用户名: 密码: 验证码:
钇共掺杂的掺铒氧化铝光致发光增强机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用非水性溶胶-凝胶工艺制备Er~(3+)-Y~(3+)共掺杂Al_2O_3粉末,通过红外光谱(FTIR)、X射线衍射(XRD)、透射电子显微镜(TEM)及能量分散谱(EDS)和荧光光谱等方法,系统地研究了Y~(3+)共掺杂对掺Er~(3+):Al_2O_3粉末颗粒形貌和结构,1400-1700 nm近红外Stokes发光和500-700 nm绿、红色反Stokes(上转换)发光的影响作用规律,揭示了Y~(3+)共掺杂对掺Er~(3+):Al_2O_3光致发光的增强机制。
     以异丙醇铝[Al(OC_3H_7)_3]为前驱体,硝酸铒盐[Er(NO_3)_3·5H_2O]为掺杂介质,在异丙醇[(CH_3)_2CHOH]环境下水解合成Er~(3+)掺杂Al_2O_3溶胶。随H_2O与Al~(3+)摩尔比由0:1增加到5:1,掺1 mol%Er~(3+):Al_2O_3溶胶粘度由4.33 mm~2/s减小到4.16 mm~2/s,胶粒尺度由40nm减小到3 nm。900℃烧结不同H_2O与Al~(3+)摩尔比的掺Er~(3+):Al_2O_3溶胶,所得粉末均为γ-(Al,Er)_2O_3和θ-(Al,Er)_2O_3混合相结构,粉末颗粒尺度均约为10 nm。随H_2O与Al~(3+)摩尔比增大,粉末中羟基(-OH)含量逐渐增加,而掺Er~(3+):Al_2O_3粉末在977.3 nm激光泵浦下获得的对应于Er~(3+4)I_(13/2)→~4I_(15/2)跃迁过程的1530 nm波长Stokes发光强度先增强后减弱,H_2O与Al~(3+)摩尔比为2:1时粉末发光强度最强。
     以硝酸铒盐[Er(NO_3)_3·5H_2O]为掺杂介质,硝酸钇盐[Y(NO_3)_3·5H_2O]为共掺杂介质,制备H_2O与Al~(3+)摩尔比为2:1的0-20 mol%Y~(3+)共掺杂的掺0.001-2 mol%Er~(3+):Al_2O_3溶胶。0-20 mol%Y~(3+)共掺杂的掺1 mol%Er~(3+):Al_2O_3溶胶,粘度均约为4.18 mm~2/s,胶粒尺度因Y~(3+)共掺杂增加,10 mol%Y~(3+)共掺杂时胶粒长大至约10 nm。900℃和1000℃烧结0-20 mol%Y~(3+)共掺杂的掺Er~(3+):Al_2O_3粉末均为γ-(Al,Er,Y)_2O_3和θ-(Al,Er,Y)_2O_3混合相结构,1000℃烧结20 mol%Y~(3+)共掺杂的粉末有(Y,Er)_3Al_2(AlO_4)_3化合物相析出;掺Er~(3+):Al_2O_3粉末γ和θ相非晶化程度随Y~(3+)共掺杂浓度增加而逐渐加剧。Y~(3+)共掺杂对掺Er~(3+):Al_2O_3粉末中-OH含量无影响,粉末颗粒尺度因Y~(3+)共掺杂而逐渐增大,10-20 mol%Y~(3+)共掺杂使得1000℃烧结的掺1 mol%Er~(3+):Al_2O_3粉末颗粒由约10 nm增大至约40nm。
     977.3 nm波长激光泵浦下,γ-和θ-(Al,Er,Y)_2O_3混合相结构的Er~(3+)-Y~(3+)共掺杂Al_2O_3粉末均得到了非均匀宽化的中心波长在1530 nm的Stokes发光谱,(Y,Er)_3Al_2(AlO_4)_3化合物相析出时,光谱发生劈裂。0.001 mol%超低Er~(3+)掺杂浓度时,Y~(3+)共掺杂对掺Er~(3+):Al_2O_3粉末发光强度没有影响;随Er~(3+)浓度增大至0.01-2 mol%,Y~(3+)共掺杂的掺Er~(3+):Al_2O_3粉末1530 nm波长发光强度随Y~(3+)共掺杂浓度增加而增强。20 mol%Y~(3+)共掺杂使得900℃和1000℃烧结的掺1 mol%Er~(3+):Al_2O_3粉末发光强度分别提高了30倍和40倍。Y~(3+)共掺杂抑制了Er~(3+)浓度猝灭效应,20 mol%Y~(3+)共掺杂使掺Er~(3+):Al_2O_3粉末1530nm荧光猝灭浓度由0.1 mol%提高至1 mol%。
     Er~(3+)-Y~(3+)共掺杂Al_2O_3粉末Er~(3+)的1530 nm波长荧光寿命随Y~(3+)共掺杂浓度增加而逐渐增大,20 mol%Y~(3+)共掺杂使900℃烧结的掺0.1 mol%和1 mol%Er~(3+):Al_2O_3荧光寿命分别由3.5 ms和3.3 ms提高至5.8 ms和4.1 ms;Er~(3+)辐射寿命和泵浦吸收截面不因Y~(3+)共掺杂而改变;Er~(3+)光活度系数随Y~(3+)共掺杂浓度增加而增大,900℃烧结的掺0.1 mol%和1 mol%Er~(3+):Al_2O_3粉末的Er~(3+)光活度系数因20 mol%Y~(3+)共掺杂分别提高了10倍和20倍。Y~(3+)共掺杂通过提高Er~(3+)光活度系数和Er~(3+)荧光寿命实现了对掺Er~(3+):Al_2O_3粉末1530 nm波长Stokes发光的增强作用,且Er~(3+)光活度系数的提高具有主要作用。Y~(3+)共掺杂破坏了掺Er~(3+):Al_2O_3粉末中Er~(3+)的微观团簇,激活了处于团簇状态的非光活性Er~(3+),因此提高了掺Er~(3+):Al_2O_3粉末中Er~(3+)的光活度系数;Y~(3+)共掺杂对Er~(3+)荧光寿命的增强作用,归因于抑制Er~(3+)-Er~(3+)能量传递速率和-OH猝灭速率,从而减小了Er~(3+)无辐射跃迁速率。
     Er~(3+)-Y~(3+)共掺杂Al_2O_3粉末在977.3 nm激光泵浦下发生535、553 nm绿色和670 nm红色上转换发光。(Y,Er)_3Al_2(AlO_4)_3化合物相析出时,绿、红色上转换发光谱产生劈裂。Er~(3+)-Y~(3+)共掺杂和Er~(3+)掺杂Al_2O_3上转换发光均为双光子上转换吸收过程,绿色上转换主要为激发态吸收~4I_(11/2)+a photon→~4F_(7/2)和交叉弛豫~4I_(11/2)+~4I_(11/2)→~4I_(15/2)+~4F_(7/2)过程,红色上转换主要为~4I_(13/2)+a photon→~4F_(9/2)和~4I_(11/2)+~4I_(13/2)→~4F_(9/2)+~4I_(15/2)过程。Y~(3+)共掺杂使得光活性Er~(3+)数量增加的同时又抑制了Er~(3+)交叉弛豫过程,因此随Y~(3+)共掺杂浓度增加Er~(3+)上转换发光强度呈现先增加后降低的变化趋势,10 mol%Y~(3+)共掺杂时粉末发光强度最强。10mol%Y~(3+)共掺杂使900℃和1000℃烧结的掺1 mol%Er~(3+):Al_2O_3绿色上转换发光强度分别增强了约30倍和100倍,使红色上转换发光强度分别增强了约2倍和10倍。Y~(3+)共掺杂对Er~(3+)上转换发光具有颜色调制作用。绿色和红色上转换发光强度比(I_(green)/I_(red))随Y~(3+)共掺杂浓度增加而增大,上转换发光由红色逐渐变为绿色。结合速率方程分析了I_(green)/I_(red)的变化规律,表明I_(green)/I_(red)正比于~4I_(11/2)和~4I_(13/2)能级上的Er~(3+)密度比N_3/N_2。Y~(3+)共掺杂抑制了Er~(3+):~4I_(11/2)→~4I_(13/2)无辐射跃迁过程,导致N_3/N_2增大。
The Er~(3+)-Y~(3+) codoped Al_2O_3 powders have been prepared by a non-aqueous sol-gel method.The effects of Y~(3+) codoping on the phase structure and the photoluminescence(PL) emission properties of the Er~(3+)-doped Al_2O_3 powders are systematically investigated by using fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),transmission electron microscope(TEM),energy distribution spectrum(EDS) and PL measurement,to explore the enhancement mechanism of the stokes and the anti-stokes(up-conversion) emissions of the Er~(3+)-doped Al_2O_3 powders due to Y~(3+) codoping.
     The Er~(3+)-doped Al_2O_3 sols are prepared by using the aluminum isopropoxide [Al(OC_3H_7)_3]as precursor,and hydrated nitrate of Er(NO_3)_3·5H_2O as dopant in the isopropanol environment.Increasing the molar ratio of H_2O and Al~(3+)(M_(H2O)/M_(Al)) from 0:1 to 5:1,the viscosity of the 1 mol%Er~(3+)-doped Al_2O_3 sols recedes from 4.33 to 4.16 mm~2/s and the size of the colloidal particles decreases from 40 to 3 nm.The Er~(3+)-doped Al_2O_3 powders sintered at 900℃,derived from the sols with various M_(H2O)/M_(Al),are all characteristic of the mixture ofγ-(Al,Er)_2O_3 andθ-(Al,Er)_2O_3 phases.With increasing the M_(H2O)/M_(Al),the concentration of -OH in the powders increases,while the stokes emission intensity at the wavelength of 1530 nm,corresponding to the transition of ~4I_(1 3/2)→~4I_(1 5/2) of Er~(3+),first increases and then gradually decreases,and the maximum PL intensity of the Er~(3+)-doped Al_2O_3 powders is achieved for the powders with the M_(H2O)/M_(Al) of 2:1.
     The 0.001-2 mol%Er~(3+)- and 0-20 mol%Y~(3+) -codoped Al_2O_3 sols with the M_(H2O)/M_(Al) of 2:1 are prepared by using hydrated nitrate of Y(NO_3)_3·5H_2O as codopant.The viscosity of the 1 mol%Er~(3+)- and 0-20 mol%Y~(3+) -codoped Al_2O_3 are all about 4.18 mm~2/s.10 mol%Y~(3+) codoping increases the size of the sol particles from 3 nm to 10 nm.The Er~(3+)-doped Al_2O_3 powders by 0-20 mol%Y~(3+) codoping at the sintering temperature of 900 and 1000℃are characteristic ofγ-(Al,Y,Er)_2O_3 andθ-(Al,Y,Er)_2O_3 phases,and the(Y,Er)_3Al_2(AlO_4)_3 phase precipitates for the 20 mol%Y~(3+) codoped powders sintered at 1000℃.Y~(3+) codoping suppresses the crystallization ofγ,andθphases.The content and the vibration frequency of -OH are not changed due to Y~(3+) codoping,however,the particles size increases to 40 nm due to 10-20 mol%Y~(3+) codoping.
     The inharmoniously-broadening stokes emission spectra centered at 1530 nm are observed for all the Er~(3+)-Y~(3+) codoped Al_2O_3 powders composed ofγandθphases,and it is splitted for the(Y,Er)_3Al_2(AlO_4)_3 phase.The effect of Y~(3+) codoping on the PL intensity is related to the Er~(3+) concentration.For the super low Er~(3+) concentration of 0.001 mol%,Y~(3+) codoping has no affect on the PL intensity,while the PL intensities of the 0.01-2 mol% Er~(3+)-doped Al_2O_3 powders increase with increasing the Y~(3+) codoping concentration.20 mol% Y~(3+) codoping intensifies the PL intensity by about 30 and 40 times for the 1 mol%Er~(3+) doped Al_2O_3 powders at the sintering temperature of 900℃and 1000℃,respectively.The emission-quenching concentration of the Er~(3+)-doped Al_2O_3 powders is increased from 0.1 mol%to 1 mol%due to 20 mol%Y~(3+) codoping.
     Y~(3+) codoping increases the lifetimes of the ~4I_(13/2) level of Er~(3+) in Er~(3+)-Y~(3+) codped Al_2O_3 powders,and the lifetimes increase with increasing the Y~(3+) codoping concentration.20 mol% Y~(3+) codoping increases the lifetime from 3.5 and 3.3 ms to 5.8 and 4.1 ms,for the 0.1 and 1 mol%Er~(3+)-doped Al_2O_3 powders,respectively.The radiative lifetime and pump absorption cross section of Er~(3+) in Al_2O_3 powders is not changed due to Y~(3+) codoping.The optical activity of Er~(3+) in Al_2O_3 powders increases with increasing the Y~(3+) codoping codping conventration,and 20 mol%Y~(3+) codoping increases it by a factor of 10 and 20 times,for the 0.1 and 1 mol%Er~(3+)-doped Al_2O_3 powders at the sintering temperature of 900℃, respectively.It is confirmed that the enhanced emission intensity at 1530 nm is mainly attributed to the improved optical activity of Er~(3+),whereas slightly to the increased litetime of Er~(3+) in Al_2O_3.The improved optical activity of Er~(3+) is attributed to the destroying of Er~(3+) cluster due to Y~(3+) codoping,which activates the inactive Er~(3+) in clustering state.The increase in the lifetimes is ascribed to the decrease in the Er~(3+)-Er~(3+) energy transfer probability and that in the -OH quenching rate.
     The green and red up-conversion emissions centered at about 535,553 and 670 nm, corresponding to the ~2H_(1 1/2),~4S_(3/2)→~4I_(1 5/2) and ~4F_(9/2)→~4I_(1 5/2) transitions of Er~(3+),ae detected for the Er~(3+)-Y~(3+) codoped Al_2O_3 powders.The two-photon absorption up-conversion process is involved for the green and red up-conversion emissions of both the Er~(3+)-doped and the Er~(3+)-Y~(3+) codoped Al_2O_3 powders.Y~(3+) codoping greatly increases the up-conversion emission intensities of the Er~(3+) doped Al_2O_3 powders.The up-conversion emission intensities of the Er~(3+)-Y~(3+) codoped Al_2O_3 first increase and then gradually decrease with increasing the Y~(3+) codoping concentration up to 20 mol%,because Y~(3+) codoping increases the optical activity of Er~(3+) and simultaneously limits the probability of cross relaxation between Er~(3+) ions.Y~(3+) codoping also tunes the color of the up-conversion emissions from red to green,and 20 mol% Y~(3+) codoping increases the intensity ratio of the green to red up-conversion emission(I_(green)/I_(red)) from 0.2 to 3 for the 1 mol%Er~(3+)-doped Al_2O_3 powders sintered at 1000℃.The evolution of I_(green)/I_(red) has been analyzed with rate equations of Er~(3+)-Y~(3+) codoped Al_2O_3 system.The limited ~4I_(1 1/2)→~4I_(1 3/2) nonradiative transition of Er~(3+) increases the concentration ratio of Er~(3+) in ~4I_(1 1/2) and ~4I_(1 3/2) level(N_3/N_2),leading to an increase in I_(green)/I_(red).
引文
[1]方容川.固体光谱学.合肥:中国科学技术大学出版社,2003
    [2]R.J.Mears,L.Reekie.Low noise erbium-doped fiber amplifier operating at 1.54μm.Electronics Letters,1987,23:1026-1028
    [3]T.Ishizaka,Y.Kurokawa,T.Makino,Y.Segawa.Optical properties of rare earth ion(Nd3~(3+),Er~(3+)and Tb~(3+))-doped alumina films prepared by the sol-gel method.Optical Materials,2001,15:293-299
    [4]R.M.Almeida,X.M.Du,D.Barbier,X.Orignac.Er~(3+)-doped multicomponent silicate glass planar waveguides prepared by sol-gel processing.Journal of Sol-Gel Science and Technology,1999,14:209-216
    [5]R.M.Almeida.Sol-gel planar waveguides for integrated optics.Journal of Non-Crystalline Solids,1999,259:176-181
    [6]Q.Xiang,Y.Zhou,B.S.Ooi,Y.L.Lam,Y.C.Chan,C.H.Kam.Optical properties of Er~(3+)-doped SiO_2-GeO_2-Al_2O_3 planar waveguide fabricated by sol-gel processes.Thin Solid Films,2000,370:243-247
    [7]Y.Kurokawa,T.ishizaka,T.Ikoma,T.K.Shozo.Photo-properties of rare earth ion(Er~(3+),Eu~(3+)and Sm~(3+))-doped alumina films prepared by the sol-gel method.Chemical Physics Letters,1998,257:737-741
    [8]A.Pillonnet,C.Garapon,C.Champeaux,C.Bovier,H.Jaffrezic,J.Mugnier.Fluorescence of Cr~(3+)doped alumina optical waveguides prepared by pulsed laser deposition and sol-gel method.Journal of Luminescence,2000,87-89:1087-1089
    [9]A.Polman.Erbium implanted thin film photonic materials.Journal of Applied Physics,1997,82:1-38
    [10]A.Polman,D.C.Jacobson,D.J.Eaglesham,R.C.Kistler,J.M.Poate.Optical doping of waveguide materials by MeV Er implantation.Journal of Applied Physics,1991,70:3778-3784
    [11]王迅,盛篪.硅中掺铒发光的研究现状和前景.物理,1995,4(7):402-408
    [12]E.M.Yeatman,M.M.Ahmad,O.Mccarthy.Sol-gel fabrication of rare-earth doped photonic components.Journal of Sol-Gel Science and Technology,2000,19:231-236
    [13]T.Ishizaka,Y.Kurokawa.Optical properties of rare-earth ion(Gd~(3+),Ho~(3+),Pr~(3+),Sm~(3+),Dy~(3+),and Tm~(3+))-doped alumina films prepared by the sol-gel method.Journal of Luminescence,2001,92:57-63
    [14]H.Ennen,J.Schneider,G.Pomrenke,A.Axmann.1.54μm luminescence of erbium-implanted Ⅲ-Ⅴ semiconductors and silicon.Applied Physics Letters,1983,43:943-945
    [15]T.Kimura,A.Yokoi,H.Horiguchi,R.Saito.Electrochemical Er doping of porous silicon and its room-temperature luminescence at 1.54μm.Applied Physics Letters,1994,65:983-985
    [16]G.Gu,Y.Du,T.Yu.Room temperature photoluminescence from erbium-doped silica thin films prepared by cosputtering.Thin Solid Films,1998,315:263-265
    [17]A.M.Martucci,A.Chiasera,M.Montagna,M.Ferrari.Erbium-doped GeO_2-TiO_2 sol-gel waveguides.Journal of Non-Crystalline Solids,2003,322:295-299
    [18]M.V.Ibanez,C.L.Luyer,O.Marry,J.Mugnier.Annealing and doping effects on the structure of europium-doped HfO_2 sol-gel material.Optical Materials,2003,24:51-57
    [19]J.H.Yang,S.X.Dai,N.L.Dai,L.Wen,L.L.Hu,Z.H.Jiang.Investigation on nonradiative decay of transition of Er~(3+)-doped oxide glasses.Journal of Luminescence,2004,106:9-14
    [20]C.Strohhofer,S.Capecchi,J.Fick,A.Martucci,G.Brusatin,M.Guglielmi.Active optical properties of erbium-doped GeO_2-based sol-gel planar waveguides.Thin Solid Films,1998,326:99-105.
    [21]A.Bahtat,M.Bouazaoui,M.Bahtat,J.Mugnier.Fluorescence of Er~(3+) ions in TiO_2 planar waveguides prepared by a sol-gel process.Optics Communications,1994,111:5-60
    [22]H.Suzuki,Y.Hattori,T.Iizuka,K.Yuzawa,N.Matsumoto.Organic infrared optical materials and derives based on an organic rare earth complex.Thin Solid Films,2003,438-439:288-293
    [23]W.H.Wong,E.Y.B.Pun,K.S.Chan.Er~(3+)-Yb~(3+) codoped polymeric optical waveguide amplifiers.Applied Physics Letters,2004,84:176-178
    [24]L.H.Sloof,A.van Blaaderen,A.Polman,G.A.Hebbink,S.I.Klink,F.C.J.M.van Veggel,D.N.Reinhoudt,J.W.Hofstraat.Rare-earth doped polymers for planar optical amplifiers.Joumal of Applied Physics,2002,91:3955-3980
    [25]W.H.Wong,J.Zhou,E.Y.B.Pun.Low-loss polymeric optical waveguides using electron-beam direct writing.Applied Physics Letters,2001,75:2110-2112
    [26]R.Serna,M.Jimenez de Castro,J.A.Chaos,A.Sua'rez-Garcia,C.N.Afonso,M.Ferna'ndez,I.Vickridge.Photoluminescence performance of pulsed-laser deposited Al_2O_3 thin films with large erbium concentrations.Journal of Applied Physics,2001,90:5120-5125
    [27]R.Serna,M.Jimenez de Castro,J.A.Chaos,C.N.Afonso,I.Vickridge.The role of Er~(3+)-Er~(3+)separation on the luminescence of Er-doped Al_2O_3 films prepared by pulsed laser deposition.Applied Physics Letters,1999,75(26):4073-4075
    [28]肖海波,张峰,张昌盛,程新利,王永进,陈志君,林志浪,张福民,邹世昌.掺Er-Al_2O_3薄膜发光特性的研究.功能材料与器件学报,2004,10(1):29-32
    [29]H.B.Xiao,C.S.Zhang,X.L.Jia,Y.J.Wang,X.L.Cheng,G.B.Cao,F.Zhang,S.C.Zou.Photoluminescence and transmission spectrum characterization of Er-implanted Al_2O_3 films.Applied Surface Science,2004,222:180-185
    [30]N.V.Gaponenko,A.V.Mudryi,O.V.Sergeev,V.E.Borisenko,E.A.Stepanova,A.S.Baran,A.I.Tatko,J.C.Pivin,J.F.McGilp.Erbium luminescence in sol-gel derived oxide glass films.Spectrochimica Acta A,1998,54:2177-2182
    [31]N.V.Gaponenko,I.S.Molchan,D.A.Tsyrkunov,G.K.Maliarevich,M.Aegerter,J.Puetz,N.A.Dahoudi,J.Misiewicz,R.Kudrawiec,V.Lambertini,N.L.Pira,P.Repetto.Optical and structural properties of sol-gel derived materials embedded in porous anodic alumina.Microelectronic Engineering,2005,81:255-261
    [32]C.E.Chryssou,C.W.Pitt.Er~(3+)-doped Al_2O_3 thin films by plasma-enhanced chemical vapor deposition(PECVD) exhibiting a 55-nm optical bandwidth.IEEE Journal of Quantum Electronics,1998,34:282-285
    [33]X.J.Wang,M.K.Lei,T.Yang,L.J.Yuan.Phase transformation of Er~(3+)-doped Al_2O_3 powders prepared by the sol-gel method.Journal of Material Research,2003,15:2401-2405
    [34]X.J.Wang,M.K.Lei,T.Yang,H.Wang.Phase structure and photoluminescence properties of Er~(3+)-doped Al_2O_3 powders prepared by the sol-gel method.Optical Materials,2004,26:247-252
    [35]X.J.Wang,M.K.Lei,T.Yang,B.S.Cao.Coherent effect of Er~(3+)-Yb~(3+) co-doping on enhanced photoluminescence properties of Al_2O_3 powders by the sol-gel method.Optical Materials,2004,26:253-259
    [36]X.J.Wang,M.K.Lei.Preparation and photoluminescence of Er~(3+)-doped Al_2O_3 films by the sol-gel method.Thin Solid Films,2005,476:41-45
    [37]X.J.Wang,M.K.Lei.Photoluminescence properties of Er~(3+)-doped Al_2O_3 film synthesized from Er-ion-implanted γ-AlOOH xerogel.Thin Solid Films,2006,497:254-258
    [38]王兴军,杨涛,王晶,雷明凯.溶胶-凝胶法制备SiO_2基片Er~(3+):Al_2O_3光学薄膜.光学学报,2004,24(3):397-400
    [39]王兴军,王辉,陈涛,雷明凯.Er离子注入Al_2O_3光波导薄膜发光特性研究.中国激光,2004.31:suppl.323-325
    [40]王兴军,杨涛,雷明凯.溶胶.凝胶法制备掺Er~(3+):Al_2O_3/SiO_2光波导薄膜.中国激光,2004,31:suppl.465-467
    [41]王兴军,曹保胜,雷明凯.Sol-gel法制备Er~(3+)-Yb~(3+)共掺杂Al_2O_3粉末光致发光特性.光子学报,2004,33(8):935-938
    [42]杨涛,王兴军,王辉,雷明凯.掺Er~(3+)勃姆石凝胶高温烧结相变.无机材料学报,2004,19(3):671-675
    [43]X.Feng,S.Tanabe,T.Hanada.Hydroxyl grups in erbium-doped germanotellurite glasses.Journal of Non-Crystalline Solids,2001,281:48-54
    [44]杨涛.非水性sol-gel法合成稀土掺杂氧化铝的光致发光增强机制研究:(博士学位论文).大连,大连理工大学,2006
    [45]P.G.Kik,A.Polman.Cooperative upconversion as the gain-limiting factor in Er doped miniature Al_2O_3 optical waveguide amplifiers.Journal of Applied Physics,2003,93(9):5008-5012
    [46]赵永凯,周蕾,黄惠杰,杨瑞馥,黄立华,任冰强,卢健,王向朝.基于上转换发光技术的生物传感器及其应用.光学学报,2005,25(6):841-847
    [47]E.Dowing,L.Hesselink,J.Ralston,R.Macfarlane.A three-Color solid-state three-dimensional display.Science,1996,273(5279):1185-1189
    [48]G.S.Maciel,A.Biswas,R.Kapoor,P.N.Prasad.Blue cooperative up-conversion in Yb~(3+)-doped multi-component sol-gel-processed silica glass for three-dimensional display.Applied Physics Letters,2000,76(15):1978-1980
    [49]T.Honda,T.Doumuki,A.Akella,L.Galambos,L.Hesselink.One-color one-beam Pumping of Er~(3+) doped ZBLAN glasses for a three-dimensional two-step excitation display.Optics Letters,1998,23(14):1108-1110
    [50]F.E.Auzel.Materials and devices using doubl-pumped phosphors with energy transfer.Process IEEE,1973,61(10):758-786
    [51]D.M.Baney,G.Rankin,Kok wai chang.Simultaneous blue and green upconversion in a laser-diode-pumped pr~(3~+)/Yb~(3+) doped fluoride fiber laser.Applied Physics Letters,1996,69(23):1662-1664
    [52]P.E.A.Mobert,E.Heumann,G.Huber et al.Green Er~(3+):YIiF_4 upconversion laser at 551 nm with Yb~(3+) codoping:a novel pumping scheme.Optics Letters,1997,22(16):1412-1414
    [53]R.Pasckotta,N.Moore.230 mW of blue light from a thulium-doped upconversion fiber laser.IEEE Journal of selected topics in Quantum Electronics,1997,3(13):1100-1102
    [54]Ping Xie,T.R.Gosnell.Room temperature upconversion fiber laser tunable in the red orange green and blue spectral regions.Optics Letters,1995,20(10):1014-1016
    [55]T.Sandrock,H.Scheife.High-power continuous wave upconversion fiber laser at room temperature.Optics Letters,1997,22(8):808-810
    [56]H.Zellmer,K.Plamann,G.Huber.Visble double-clad upconversion fiber laser.Elevtronics Letters,1998,34(5):565-567
    [57]陈晓波,张光寅,李美仙.稀土化合物材料上转换发光与激光的研究与进展.光谱学与光谱分析,1995,15(1):1-6
    [58]A.N.Kuzmin,G.I.Ryabtsev,G.A.Ketko.Utilization of IR laser pumped anti-stokes emission of Er-Yb doped systems for identification of securities.Acta Physica Polonica A,1996,90:423
    [59]曹玉琳.红外上转换材料在防伪技术中的应用.激光与红外,2001,31:190-191
    [60]B.Dong,C.R.Li,M.K.Lei.Green and red up-conversion emissions of Er~(3+)—Yb~(3+)-codoped Al_2O_3 powders prepared by the nonaqueous sol-gel method.Journal of Luminescence,2007,126:441-446
    [61]B.Dong,T.Yang,M.K.Lei.Optical high temperature sensors based on green up-conversion emissions in Er~(3+) doped Al_2O_3.Sensors and Actuators B,2007,123:667-670
    [62]S.Minissale,T.Gregorkiewicz,M.Forcales,R.G.Elliman.On optical activity of Er~(3+) ions in Si-rieh SiO_2 waveguides.Applied Physics Letters,2006,89:171908
    [63]M.Ishii,S.Komuro,T.Morikawa,Y.Aoyagi.Local structure analysis of an optically active center in Er-doped ZnO thin film.Journal of Applied Physics,2001,89(7):3679-3684
    [64]G.N.van den Hoven,E.Shocks,A.Poiman,J.W.M.van Uffelen,Y.S.Oei,M.K.Smit.Photoluminescence characterization of Er-implanted Al_2O_3 films.Applied Physics Letters,1993,112(24):3065-3067
    [65]M.Wojdak,M.Klik,M.Forcales,O.B.Gusev,T.Gregorkiewicz,D.Pacifici,G.Franzo,F.Priolo.Sensitization of Er luminescence by Si nanoclusters.Physical Review B,2004,69:233315
    [66]A.Suarez-Garcia,R.Serna,M.Jimenez de Castro,C.N.Afonso,I.Viekridge.Nanostructuring the Er-Yb distribution to improve the photoluminescence response of thin films.Applied Physics Letters,2004,84(12):2151-2153
    [67]F.Vetrone,J.C.Boyer,J.A.Capobianco,A.Speghini,M.Bettinelli.Significance of Yb~(3+)concentration on the upconversion mechanisms in codoped Y_2O_3:Er~(3+),Yb~(3+) nanocrystals,Journal of Applied Physics,2004,96(1):661-667
    [68]H.T.Sun,L.Y.Zhang,S.L.Zhang,S.L.Zhao,J.J.Zhang,C.L.Yu,D.B.He,Z.C.Duan,L.L.Hu,Z.H.Jiang.Structural and upconversion fluorescence properties of Er~(3+)/Yb~(3+)-codoped oxyehloride lead-germanium-bismuth glass.Solid State Communications,2005,133:357-361
    [69]G.J.H.De,W.P.Qin,J.S.Zhang,J.H.Zhang,Y.Wang,C.Y.Cao,Y.Cui.Upconversion luminescence properties of Y_2O_3:Yb~(3+),Er~(3+) nanostructures.Journal of Luminescence,2006,119-120:258-263
    [70]C.E.Chryssou,F.D.Pasquale,C.W.Pitt.Improved gain performance in Yb~(3+)-sensitized Er~(3+)-doped alumina(Al_2O_3) channel optical waveguide amplifiers.Journal of Lightwave Technology,2001,19(3):345-349
    [71]R.Sema,C.N.Afonso.In situ growth of optically active erbium doped Al_2O_3 thin films by pulsed laser deposition,Applied Physics Letter,1996,69(11):1541-1543
    [72]F.Auzel,F.Pelle.Bottleneck in multiphonon nonradiative transitions.Physical Review B,1997,55(17):11006-11009
    [73]Z.Zhou,T.Komori,M.Yoshino,M.Morinaga,N.Matsunami,A.Koizumi,Y.Takeda.Enhanced 1.54 μm photoluminescence from Er-containing ZnO through nitrogen doping.Applied Physics Letters,2005,86:041107
    [74]Z.Zhou,T.Komori,T.Ayukawa,A.Koizumi,Y.Takeda.Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission.Applied Physics Letters,2005,87:091109
    [75]E.Snoeks,P.G.Kik,A.Polman.Concentration quenching in erbium implanted alkali silicate glasses.Optical Materials,1996,5:159-167
    [76]X.B.Chen,C.J.He,W.M.Du,Z.F.Song,M.X.Li.Dynamic up-conversion population processes of erbium-doped pentaphosphate crystal.Journal of Applied Physics,2002,92(7):3425-3435
    [77]M.Tsuda,K.Soga,H.Inoue,S.Inoue,A.Makishima.Upconversion mechanism in Er~(3+)-doped fluorozirconate glasses under 800 nm excitation.Journal of Applied Physics,1999,85(1):29-37
    [78]M.Tsuda,K.Soga,H.Inoue,A.Makishima.Comparison between the calculated and measure energy transfer rates of the ~4S_(3/2) state in Er~(3+)-doped fluorozirconate glasses.Journal of Applied Physics,2000,88(4):1900-1906
    [79]V.C.Costa,M.J.Lochhead,K.L.Bray.Fluorescence line-narrowing study of Eu~(3+)-doped sol-gel silica:Effect of modifying cations on the clustering of Eu~(3+).Chemical Materials,1996,8:783-790
    [80]G.N.van den Hoven,E.Snoeks,A.Polman,C.Van Dam,J.W.M van Uffelen,M.K.Smit.Upconversion in Er-implanted Al_2O_3 waveguides.Journal of Applied Physics,1996,79(3):1258-1266
    [81]董斌.稀土掺杂氧化铝粉末的上转换发光特性研究:(博士学位论文).大连,大连理工大学,2006
    [82]A.Monteil,S.Chaussedent,G.Alombert-Goget,N.Gaumer,J.Obriot,S.J.L.Ribeiro,Y.Messaddeq,A.Chiasera,M.Ferrari.Clustering of rare earth in glasses,aluminium effect:experiments and modelling.Journal of Non-Crystalline Solids,2004,348:44-50
    [83]M.J.Lochhead,K.L.Bray.Rare-Earth clustering and aluminum codoping in sol-gel silica:investigation using europium fluorescence spectroscopy.Chemical Materials,1995,7:572-577
    [84]F.Priolo,G.Franzo,S.Coffa,A.Polman,E.Snoeks,G.N.van den Hoven,S.Libertino,S.Lombardo,S.U.Campisano,A.Camera.Optical doping of materials by erbium ion implantation.Nuclear Instruments and Methods in Physics Research B,1996,116:77-84
    [85]S.Chakrabartl,J.Sahu,M.Chakrahorty,H.N.Acharya.Monophasic silica glasses with large neodymia concentration.Journal of Non-Crystalline Solids,1994,1811:96-101
    [86]K.Arai,H.Namikawa,K.Kumata,T.Honda,Aluminium of phosphorus co-doping effects on the fluorescence and structural properties of neodymium -doped silica glass.Journal of Applied Physics,1986,59:3430-3436
    [87]K.Arai,H.Namikawa,Y.Ishii,H.Imai,H.Hosono,Nature of doping into pure silica glass by plasma torch CVD.Journal of Non-Crystalline Solids,1987,95-96:609-616
    [88]C.K.Ryu,H.Choi,K.Kim.Fabrication of highly concentrated Er~(3+) doped aluminosilicate films via sol-gel processing.Applied Physics Letter,1995,66(19):2496-2498
    [89]M.Benatsou,B.Capoen,M.Bouazaoui,W.Tchana,J.P.Vilcot.Preparation and characterization of sol-gel derived Er~(3+):Al_2O_3-SiO_2 planar waveguides.Applied Physics Letter,1997,71(4):428-430
    [90]J.Lagsgaard.Dissolution of rare-earth clustering in SiO_2 by AI codoping:A microscopic model.Physical Review B,2002,65:174114
    [91]C.C.Ting,S.Y.Chen,W.F.Hsieh,H.Y.Lee.Effects of yttrium codoping on photoluminescence of erbium-doped TiO_2 films.Journal of Applied Physics,2001,90(11):5564-5569
    [92]S.Y.Chen,C.C.Ting,W.F.Hsieh.Comparison of visible fluorescence properties between sol-gel derived Er~(3+)-Yb~(3+) and Er~(3+)-Y~(3+) co-doped TiO_2 films,Thin solid Films,2003,434:171-177
    [93]P.T.Nga,C.Barthou,P.Benalloul,P.N.Thang,L.N.Chuang,P.V.Hoi,L.V.Luat,P.T.Cuong.Effects of yttrium codoping on fluorescence lifetimes of Er~(3+) ions in SiO_2-Al_2O_3 sol-gel glasses.Journal of Non-Crystalline Solids,2006,352:2385-2389
    [94]王兴军.稀土掺杂氧化铝结构对光致发光特性的影响研究:(博士论文).大连,大连理工大学,2004
    [95]A.Patra,C.S.Friend,R.Kapoor,P.N.Prasad.Upconversion in Er~(3+):ZrO_2 nanocrystals.Journal of Physics and Chemistry B,2002,106:1909-1912
    [96]S.Sakka.Sol-gel science and technology.Boston:Kluwer Acodemic publisher,2003
    [97]R.Nass,H.Schmidt.Synthesis of an alumina coating from chelated aluminium alkoxides.Journal of Non-Crystalline Solids,1990,121(1-3):329-333
    [98]T.Heinrich,F.Raether,H.Marsmann.Growth and structure of single phase mullite gels from chelated aluminum alkoxides and alkoxysilanes.Journal of Non-Crystalline Solids,1994,168(1-2):14-22
    [99]M.M.Haridas,A.Menon,N.Goyal,S.Chandran,J.R.Bellare.Cryogenic-scanning electron microscopy as a technique to image sol-to-gel transformation in chelated alkoxide systems.Ceramics International,1996,22(2):155-159
    [100]C.Sanchez,J.Livage,M.Henry,F.Babonneau.Chemical modification of alkoxide precursors.Journal of Non-Crystalline Solids,1998,100:65-76
    [101]F.Baronneau,L.Coury,J.Livage,Aluminium sec-butoxide modified with ethlacetoacetate:an attractive precusor for the sol-gel synthesis of ceramics,Journal of Non-Crystalline Solids,1990,121:153-157
    [102]N.Ozer,J.P.Cronin,Y.J.Yao,A.P.Tomsia.Optical properties of sol-gel deposited Al_2O_3 films.Solar Energy Materials and Solar Cells,1999,59(4):355-366
    [103]C.H.Shek,J.K.L.Lai,T.S.Gu,G.M.Lin.Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al_2O_3 powders.Nanostructured Materials,1997,8(5):605-610
    [104]C.Mo,Z.Yuan,L.Zhang,C.Xie.Infrared absorption spectra of nano-alumina.Nanostructured Materials,1993,2(11):47-54
    [105]R.S.Zhou,R.L.Snyder.Structures and transformation mechanisms of the η,γ and θ transition alumina.Acta Crystallographica,1991,47:617-630
    [106]I.Levin,L.A.Bendersyk,D.G.Brandon,M.Buhle.Cubic to monoclinic phase transformations in alumina.Acta Materialia,1997,45:3659-3669
    [107]清山哲郎[日]著,黄敏明译,王其武校.金属氧化物及其催化作用.合肥:中国科学技术大学出版社,1991
    [108]A.Biswas,G.S.Maciel,R.Kapoor,C.S.Friend,P.N.Prasad,Er~(3+)-doped multicomponent sol-gel-prosessed silica glass for optical signal amplification at 1.5μm.Applied Physics Letters,2003,82:2389-2391
    [109]S.X.Dai,J.J.Zhang,C.L.Yu,G.Zhou,G.N.Wang,L.L.Hu.Effect of hydroxyl groups on nonradiative decay of Er~(3+):~4I_(13/2)→~4I_(15/2) transition in zinc tellurite glasses.Materials Letters,2005,59:2333-2336
    [110]L.H.Slooff,M.J.A.de Dood,A.van Blaaderen,A.polman.Erbium-implanted silica colloids with 80%luminescence quantum efficiency.Applied Physics Letters,2000,76(25):3682-3684
    [111]B.R.Judd.Optical absorption intensities of rare-earth ions.Physical Review,1962,127(3):750-759
    [112]G.S.Offelt.Intensities of cystal spectra of rare-earth ions.Journal of Chemical Physics,1962,37(3):511-520
    [113]A.J.Kenyon.Recent developments in rare-earth doped materials for optoelectronics.Progress in Quantum Electronics,2002,26:225-284
    [114]R.Scheps.Er~(3+):YAlO_3 Upconversion Laser.IEEE Joumal of Quantum Electronics,1994,30(12):2914-2924
    [115]G.Y.Chen,Y.G.Zhang,G.Somesfalean,Z.G.Zhang,Q.Sun,F.P.Wang.Two-color upconversion in rare-earth-ion-doped ZrO_2 nanocrystals.Applied Physics Letters,2006,89:163105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700