事业, 2004, 18(4):40.
    [2]邓英淘,王鹤鸣.重整山河再造中国[J].国土经济.2000, (1):10-12.
    [3]刘昌明,何希吾.我国21世纪上半叶水资源需求分析[J].中国水利, 2000, (1):19-20.
    [4]石辉,彭可珊.我国的水资源问题与可持续利用[J].中国人口资源与环境, .2002, 12(6):23-25.
    [5]张杰.我国水环境恢复与水环境学科[J].北京工业大学学报, 2002, (6):178.
    [6]陈德敏.资源循环利用论—中国资源循环利用的技术经济分析[D].博士学位论文,重庆:重庆大学, 2004.
    [7]王鹏飞.深圳经济特区城市用水健康循环与污水资源化研究[D].博士学位论文,北京:北京工业大学, 2003.
    [8]丛广治.城市污水再生全流程技术研究与实践[D].博士学位论文,哈尔滨:哈尔滨工业大学, 2003.
    [9]李国欣,李旭东.污水资源化是污水处理的发展方向污水资源化利用技术现状及其应用实例[J].给水排水, 2001, 27(5):15-19.
    [10]彭民建.生态住宅中污水处理回用装置的研究[D].硕士学位论文.上海:东华大学, 2004.
    [11]张自杰.排水工程[M].第四版.北京:中国建筑工业出版社, 1999. 294-295.
    [12]徐平平.新型载体循环生物处理设备处理生活污水的中试研究[D].硕士学位论文.武汉:武汉科技大学, 2005.
    [13]孙德栋.膜法处理回用生活污水及UF膜过滤生活污水膜污染机理的研究[D].博士学位论文.长沙:中南大学, 2003.
    [14]周令剑,王洪昌等.我国絮凝剂的研究现状及前景展望[J].水资源与水工程学报, 2006, 17(2): 39-42.
    [15]杨丽,黄玉洪等.絮凝剂的应用及发展[J].辽宁化工, 2004, 33(10):605-608.
    [16]郑怀礼,刘克万.无机高分子复合絮凝剂的研究进展及发展趋势[J].水处理技术, 2004, 30(6):315-319.
    [17]樊忠昌,马同森.水处理絮凝剂的研究进展[J].南阳师范学院学报, 2006, 5(12):53-57.
    [18]郑毅,丁日堂等.国内外混凝机理研究及混凝剂的开发现状[J].中国给水排水, 2007, 23(10):14-17.
    [19]邱李孟,黄功洛等.新型陶瓷滤料在工业废水处理中的应用[J].武汉理工大学学报2005, 27(7):30-32.
    [20]刘益萱,钟亮洁.颗粒活性炭在饮用水深度处理中的应用[J].给水排水, 2001,27(3):12-15.
    [21]郭晓.污水回用处理技术及应用研究[D].博士学位论文.哈尔滨:哈尔滨工业大学, 2005.
    [22]于洋,周金娣,王显军.污水处理与资源化利用[J].辽宁工程技术大学学报(自然科学版), 2006, 21(3):387-391.
    [23]张坤.循环经济理论与实践[M].北京:中国环境科学出版社, 2003, 4-6.
    [24]季昆森.循环经济原理与应用[M].合肥:安徽科学技术出版社, 2004.
    [25] Joshua Singer. Does the UK Government's target to recycle 25% of household waste by the year 2000 represent an economic approach to recycling? A case study of plastic [J]. Resources, Conservation and Recycling, 1995, 14:133-155.
    [26] Robert U. Ayres. On the life cycle metaphor: where ecology and economics diverge [J]. Ecological Economics, 2004, 48:425-438.
    [27]冯少茹.基于循环经济理论的淮北市采煤塌陷地生态修复模式研究[D].博士学位论文,合肥:合肥工业大学, 2005.
    [28]朱明峰.循环经济与资源型城市发展研究[M].中国大地出版社, 2005, 34-35.
    [29]姜德义,仁海霞.引入循环经济理念,改善城市污水处理现状[J].化工装备技术, 2005, 26(6):64-65.
    [30]尹求生,罗衍.改变单纯的无害化治理加快发展循环经济[J].内蒙古环境保护,2003, 15(3):19-20.
    [31]毛大庆.城市循环经济建设中的污水热能资源开发与水资源再生一体化研究[J].生态环境, 2006, (8):133-137.
    [32]仲海涛,吴启堂.从废水中回收能源—微生物燃料电池和发酵生物制氢技术[J].可再生能源, 2006, 127(3):46-50.
    [33] W.S.Wan Ngah, M.A.K.M. Hanafiah. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review [J]. Bioresource Technology, 2007, doi:10.1016/j.biortech.2007.06.011.
    [34] Hüseyin Pekkuz, ?lhan Uzun, et al. Kinetics and thermodynamics of the adsorption of some dyestuffs from aqueous solution by poplar sawdust [J]. Bioresource Technology, 2007, doi:10.1016/j.biortech.2007.03.014.
    [35]周隽,翟建平等.木屑和花生壳吸附去除水溶液中Cr3+的试验研究[J].环境污染治理技术与设备, 2006, 7(1):122-125.
    [36] Y.S.Ho, G.McKay. A kinetic study of dye sorption by biosorbent waste product pith[J]. Resources, Conservation and Recycling, 1999, 25:171-193.
    [37] Y.S.Ho, G.McKay. Sorption of dye from aqueous solution by peat. Resources [J], Chemical Engineering Journal, 1998, 70:115-124.
    [38] F.A.Batzias, D.K.Sidiras. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems[J]. Journal of Hazardous Materials, 2004, B114:167-174.
    [39] V.K.Garg, Rakesh Kumar, Renuka Gupta. Removal of malachitegreendye from aqueous solution by adsorption using agro-industry waste: a case study of prosopis cineraria [J]. Dyes and Pigments, 2004, 62:1-10.
    [40] Andrew, B., Xiaodong, et al. Removal of coloured organic matter by adsorption onto low cost-waste material [J]. Water Research, 1997, 31 (8):2084-2092.
    [41] Mahmut ?zacar,ì.Ayhan Sengil. Adsorption of metal complex dyes from aqueous solutins by pine sawdust [J]. Bioresource Technology, 2005, 96:791-795.
    [42] S.Rajgopal, T. Karthikeyan, B.G. Prakash Kumar, Lima Rose Miranda. Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green [J]. ChemicalEngineeringJournal, 2006, 116:211-217.
    [43] F.A.Batzias, D.K.Sidiras. Simulation of dye adsorption by beech sawdust as affected by pH [J]. Journal of Hazardous Materials, 2007, 41:668-679.
    [44] F.Ferrero. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust [J]. Journal of Hazardous Materials, 2007, 42:144-152.
    [45] V.K. Garg. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste [J], Dyes and Pigments, 2004, 63:243-250.
    [46] V.K. Garg. Dye removal from aqueous solution by adsorption on treated sawdust [J]. Bioresource Technology, 2003, 89:121-124.
    [47] Ivo Safarik. Ferrofluid-modified plant-based materials as adsorbents for batch separation of selected biologically active compounds and xenobiotics [J]. Journal of Magnetism and Magnetic Materials, 2005, 293:371-376.
    [48] F.A. Batzias. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems [J]. Journal of Hazardous Materials, 2004, B114:167-174.
    [49] N.A.Ibrahim, A. Hashem, M.H.Abou-Shosha. Amination of wood sawdust for removing anionic dyes from aqueous solutions [J]. Polym. Plast. Technol. Eng.,1997, 36 (6):963.
    [50]詹予忠.刚果红和结晶紫在锯末上的吸附性能研究.离子交换与吸附[J], 2006, 22(2):134-139.
    [51]吴泓涛,蒲富永,陈同斌,郑明兰.高浓度有机废水截留处理工艺研究[J].农业环境保护, 2001, 20(6):435-437.
    [52] T. Attanandana. Multi-media-layering system for food service wastewater treatment [J]. Ecological Engineering, 2000, 15:133-138.
    [53]杨佳.木屑与环保[J].绿化与生活, 1997, (2):23.
    [54]ángel Cambiella, Enrique Ortea, et al. Treatment of oil-in-water emulsions: Performance of a sawdust bed filter [J]. Journal of Hazardous Materials, 2006, 131(B131):195-199.
    [55]黄君涛等.吸附法处理重金属废水研究进展[J].水处理技术, 2006, 32(2):9-12.
    [56]刘有才.重金属废水处理技术研究现状与发展趋势[J].广东化工, 2005(4):36-39.
    [57]徐灏龙等.高浓度络合铜废水处理技术简介[J].广州环境科学, 2006,21(3):10-12.
    [58] QinLi, JianpingZhai, WenyiZhang, Mingmei Wang, Jun Zhou. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanuthusk [J]. Journalof Hazardous Materials, 2007, 141:163-167.
    [59] SaimaQ.Memon, Najma Memon, S.W.Shah, et al. Sawdust—A green and economic adsorbent for the removal of cadmium (II) ions [J]. Journal of Hazardous Materials, 2007, B139:116-121.
    [60] Mehmet Emin Argun, Sukru Dursun, Celalettin Ozdemir, Mustafa Karatas. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics [J]. Journal of Hazardous Materials, 2007, 141:77-85.
    [61] Marina ?ciban,Mile Kla?nja,Biljana ?krbic. Modified softwood sawdust as adsorbent of heavy metal ions from water [J]. Journal of Hazardous Material, B136(2006):266-271.
    [62] F.N.Acar, E.Malkoc. The removal of chromium (VI) from aqueous solutions by Fagusorientalis [J]. BioresourceTechnology, 2004, 94:13-15.
    [63] Runping Han, Jinghua Zhang, Weihua Zou, Huijun Xiao, Jie Shi, Hongmin Liu. Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column [J]. Journal of Hazardous Materials, 2006, B133:262-268.
    [64] S. Larous. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust [J]. Desalination, 2005, 185(1-3):483-490.
    [65] Bin Yu. The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper [J]. Journal of Hazardous Materials, 2000, 80 (1-3):33-42.
    [66] Mohammed Ajmal. Role of sawdust in the removal of copper (II) from industrial wastes [J]. Wat. Res., 1998, 32 (10):3085-3091.
    [67] Li Jia Yua,Shyam S.. Adsorption of chromium from aqueous solutions by maple sawdust [J]. Journal of Hazardous Materials, 2003, 100(1):53-63.
    [68]田森林,张启华,管彦伟.锯屑处理含铬废水的实验研究[J].安全与环境学报, 2002, 2(4):11-13.
    [69] Shyam S. Shuklaa. Removal of nickel from aqueous solutions by sawdust [J]. Journalof Hazardous Materials, 2005, 121(3):243-246.
    [70] V. Christian Taty-Costodes, Henri Fauduet,Catherine Porte, Alain Delacroix. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus Sylvestris [J]. Joural of Hazardous Material, 2003, 105(1-2):121-142.
    [71] V. Christian Taty-Costodes, Henri Fauduet, Catherine Porte, Yuh-Shan Ho. Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column [J]. Journal of Hazardous Materials, 2005, 123(1-3):135-144.
    [72] Bin Yu,Y. Zhang. The removal of heavy metals from aqueous solutions by sawdust adsorption—removal of lead and comparison of its adsorption with copper [J]. Journal of Hazardous Materials, 2001, 84(1):83-94.
    [73] Alka Shukla. The role of sawdust in the removal of unwanted materials from water [J].Journal of Hazardous Materials, 2002, 95(1-2):137-152.
    [74]王焰新.去除废水中重金属的低成本吸附剂:生物质和地质材料的环境利用[J].地学前沿, 2001, 8(2):301-307.
    [75] M. Helen Kalavathy. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust [J]. Journal of Colloid and Interface Science, 2005, 292:354-362.
    [76] V.K. Garg. Adsorption of chromium from aqueous solution on treated sawdust [J]. Bioresource Technology, 2004, 92(1):79-81.
    [77] C. Raji and T. S. Anirudhan. Batch Cr (VI) removal by polyacrylamide–grafted sawdust: kinetics and thermodynamics [J]. Wat. Res., 1998, 32(12):3772-3780.
    [78] K. P. Shubha, C. Raji and T. S. Anirudhan. Immobilization of heavy metals from aquesous solutions using polyacrylamide grafted hydrous tin(IV) oxide gel having carboxylate functional groups [J]. Wat. Res., 2001, 35 (1):300-310.
    [79] H. Goen, L. Qiao. Chromium speciation in municipal solid waste: effects of clay amendment and composting [J]. Water Sci. Technol., 1998, 38 (2):17-23.
    [80] S.R. Shukla, Roshan S. Pai. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust [J]. Separation and Purification Technology, 2005,43(1):1-8.
    [81] Natália Chubar, Jorge R. Carvalho, M. Joana Neiva Correia. Heavy metals biosorption on cork biomass: effect of the pre-treatment [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 238(1-3):51-58.
    [82] Natália Chubar, Jorge R. Carvalho, M. Joana Neiva Correia. Cork biomass as biosorbent for Cu (II), Zn (II) and Ni (II) [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 230 (1-3):57-65.
    [83] Louis A.Schipper, MajaVojvodic-Vukovic. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust [J]. Ecological Engineering, 2000, 14:269-278.
    [84]张无敌,董锦艳等.生物质能利用[J].太阳能, 2000, 1: 6-7.
    [85]中国能源战略研究课题组.主编中国能源战略研究(2000-2050年)总报告、分报告[M].北京:中国电力出版社.1997.
    [86]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业, 2002, 22(2) : 75-80.
    [87]袁振宏,吴创之,马隆龙等主编.生物质能利用与技术.北京:化学工业出版社, 2005, 5-200.
    [88]李俊峰,时丽,马玲娟.国内外可再生能源发展综述.节能与环保, 2006, (2):35-37.
    [89] S Rapagna, N Jand. Steam gasification of biomass in a fluidized bed of olivine particles [J]. Biomass and Bioenergy, 2000(19) :187-197.
    [90]孙云娟.生物质催化气化技术及焦油裂解的研究[D].硕士论文.北京:中国林业科学研究院. 2006.
    [91] Shiguang Li, Shaoping Xu, Shuqin Liu, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas [J]. Fuel Processing Technology, 2004, 85:1201-1211.
    [92] Ayhan Demirbas. Biomass resource facilities and biomass conversion processing for fuels and chemicals [J]. Energy Conversion and Management, 2001, 42: 1357-1378.
    [93] A. Ganesh, R. Banerjee. Biomass pyrolysis for power generation-a potential technology. Renewable Energy, 2001, 22:9-14.
    [94] Rapagna S., Jand N. & Foscolo, P.U. Utilisation of suitable catalysts for the gasification of biomasses. Biomass for Energy and Industry [C], 10th European conference and Technology Exihibition, 1998, 1720-1723.
    [95]蒋剑春.生物质热化学转化行为特性和工程化研究[D].博士论文.北京:中国林业科学研究院. 2003.
    [96]魏学锋,刘建平.生物质燃料的利用现状与展望[J].云南环境科学, 2005, 24(2):16-19.
    [97] Jukka A. Rintala, Full-scale mesophilic anaerobic Co-digestion of municipal solid waste and sewage sludge: methane production characteristics [J]. Waste Manage & Research, 1996, 14(2):163-170.
    [98] Palmowski L M, Muller J A. Influence of the size reduction of organic waste on their anaerobic digestion [J]. Water Sci Tech, 2000, 41(3):155-162.
    [99] Nadon U J, Dague R R. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of lower strength waste water [J]. Water Research, 1997, 31 (10):2455 - 2466.
    [100] Dague R R, Bunik G C, Ellis T G.. Anaerobic sequencing batch reactor of dilate waste water at psychrophilie temperatures [J]. Water Research, 1998, 70 (2):155 - 160.
    [101]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺.给水排水, 2002, 28(6):6-11.
    [102]《全国环境统计公报》国家环境保护总局http://www.zhb.gov.cn/.
    [103]中华人民共和国建设部城市统计公报http://www.cin.gov.cn/.
    [104]董良飞.船舶生活污水污染特征及控制对策研究[D].博士学位论文.西安:西安建筑科技大学. 2005.
    [105]李进明. 21世纪新疆发展资源循环社会与产业资源循环经济战略报告书. http://www.xjepb.gov.cn/Article_Print.asp?ArticleID=23527.
    [106]《中国统计年鉴—2005》.中华人民共和国国家统计局http://www.stats.gov.cn/
    [107]张自杰.排水工程下册[M].第四版.北京:中国建筑工业出版社, 2000. 100-101.
    [108] R.E.斯皮思.工业废水的厌氧生物技术[M].李亚新译.北京:中国建筑工业出版社2001. 13.
    [109]美国梅特卡夫和埃迪公司.废水工程:处理及回用[M].第四版.秦裕珩等译.北京:化学工业出版社, 2004.424.
    [110]杨亚娟.开发利用有机废弃物实现农业可持续发展[J].国土与自然资源研究, 2002, (2):32-33.
    [111]周玉申.木粉屑的处理与利用[J].木材加工机械, 2001, (4):17-22.
    [112]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].第1版.北京:化学工业出版社, 2002.13-14.
    [113]汤鸿霄.无机高分子复合絮凝剂的研制趋向[J].中国给水排水, 1999, 15(2):1-4.
    [114] GB212-91煤的工业分析方法, http://xxj.hxu.edu.cn/songhai/klab/up/down/ 20069731180939. doc.
    [115]方文沐,杜惠敏,李天荣.燃料分析技术问答[M].北京:中国电力出版社, 2000.146-257.
    [116] A database containing information on the composition of Biomass and Waste, http://www.ecn.al/Phyllis.
    [117]马承荣.生物质粉体水蒸气催化气化的实验研究[D].硕士学位论文,武汉:华中科技大学, 2006.
    [118]江勇.生物质吸附材料水处理工艺的初探[D].硕士学位论文,武汉:华中科技大学, 2005.
    [119]张巧丽.氧化铁/活性炭复合材料的制备及去除水中有机物和砷的研究[D].博士学位论文,天津:天津大学, 2004.
    [120]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社, 1983:23-105.
    [121] K.Vasanth Kumar, S.Sivanesan. Isotherms for Malachite Green onto rubber wood (Hevea brasiliensis) sawdust: comparison of linear and non-linear methods [J]. Dyes and Pigments, 2007, 72:124-129.
    [122] PushpaKumari, ParulSharma, ShaliniSrivastava, M.M.Srivastava. Biosorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery ofarsenic from aqueous system [J]. Int.J.Miner.Process, 2006, 78:131-139.
    [123] Oualid Hamdaoui. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick [J]. Journal of Hazardous Materials, 2006, B135:264-273.
    [124]高伟.硅藻土和膨润土对铀的吸附研究[D].硕士学位论文.湖南衡阳:南华大学, 2006.
    [125] S.Rajgopal, T.Karthikeyan, B.G.PrakashKumar, LimaRoseMiranda. Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green [J]. Chemical Engineering Journal, 2006, 116:211-217.
    [126] K K Pandeya, A J Pitmanb. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi[J]. International Biodeterioration & Biodegradation, 2003, 52:151-160.
    [127] Gianfranco Gilardi, Luigi Abis, Anthony E G Cass. Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation [J]. Enzyme Microb. Technology, 1995, 17:268-275.
    [128] Maschio G. Pyrolysis, a promising route for biomass utilization [J]. Biomass Technology, 1992, 42:219-231.
    [129] Schmieder H, Abeln J, Boukis N,et al. Hydrothermal gasification of biomass and organic wastes [J]. Journal of Supercritical Fluids, 2000, 17(2):145-153.
    [130] Keiichi Tomishige, Tomohisa Miyazawa, Takeo Kimura, Kimio Kunimori, Naoto Koizumi and Muneyoshi Yamada. Resistance to sulfur poisoning of hot gas cleaning catalysts for the removal of tar from the pyrolysis of cedar wood [J].Applied Catalysis B: Environmental, 2005, 60(3):299-307.
    [131] Goyal H, et al. Bio-fuels from thermochemical conversion of renewable resources: a review [J]. Renewable and Sustainable Energy Reviews. (2006), doi:10.1016/j. rser. 2006.07.014.
    [132] Serdar Yaman. Pyrolysis of biomass to produce fuels and chemical feedstocks [J].Energy Conversion and Management, 2004, 45(5): 651-671.
    [133] Javier Gil, JoséCorella, María P. Aznar and Miguel A. Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on theproduct distribution [J].Biomass and Bioenergy.1999, 17(5):389-403.
    [134] Meng Ni, Dennis Y.C. Leung, Michael K.H. Leung and K. Sumathy. An overview of hydrogen production from biomass [J]. Fuel Processing Technology, 2006, 87(5):461-472.
    [135] Lucía Garcia, Richard French, Stefan Czernik and Esteban Chornet. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition [J]. Applied Catalysis A: General, 2000, 201(2):225-239.
    [136] Tomohisa Miyazawa, Takeo Kimura, Jin Nishikawa, Shigeru Kado, Kimio Kunimori and Keiichi Tomishige. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass [J]. Catalysis Today, 2006, 115(1-4):254-262.
    [137] Delgado J, Aznar M P. Biomass gasification with steam in fluidized bed:effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning [J]. Ind Eng Chem Res, 1997, 36(5):1535-1543.
    [138] L. García, M. L. Salvador, J. Arauzo and R. Bilbao. Catalytic pyrolysis of biomass: influence of the catalyst pretreatment on gas yields [J].Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 491-501.
    [139] Paul T. Williams, Nittaya Nugranad. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks [J]. Energy, 2000, 25(6):493-513.
    [140]苏琼.生物质微米染料催化气化实验研究[D].硕士学位论文,武汉:华中科技大学, 2007.
    [141] A. V. Bridgwater. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass catalysis [J]. Today, 1996, 29, (1-4): 285-295.
    [142] Arauzo J,Radlein D,Piskorz J,et al. Catalytic pyrogasification of biomass,evaluation of nickel catalysts [J]. Ind Eng Chem Res, 1997, 36:67-75.
    [143] Mohammad Asadullah, Tomohisa Miyazawa, Shin-ichi Ito, Kimio Kunimori, Muneyoshi Yamada and Keiichi Tomishige. Catalyst development for the gasification of biomass in the dual-bed gasifier [J]. Applied Catalysis A:General, 2003, 255, (2,8):169-180.
    [144] Funda Ate?, Ay?e E. Pütün and Ersan Pütün. Pyrolysis of two different biomasssamples in a fixed-bed reactor combined with two different catalysts[J]. Fuel, 2006, 85(12-13):1851-1859.
    [145] Di Blasi,C. Kinetic and heat transfer control in the slow and flash pyrolysis of solids [J]. Ind Eng Chem Res, 1996, 35:37-46.
    [146] Capucine Dupont, Guillaume Boissonnet, Jean-Marie Seiler, Paola Gauthier and Daniel Schweich. Study about the kinetic processes of biomass steam gasification [J]. Fuel, 2007, 86, (1-2):32-40.
    [147] David B. Levin, Heguang Zhu, Michel Beland, Nazim Cicek and Bruce E. Holbein. Potential for hydrogen and methane production from biomass residues in Canada [J]. Bioresource Technology, 2007, 98(3):654-660.
    [148] Naomichi Nishio and Yutaka Nakashimada. Recent development of anaerobic digestion processes for energy recovery from wastes [J]. Journal of Bioscience and Bioengineering, 2007, 103(2): 105-112.
    [149] I. I. I. Ghanem, Gu Guowei and Zhu Jinfu. Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation [J]. Renewable Energy, 2001, 23(3-4): 673-684.
    [150]涂卫峰.生物垃圾厌氧发酵的原理研究[D].硕士学位论文,合肥:合肥工业大学, 2006.
    [151] R. Borja, E. Sánchez, B. Rincón, F. Raposo, M. A. Martín and A. Martín. Study and optimisation of the anaerobic acidogenic fermentation of two-phase olive pomace [J]. Process Biochemistry, 2005, 40(1):281-291.
    [152] Ahring B K,Mlandenovska Z, Iranpour R, Westermann P. State of theart and future perspectives of thermophilic anaerobic digestion [J]. Water Science and Technology, 2002, 45(10):293-298.
    [153] B K Ahring, Statuson science and application of thermophilic anaerobic digestion [J]. Wat Sci Tech, 1994, 30(12):241-249.
    [154] I angelidaki, B K Ahring. Anaerobic digestion of manureat different ammoniaload effect of temperture [J]. Wat Res, 1993, 28:727-731.
    [155] Maurice L. Albertson, Amy Pruden, R.T. Oliver enhanced anaerobic digestion of biomass waste for optimized production of renewable energy and solids for compost[J]. International Congress Series, 2006, 1293:221-229.
    [156] Anna Fernández, Antoni Sánchez, Xavier Font. Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin [J]. Biochemical Engineering Journal, 2005, 26:22–28.
    [157] Thomas Amon et al., Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations [J]. Bioresource Technology (2006), doi:10.1016/j.biortech.2006.07.007
    [158] Alvarez R, Lidén G.. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste [J].Renew Energy (2007), doi: 10. 1016/j. renene. 2007. 05. 001.
    [159]杨世关,李继红等.木质纤维素原料厌氧生物降解研究进展[J].农业工程学报, 2006, 22 (Supp1):120-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700