用户名: 密码: 验证码:
光折变空间孤子自偏转与温度特性及孤子观测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光折变空间光孤子是指当光折变材料的自聚焦效应与光束的衍射发散作用相平衡时,在介质内无衍射向前传播的光束。由于光折变空间孤子在集成光学、光信息处理以及光通信等领域广阔的应用前景,它越来越成为人们关注的焦点。光折变空间孤子的形成机制可分为两类:自相位调制自聚焦和交叉相位调制自聚焦。本论文工作主要研究了基于自相位调制自聚焦的空间光孤子的演化偏转特性、温度特性、串连晶体回路中独立屏蔽空间明暗孤子对的温度特性以及基于交叉相位调制自聚焦的耗散全息光孤子的温度特性,初步研究了双光子光折变晶体中的空间光孤子等问题。
     基于光折变效应物理过程,同时考虑了漂移效应和光伏效应,推导出了光折变空间光孤子的理论模型,讨论了孤子的物理特性。利用数值模拟的方法,研究了光折变空间孤子的演化偏转特性。结果表明,光折变孤子能在晶体中以稳定的孤子态沿直线传播;当考虑到晶体扩散项影响后,孤子中心在传播过程中会偏离初始位置而发生偏转,偏转量的大小和晶体自身光伏场、外加电场以及入射光强比有关。当空间电荷场高阶项不能忽略时,数值研究了高阶空间电荷场对光伏明孤子偏转特性的影响。结果表明,对于光伏明孤子来说,存在一个特征光伏场,当光伏场强度小于该特征场时,孤子总是在逆光轴方向偏转,并且由低阶项引起的孤子中心偏转的距离总是大于低阶和高阶项共同作用时引起的偏转距离。如果光伏场强度大于特征场,孤子中心既可以在光轴方向偏转,也可以在逆光轴方向偏转。孤子中心的偏转方向和距离取决于光伏场强和入射孤子波的强度。在合适的光伏场和入射孤子强度下,孤子中心不表现出偏转特。微扰法的结果进一步证实了数值计算的正确性。
     研究了温度对光折变明空间孤子演化和自偏转特性的影响。结果表明,明孤子传播特性强烈依赖于晶体温度;明孤子中心偏转距离随温度增加而增加,在一个特征温度处达到最大值,而后随温度增加逐渐变小,在低温和高温区域,这一偏转接近于零。
     用数值方法研究了光折变晶体回路中暗孤子晶体温度对明孤子自偏转的影响。结果表明,考虑温度对扩散效应和暗辐射强度的影响,光折变明空间孤子的演化强烈依赖于晶体的温度,当晶体温度变化不大时,入射孤子波能在晶体中稳定传播,而当晶体温度变化足够大时,入射孤子波呈现周期性的压缩和膨胀,且光束中心偏转距离随温度变化而变化。通过调节独立空间孤子对中暗孤子的温度可以明显改变明孤子的演化和偏转特性。
     理论研究了双光束耦合光折变耗散系统中全息孤子的温度特性。结果表明,耗散全息光孤子对小的温度漂移是稳定的,当晶体的温度变化足够大时,孤子的峰值强度和宽度都随传播距离变化,入射孤子不能演化成稳定的孤子态传播。采用顶侧面观测法,实验研究了光伏明孤子的动态演化过程。这种方法能直观显示出入射光束在晶体中传播时,在水平及垂直方向上不同位置处的轮廓图。结合光闸瞬间成像法,采用顶侧面观测法成功观测了二维耗散光伏明孤子。
     最后,理论研究了光折变晶体中的双光子屏蔽光伏空间孤子。在一维稳态条件下,我们得到了双光子空间孤子的动态演化方程,求得了明、暗空间孤子解。考虑晶体材料的扩散效应,采用微扰法研究了双光子光折变明孤子的自偏转特性。结果表明,孤子光束的中心在传播过程中沿一条抛物线轨迹移动,而光束的中央空间频率分量随传播距离线性变化。
Photorefractive (PR) spatial optical solitons occur when the self-focusing of a light beam inside the PR material exactly balances the diffraction of the beam. For their wide potential application in many fields such as integrating optics, optical signal processing and optical communications, they have attracted more and more attention of scientists. The mechanism to form PR spatial soliton can be classified into two generic types, that is, the self-phase-modulation (SPM) self-focusing mechanism and the cross-phase modulation (XPM) self-focusing mechanism. This dissertation investigates theoretically the properties of solitons result from the SPM self-focusing, such as dynamical evolution, the self-deflectionA and the temperature property. We also investigate the temperature effect on the stability of spatial solitons formed in a PR two wave mixing (TWM), which result from the XPM self-focusing. At last, we initially investigate the spatial optical solitons in PR crystal due to two-photon (TP) PR effect.
     Based on the physical process of the PR effect, the theoretical model of PR spatial optical solitons is derived with the consideration of both the drift and photovoltaic effects. Then, the properties of such PR solitons are studied. By using a numerical method, the dynamical evolution and self-deflection properties of PR solitons are investigated. The results indicate that the PR solitons can stably propagate along a straight line in the crystal with unchanged profile. When the diffusion effect of the crystal is taken into account, the solitary beam will move on a parabolic trajectory, which is called the self-deflection process, and the spatial shift of the beam center depends on the parameters of the crystal, the biased electric field and the incident beam. The higher-order space charge filed effects on the self-deflection of bright PR solitons are also investigated. Our results indicate that there exits a characteristic value of photovoltaic fields for photovoltaic bright solitons. When the photovoltaic field is less than the characteristic value, these solitons always bend in the direction of opposite the crystal’s c axis, and the absolute value of the spatial shift that is due to the first-order diffusion term alone is always larger than that which is due to both the first-order diffusion term and the higher-order terms acting together. If the strength of photovoltaic field is larger than the characteristic value, these solitons bend in both the same direction as and in the direction opposite the crystal’s c axis is possible. Whether the direction is in the same or in the opposite direction will depend on the strength of photovoltaic field and on the input intensity. Specifically, self-deflection cannot occur for photovoltaic bright solitons if the strength of the photovoltaic field and the intensity of the input beam are appropriately selected. The self-deflection of bright solitary beam is further studied by perturbation technique, and the results are found to be good agreement with that obtained from numerical method.
     The temperature effects on the dynamical evolution and self-deflection of photorefractive bright soliton are investigated. The result shows that the stabilities of the bright solitons are strongly influenced by the crystal’s temperature, the self deflection distance of the bright solitons centre increases and, reaches its maximum value at a character temperature and then decreases as temperature rises and, approaches zero at low and high temperatures.
     By using a numerical method, the dark soliton crystal temperature effect on the evolution and self-deflection of bright soliton are discussed in a separate soliton pair. The numerical results indicate that by taking into account the temperature dependences of diffusion effect and the dark irradiance, the dynamical evolution of the bright soliton depends strongly on the crystal temperature. The incident beam could be stable if the temperature changes little enough. However, the incident beam could be larger cycles of expansion or compression when the temperature changes large enough, and the spatial shift of the beam center changes with the temperature changes. The evolution and self-deflection of the bright soliton can be controlled by changing the temperature of the dark soliton crystal in a separate spatial soliton pair.
     It has been investigated that temperature effect on the dynamical evolutions of holographic bright solitons in photorefractive dissipative systems based on TWM. Numerical results show that the input solitary beam can evolve into a stable soliton and propagate in the crystal when the temperature drift is quite small, whereas it will not evolve into a stable soliton and its intensity becomes increase or decrease with increasing propagation if the temperature difference is big enough. By use of top- and side-view method, we investigated experimentally the dynamical evolution of bright photovoltaic soliton. This method has an ability to show the horizontal and veritical outline of the incident beam at any location of the crystal very intuitively. We also observed the two-dimensional dissipative bright photovoltaic solitons by the same method combined with optical shutter.
     At last, we investigate the screening-photovoltaic (SP) spatial solitons formed in PR photovoltaic crystal due to TP-PR effect. We present the one-dimensional dynamical evolution equation and find the soliton solutions under appropriate conditions in steady state. By use of perturbation techniques, we also investigate the self-deflection process of these bright solitons with taking diffusion effect into account. Our results indicate that the center of the TP-SP solitary beam moves on a parabolic trajectory, whereas its central spatial-frequency component shifts linearly with the propagation distance.
引文
[1]周凌云,吴光敏,段良和等.孤立子理论及物理学和生物学中的应用. (第一版).云南:云南科技出版社, 2001. 1~5
    [2]李政道.场论与粒子物理学(上册). (第一版).北京:科学出版社,1980. 83~100
    [3] D. J. Korteweg, G. de. Vries. On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Phil. Mag., 1895, 5: 422~443
    [4] N. J. Zabusky, M. D. Kruskal. Interaction of "Solitons" in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15(6): 240~243
    [5] K. E. Lonngren. Soliton experiments in plasmas. Plasma Phys., 1983, 25(4): 943~982
    [6] E. Polturak, P. G. N. devegvar, E. K. Zeise, et al. Solitonlike propagation of zero sound in superfluid 3He. Phys. Rev. Lett., 1981, 46(24): 1588~1591
    [7] M. Mohebi, P. F. Aiello, G. Reali, et al. Self-focusing in CS2 at 10.6mum. Opt. Lett., 1985, 10(8): 396~398
    [8] J. S. Aitchison, A. M. Weiner, Y. Silberberg, et al. Observation of spatial optical solitons in a nonlinear glass waveguide. Opt. Lett., 1990, 15(9): 471~473
    [9] J. S. Aitchison, K. Al-Hemyari, C. N. Ironside, et al. Observation of spatial solitons in AlGaAs waveguides. Electron. Lett., 1992, 28(20): 1879~880
    [10] Xiao-sheng Wang, Wei-long She, Win-Kee Lee. Optical spatial solitons supported by photoisomerization nonlinearity in a polymer. Opt. Lett., 2004, 28(3): 277~279
    [11]钱士雄,王恭明.非线性光学. (第一版).上海:复旦大学出版社, 2001. 158~164
    [12] R. Y. Chiao, E. Garmire, C. H. Townes. Self-trapping of optical beams. Phys. Rev. Lett., 1964, 13(15): 479~482
    [13] M. Hercher. Laser-induced damage in transparent media. J. Opt. Soc. Am. B, 1964, 54(3): 563~569
    [14] A. Hasegawa, F. Tappert. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers I. Anomalous Dispersion. Appl. Phys. Lett., 1973, 23(3): 142~144
    [15] A. Hasegawa, F. Tappert. Transmission of Stationary Nonlinear Optical Pulses inDispersive Dielectric Fibers II. Normal Dispersion. Appl. Phys. Lett., 1973, 23(4): 171~172
    [16] L. F. Mollenauer, R. H. Stolen, J. P. Gordon. Experimental observation of picosecond pulse narrowing and solitons in optical Fibers. Phys. Rev. Lett., 1980, 45(13): 1095~1098
    [17] A. Hasegawa. Solitons in Optical Fibers. 1st ed. Berlin: Springer-Verlag, 1989. 121~140
    [18] M. Nakazawa, E. Yamada, H. Kubota K. Suzuki. 10 Gbit/s soliton data transmission over one million kilometers. Electron. Lett., 1991, 27(14): 1270~1272
    [19] L. F. Mollenauer, B. M. Nyman, M. J. Neubelt, et al. Demonstration of Soliton Transmission at 2.4 Gbit/s over 12000km. Electon. Lett., 1991, 27(3): 178~179
    [20] J. E. Bjorkholm, A. Ashkin. Self-focusing and self-trapping of light in sodium vapor. Phys. Rev. Lett., 1974, 32(4): 129~132
    [21] P. L. Kelley. Self-focusing of optical beams. Phys. Rev. Lett., 1965, 15(26): 1005~1008
    [22] V. E. Zakharov, A. M. Rubenchik. Instability of waveguides and solitons in nonlinear media. Sov. Phys. JETP, 1974, 38(2): 494~452
    [23] M. Soljacic, S. Sears, M. Segev. Self-trapping of“necklace”beams in self-focusing Kerr media. Phys. Rev. Lett., 1998, 81(22): 4851~4854
    [24] A. Barthelemy, C. Froehly, M. Shalaby. Nonlinear propagation of picosecond tubular beams: self phase modulation and induced refraction. Proceeding of SPIE, 1993, 2041: 104~113
    [25] E. L. Dawes, J. H. Marburger. Computer studies in self-focusing. Phys. Rev., 1969, 179(3): 862~868
    [26] M. Segev, B. Crosignani, A. Yariv, et al. Spatial solitons in photorefractive media. Phys. Rev. Lett., 1992, 68(7): 923~926
    [27] G. C. Duree, J. L. Shultz, G. J. Salamo, et al. Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett., 1993, 71(4): 533~536
    [28] A. Ashkin, G. D. Boyd, J. M. Dziedzic, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett., 1966, 9(1): 72~74
    [29] F. S. Chen, J. T. Lamacchia, D. B. Fraser. Holographic storage in Lithium niobate. Appl. Phys. Lett., 1968, 13(7): 223~225
    [30] D. L. Steabler, J. J. Amodei. Coupled-wave analysis of holographic storage in LiNbO3. J.Appl. Phys., 1972, 43(3): 1042~1049
    [31] A. M. Glass, D. Vonderlinde, T. J. Negran. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett., 1974, 25(4): 233~235
    [32] P. Yeh. Introduction to Photorefractive nonlinear Optics. Wiley and Sons, New York, 1993. 12~98
    [33] B. E. A. Saleh, M. C. Teich. Fundamentals of photonics. John Wiley Sons. Inc., New York, 1991. 6~53
    [34] M. Segev, G. C. Valley, B. Crosignani, et al. Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field. Phys. Rev. Lett., 1994, 73(24): 3211~3214
    [35] D. N. Christodoulides, M. I. Carvalho. Bright, Dark, and Gray Spatial Soliton States in Photorefractive Media. J. Opt. Soc. Am. B, 1995, 12(9): 1628~1633
    [36] S. R. Singh, D. N. Christodoulides. Evolution of Spatial Solitons in Biased Photorefractive Media. Opt. Commun., 1995, 118(5): 569~576
    [37] M. I. Carvalho, S. D. Singh, D. N. Christodoulides. Self-Deflection of Steady-State Bright Spatial Solitons in Biased Photorefractive Crystals. Optical Commun., 1995, 120(5): 311~315
    [38] J. Petter, C. Weilbau, C. Denz, et al. Self-bending of photorefractive solitons. Opt. Commun., 1999, 170(3): 291~297
    [39] S. R. Singh, M. I. Carvalho, D. N. Christodoulides. High-Order Space Charge Field Effects on the Evolution of Spatial Solitons in Biased Photorefractive Crystals. Opt. Commun., 1996, 130(4): 288~294
    [40] M. Shih, M. Segev, G. C. Valley, et al. Observation of Two-Dimensional Steady-State Photorefractive Screening Solitons. Electron. Lett., 1995, 31(30): 826~827
    [41] M. Shih, P. Leach, M. Segev, et al. Two-Dimensional Steady-State Photorefractive Screening Solitons. Opt. Lett., 1996, 21(5): 324~326
    [42] Z. Chen, M. Mitchell, M. Shih, et al. Steay-State Dark Photorefractive Screening Solitons. Opt. Lett., 1996, 21(9): 629~631
    [43] K. Kos, H. Meng, G. Salamo, et al. One-dimensional Steady-State Photorefractive Screening Solitons. Phys. Rev. E, 1996, 53(5): R4330~R4333
    [44] Z. Cheng, M. Segev, S. R. Singh, et al. Sequential Formation of Dark Potorefractive Spatial Solitons: Experiments and Theory. J. Opt. Soc. Am. B., 1997, 14(6): 1407~ 1417
    [45] G. Y. Zhang, J. S. Liu, S. X. Liu. The self-deflection of dark screening spatial solitons on base of Higher-order space charge field. Chin. Phys. Lett., 2007, 24 (2): 442~445
    [46] M. Facao, D. F. Parker. Stability of screening solitons in photorefractive media Phys. Rev. E, 2003, 68(1):016610~016615
    [47] D. N. Christodoulides, S. R. Singh, M. I. Carvalho. Incoherently Coupled Solitons Paris in Biased Photorefractive Crystals. Appl. Phys. Lett., 1996, 68(13): 1763~1765
    [48] Z. Chen, M. Segev, H. Coskun, et al. Observation of Incoherently Coupled Photorefractive Spatial Soliton Pairs. Opt. Lett., 1996, 21(18): 1436~1438
    [49] Z. Chen, M. Segev, H. Coskun, et al. Incoherently Coupled Dark-Bright Photorefractive Solitons. Opt. Lett., 1996, 21(22): 1821~1823
    [50] Z. Chen, M. Segev, T. H. Coskum, et al. Coupled Photorefractive Spatial-Soliton Pairs. J. Opt. Soc. Am. B, 1997, 14(11): 3066~3076
    [51] M. Shih, M. Segev. Incoherent Collisions between Two-Dimensional Bright Steady-State Photorefractive Spatial Screening Solitons. Opt. Lett., 1996, 21(19): 1538~1540
    [52] M. Shih, M. Segev, G. Salamo. Three-Dimensional Sprialing of Interacting Spatial Solitons. Phys. Rev. Lett., 1997, 78(13): 2551~2554
    [53] G.. I. Stegeman, M. Segev. Optical Spatial Solitons and Their Interactions: Universality and Diversity. Science, 1999, 286(5444): 1518~1523
    [54] C. Rotschild, O. Cohen, O. Manela, et al. Interactions between spatial screening solitons propagating in opposite directions. J. Opt. Soc. Am.B, 2004, 21(7): 1354~ 1357
    [55] T. Ku, M-F. Shih, A. A. Sukhorukov, et al. Coherence Controlled Soliton Interactions. Phys. Rev. Lett., 2005, 94(6): 063904~063908
    [56]刘思敏,郭儒,许京军.光折变非线性光学及其应用. (第一版).北京:科学出版社, 2004. 17~28
    [57] G. C. Valley, M. Segev, B.Crosignani, et al. Dark and Bright Photovoltaic Spatial Solitons. Phys. Rev. A, 1994, 50(6): R4457~R4460
    [58] M. Taya, M. C. Bashaw, M. M. Fejer, et al. Observation of Dark Photovoltaic Spatial Solitons. Phys. Rev. A, 1995, 52(4): 3095~3100
    [59] M. Segev, G. C. Valley, M. C. Bashaw, et al. Photovoltaic Spatial Solitons. J. Opt. Soc. Am. B, 1997, 14(7): 1772~1781
    [60] W. L. She, K. K. Lee, W. K. Lee. Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons. Phys. Rev. Lett., 1999, 83(16): 3182~3185
    [61]凌振芳,郭儒,刘思敏等.光生伏打-光折变介质中光学涡旋孤子.物理学报, 2000, 49(3): 455~458
    [62]佘卫龙,王晓声,何国岗等.折射率改变为正的光折变晶体中形成一维光伏暗孤子.物理学报, 2001, 50(11): 2166~2171
    [63]王晓声,佘卫龙.部分空间非相干光光伏空间孤子.物理学报, 2002, 51(03): 0573~0577
    [64]江德生,佘卫龙.多个光伏空间亮孤子相互作用研究.物理学报, 2005, 54(5): 2090~2095
    [65]陆猗,刘思敏,郭儒等.完全非相干白光一维光生伏打暗空间孤子.物理学报, 2003, 52(12): 3075~3081
    [66] Z. H. Liu, S. M. Liu, R. Guo, et al. Interaction between Two-Dimensional White-Light Photovoltaic Dark Spatial Solitons. Chin. Phys. Lett., 2007, 24(2): 446~ 449
    [67] C. F. Hou, Y. B. Pei, Z. X. Zhou, et al. Bright-dark incoherently coupled photovoltaic soliton pair. Chin. Phys., 2005, 14(2): 349-352
    [68] H. C. Wang, W. L. She. Incoherently coupled grey photovoltaic spatial soliton families. Chin. Phys. Lett., 2005, 22(1): 128~131
    [69]张光勇,刘劲松.闭路光伏暗空间孤子的自偏转特性研究.光学学报, 2006, 26(10): 1559~1561
    [70] G. Y. Zhang, J. S. Liu, S. X. Liu, et al. The self-deflection of photovoltaic bright spatial solitons on the basis of higher-order space-charge field, J. Opt. A: Pure Appl. Opt., 2006, 8: 442~449
    [71] J. S. Liu, K. Q. Lu. Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B, 1999, 16(4): 550~555
    [72] C. F. Hou, Y. Li, X. F. Zhang, et al. Grey screening-photovoltaic spatial soliton in biased photovoltaic-photorefractive crystals. Opt. Commun., 2000, 181(1): 141~144
    [73] J. S. Liu. Universal Theory of Steady-State One-Dimensional Photorefractive Solitons. Chin. Phys., 2001, 10(11): 1037~1042
    [74] E. Fazio, F. Renzi, R. Rinaldi, et al. Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides. Appl. Phys. Lett., 2004, 85(12): 2193~2195
    [75] J. S. Liu, D. Y. Zhang, C. H. Liang. Stability of bright screening-photovoltaic spatial solitons. Chinese Physics, 2000, 9(9): 667~671
    [76]刘劲松,张都应.损耗对屏蔽光伏空间孤子演化特性的影响.物理学报, 2001, 50(5): 880~885
    [77]张都应,刘劲松,梁昌洪.高斯光束在光伏光折变晶体中的孤波演化.光学学报, 2001, 21(6): 647~651
    [78]谭欣,刘劲松.光折变明孤子的自偏转演化特性.光学学报, 2002, 22(11): 1307~1311
    [79] J. S. Liu, D. Y. Zhang, Z. H. Hao. Self-Deflection of Screening Photovoltaic Spatial Solitons in Biased Photovoltaic Photorefractive Crystals. J. Mod. Opt., 2001, 48(21): 1803~1810
    [80] J. S. Liu, Z. H. Hao. Higher-Order Space-Charge Field Effects on the Self-Deflection of Bright Screening Photovoltaic Spatial Solitons. J. Opt. Soc. Am. B, 2002, 19(3): 513~521
    [81]候春风,袁保红,孙秀冬等.非相干耦合屏蔽光伏孤子对.物理学报, 2000, 49(10): 1969~7972
    [82]侯春风,李师群,李斌等.有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对.物理学报, 2001, 50(9): 1709~1712
    [83] C. F. Hou, B. Li, X. D. Sun, et al. Incoherent coupled screening-photovoltaic soliton families in biased photovoltaic photorefractive crystals. Chin. Phys., 2001, 10(4):310~313
    [84] S. Konar, Soumendu Jana, S. Shwetanshumala. Incoherently coupled screening photovoltaic spatial solitons in biased photovoltaic photorefractive crystals. Opt. Commun., 2007, 273(2): 324~333
    [85] J. S. Liu, Z. H. Hao. Separate Spatial Soliton Pairs and Solitons Interaction in an Unbiased Series Photorefractive Crystal Circuit. Phys. Lett.. A, 2002, 300(2-3): 213~ 220
    [86] J. S. Liu, Z. H. Hao. Evolution of Separate Screening Soliton Pairs in a Biased Series Photorefractive Crystal Circuit. Phys. Rev. E, 2002, 65(6): 066601~066612
    [87] J. S. Liu, Z. H. Hao. Soliton Parametric Coupling in a Series Photorefractive Crystal Circuit. Phys. Lett. A, 2003, 309(1-2): 44~52
    [88] Z. H. Hao, J. S. Liu. Interaction Between Separate Spatial Soliton Pairs in a Biased Serial Photovoltaic Photorefractive Crystal Circuit and its Application. SPIE. Proc, 2002, 4918: 326~335
    [89] J. S. Liu, Z. H. Hao. Self-Deflection of a Bright Soliton in a Separate Bright-Dark Spatial Soliton Pair Biased on Higher-Order Space Charge Field. Chin. Phys., 2003, 12(10): 1124~1134
    [90] Z. H. Hao, J. S. Liu. Effects of Dark Soliton on Self-Deflection of Bright Soliton in a Separate Bright-Dark Soliton Pair. J. Mod. Opt., 2003, 50(13): 1967~1975
    [91] P. Agrawal. Nonlinear fiber optics. 2nd ed. San Diego, CA: Academic Press Inc., 1995. 253~262
    [92] O. Cohen, T. Carmon, M. Segev, et al. Holographic solitons. Opt. Lett., 2002, 27(22): 2031~2033
    [93] M. Mohebi, P. F. Aiello, G. Reali, et al. Self-focusing in CS2 at 10.6mum. Opt. Lett., 1985, 10(8): 396~398
    [94] M. Vaupel, C. Seror, R. Dykstra. Self-focusing in photorefractive two-wave mixing. Opt. Lett., 1997, 22(19): 1470~1472
    [95] M. Vaupel, O. Mandel, N.R. Heckenberg. Two-wave-mixing induced self-focusing in an active photorefractive oscillator. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1(1): 96~100
    [96] Shvets, A. Pukhov. Electromagnetically induced guiding of counterpropagating lasersin plasmas. Phys. Rev. E., 1999, 59(1): 1033~1037
    [97] J. S. Liu, Z. H. Hao. Coupling and stability of bright holographic soliton pairs, Chin. Phys., 2004, 13(5): 704~711
    [98]刘劲松.非对称光折变全息空间光孤子的存在曲线.物理学报, 2004, 53(9): 3014~ 3022
    [99] J. S. Liu. Holographic solitons in photorefractive dissipative systems. Opt. Lett., 2003, 28(22): 2237~2239
    [100] J. S. Liu. Existence and property of spatial solitons in a photorefractive dissipative system. J. Opt. Soc. Am. B, 2003, 20(8): 1732~1738
    [101] J. S. Liu. Existence and stability of rigid photovoltaic solitons in an open-circuit amplifying or absorbing photovoltaic medium. Phys. Rev. E, 2003, 68(2): 026607-1~ 026607-7
    [102] J. S. Liu, H. J. Eichler. Holographic screening-photovoltaic solitons in biased photovoltaic-photorefractive crystals with two-wave mixing. Europhys. Lett., 2004, 65(5): 658~664
    [103] N. N. Akhmediev, V. V. Afanasjev. Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex ginzburg-landau equation. Phys. Rev. Lett., 1995, 75(12): 2320~2323
    [104] M. Morin, G. C. Duree, G.. Salamo, et al. Waveguides Formed by Qusi-Steady Photorefractive Spatial Soliton. Opt. Lett., 1995, 20(20): 2066~2068
    [105]王程,刘劲松,张光勇等.光折变空间孤子的顶侧面观测法.物理学报, 2007, 56(1): 258~262
    [106] Y. S. Bai, R. R. Neurgaonkar, R. Kachru. High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers. Opt. Lett., 1997, 22(5): 334~336
    [107] Y. S. Bai, R. Kachru. Nonvolatile Holographic Storage with Two-Step Recording in Lithium Niobate using cw Lasers. Phys. Rev. Lett., 1997, 78(15): 2944~2947
    [108] L. Paraschis, M. Brashaw, A. Liu, et al. Resonant two-photon process for nonvolatile holography in photorefractive crystals under continuous-wave illumination. J. Opt. Soc. Am. B, 1997, 14(10): 2670~2680
    [109] T. Nikolajsen, P. Johansen, B. Sturman, et al. Modeling of photorefractive two-stepgated recording by long-life-time intermediate levels. J. Opt. Soc. Am. B, 2001, 18(4): 485~491
    [110] E. Castro-Camus, L. F. Magana. Prediction of the physical response for the two-photon photorefractive effect. Opt. Lett., 2003, 28(13): 1129~1131
    [111] C. F. Hou, Y. B. Pei, Z. X. Zhou, et al. Spatial solitons in two-photon photorefractive media. Phys. Rev. A, 2005, 71(5): 053817~053822
    [112] C. F. Hou, Y. Zhang, Y. Y. Jiang, et al. Photovoltaic solitons in two-photon photorefractive materials under open-circuit conditions. Opt. Commun., 2007, 273(2): 544~548
    [113] P. Gunter, J. -P. Huignard. Topics in applied physics in: Photorefractive Materials and Their Applications I, II. Berlin: Springer-Verlag, 1989. 61~62
    [114] L. J. Cheng, A. Partovi. Temperature and intensity dependence of photorefractive effect in GaAs. Appl. Phys. Lett., 1986, 49(21):1456~1458
    [115] J. S. Liu, C.H. Liang, Y. Y. An, et al. Anomalies of doped-LiNbO3 crystal in photorefractive phase conjugation with relation to structural phase transformation. Chin. Phys. Lett., 1996, 13(2): 137~140
    [116] J. S. Liu, Z. H. Hao. Temperature effect on the self-deflection of screening-photovoltaic spatial bright solitons in biased photovoltaic-photorefractive crystals. Phys. Lett. A, 2001, 285(9): 377~382
    [117] J. S. Liu, Z. H. Hao. The Effects of temperature on the stability of bright screening-photovoltaic spatial solitons.激光技术, 2002, 26(4): 279~283
    [118] J. S. Liu, Z. H. Hao. The Effects of Temperature on the Evolution of Bright and Dark Screening-Photovoltaic Spatial Solitons. Chin. Phys., 2002, 11(3): 254~259
    [119] P. Yeh. Two-wave mixing in nonlinear media. IEEE J. Quantum Electron, 1989, 25(3): 484~519
    [120] Oda, Y. Otani, L. Liu, et al. Polarization effect for vibration detection using photorefractive two-wave mixing in KNSBN: Cu crystals. Opt. Commun., 1998, 148(3): 95~100
    [121] P. Huignard, A. Marrakchi. Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals. Opt. Commun., 1981, 38(4): 249~254
    [122] J. S. Liu, Y. Y. Zhang, H. J. Eichler. Dynamical evolution of dissipative holographic solitons in photorefractive media via two-wave mixing with a moving grating. Journal of Modern Optic, 2005, 52(4): 563~572
    [123]张宇,侯春风,孙秀冬.双光子光折变介质中的非相干耦合空间孤子对.物理学报, 2007, 56(6): 3261~3265
    [124] Y. Li, F. Hou, S. Liu, et al. Photorefractive properties with traps and two types of charge carrier in doped KNSBN crystals. Opt. Commun., 1997, 134(6): 591~598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700