用户名: 密码: 验证码:
光折变效应中若干问题的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光折变效应能导致光折变材料的折射率在弱光作用下发生变化,在未来的光信息技术中有着广泛的应用前景。有关光折变材料的应用研究一直以来备受人们关注。随着材料技术的不断发展,光折变材料已由过去的非线性晶体发展为易于集成的半导体、薄膜、液晶等非线性材料。新型光折变材料的出现为今后的应用提供了坚实的基础,因此探索光折变效应在新领域的一些应用十分必要,本文正是基于此目的对光折变效应中的若干问题展开相关实验研究。
     论文首先从Kukhtarev带输运模型出发,从理论上分析了光折变材料中的空间电荷场的建立及其调制折射率的过程。重点讨论了双光束耦合作用,从理论上分析了双光束耦合中的能量及相位耦合过程,从Bragg衍射角度定性分析了光折变体相位栅在能量耦合中所发挥的作用。然后介绍了光折变空间孤子的相关理论,分别讨论了自相位调制自聚焦机制形成的空间孤子及非线性相位耦合机制形成的空间孤子理论模型。通常又把通过非线性相位耦合机制形成的空间孤子称为全息孤子。本文介绍的全息孤子是基于双光束耦合作用形成的空间孤子,依据是否考虑损耗的影响,全息孤子又分为哈密顿全息孤子及耗散全息孤子
     本文首次提出了空间孤子的顶侧面观测法,该方法结合CCD图像采集技术和计算机软件处理技术,直观地分析了空间孤子的动态演化过程。该方法能够分析光束在传输过程中不同位置的强度最大值、半高全宽(FWHM)值及该处的能量值。通过该方法成功观测到光伏明孤子。对于耗散全息孤子的实验观测,由于存在能量耦合作用,因此不能直接采用该方法进行观测。本文结合光闸瞬间成像法及顶侧面观测法成功观测了耗散全息光伏明孤子。并分析了耗散全息孤子的相关特性,验证了全息波导的存在。依据双光束耦合理论,分析了外界微扰信息对干涉条纹与体相位栅之间相移角的影响。相移角的改变将直接导致两输出光之间的能量迅速发生变化。在两束入射光能量相同的条件下,一旦体相位栅形成,外界微扰信息将不会对体相位栅造成很大影响,微扰信息只是改变了相移角大小,避免了体相位栅的重建过程,因此体相位栅能够快速实现信号调制过程。
     实验研究发现,外界微扰信息对两输出光的能量影响非常小,只占总能量的很小一部分。在经过光电探测后的信号中,调制信息属于交流成分,经过放大处理电路后便可提取出调制信号,两路输出光中包含的交流调制信号具有差分特性。利用该方法可实现高速光差分调制器件,该调制器用于探测传感领域可用来探测空气扰动,环境振动、瞬变压力等信息;该调制器用于空间光通信领域,可实现差分模式空间光通信,差分通信能有效克服共模干扰的影响。
Photorefractive effects can result in the change of refractive index of Photorefractive media under the illumination of very weak light, which may be widely used in future optical information technology. The application study on photorefractive materials has attracted more and more people’s attention. With the development of material technology, the photorefractive materials have been developed from nonlinear crystals to the easily integrated materials, such as semiconductor, thin film and liquid crystal, etc. The new photorefractive materials offer a good foundation for future application. So it is very necessary for the exploratory development of photorefractive effect in new application field. For this purpose, we develop the correlation experimental study on some problems of photorefractive effects in this dissertation.
     The forming mechanism of space-charge field and its influence on the refractive index of nonlinear materials are first derived based on the Kukhtarev-Vinestskii model. We discuss the interaction of two laser beams inside a photorefractive medium, analyze the intensity and phase coupling process, and investigate qualitatively the role of photorefractive volume phase grating on the intensity coupling process. Then, relevant theories of photorefractive spatial solitons are presented. Spatial solitons generally can be classified into two generic types: The first type is originated from the self-phase modulation self-focusing mechanism, and the second type is originated from the mechanism that arises from the nonlinear phase coupling. Normally, we call the spatial solitons arises from the nonlinear phase coupling as holographic solitons. The holographic solitons investigated here is based on two-wave mixing, it can be divided into Hamitonian holographic (HH) solitons and dissipative holographic (DH) solitons.
     Basing on CCD technology and software processing, a new method, namely top- and side-view method, is first presented for the observation of spatial optical solitons in photorefractive crystals. This method has an ability to show the horizontal and vertical outline of the beam at any location of the crystal very intuitively. The max intensity, full wave at half maximum (FWHM) and total energy of the beam at any location of the crystal can be obtained by this means. By use of this method, we have experimentally observed the two-dimension bright photovoltaic solitons in a KNSBN crystal. Because there exists intensity coupling, the DH solitons can’t be observed directly by this means. We have experimentally observed the DH bright photovoltaic solitons in a KNSBN crystal by this method combined with optical shutter. The correlated character of DH solitons is analyzed from experimental data. Experimental results prove the existence of holographic waveguide.
     The influence of infinitesimal disturbance on the phase shift between the incident fringes pattern and the volume phase grating is discussed based on two-wave mixing theory. The change of the phase shift will immediately result in the intensity fluctuation of two output beams. As soon as the volume phase grating forms under two incident beams with the same intensity, the phase grating is almost unaffected under the influence of infinitesimal disturbance, the disturbance only changes the phase shift, and the volume phase grating avoids reforming, so the volume phase grating can implement signal modulation quickly.
     It can be seen from the experiments, the influence of infinitesimal disturbance on the intensity of two output beams is very tiny. Compare with the total energy, the modulated energy is very small. The modulated signal is the alternating current (AC) portion of the composite signal generated by photoelectric detector. By use of special amplification circuit, the modulated signal can be obtained. Two modulated signals of the two output beams own the character of differential signals. High speed optical differential modulation device can be made by utilizing this character of volume phase grating. In the sensor domain, this differential modulation device can be used to detect the air disturbance, environmental vibration, transient pressure, etc. For space optic communication, this differential modulation device can implement differential space optic communication, which can eliminate the common-mode disturbance effectively.
引文
[1] A.Ashkin, G.D.Boyd, J.M.Dziedzic, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett., 1966, 9(1): 72~74
    [2] F.S.Chen, J.T.Lamacchia, D.B.Fraser. Holographic storage in Lithium niobate. Appl. Phys. Lett., 1968, 13(7): 223~225
    [3] P.Yeh. Introduction to Photorefractive nonlinear Optics. Wiley and Sons, New York, 1993. 12~98
    [4] B.E.A.Saleh, M.C.Teich. Fundamentals of photonics. John Wiley Sons. Inc., New York, 1991. 6~53
    [5] D.L.Steabler, J.J.Amodei. Coupled-wave analysis of holographic storage in LiNbO3. J.Appl. Phys., 1972, 43 (3): 1042~1049
    [6] A.M.Glass, D.Vonderlinde, T.J.Negran. Appl.Phys. Lett., 1974, 25(4): 233~235
    [7] F.H.Mok, M.C.Tackitt, H.M.Stoll. Storage of 500 high resoluteion holograms in a LiNbO3 crystal. Opt. Lett., 1991,16(8): 605~607
    [8] T.Tschudi, C.Deuz, K.O.Muller, T.Heimann. Volum holographic data storage and processing using phase-coded multiplexing. LEOS’98. 11th Annual Meeting, 1998, 2: 144
    [9] Y.Kawata, H.Ishitobi, S.Kawata. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt.Lett., 1998, 23(10): 756~758
    [10] J.P.Huignard and A.Marrakchi. Two-wave mixing and energy transfer in Bi12SiO20 crystal: application to image amplification and vibration analysis. Opt.Lett., 1981, 6(12): 622~624
    [11] D.J.Webb and L.Solymar. Amplification of temporally modulated signal beams by two-wave mixing in Bi12SiO20. J.Opt.Soc.Am.B, 1990, 7(12): 2369~2373
    [12] A.Brignon, S.Breugnot, J.P.Huignard. Very high-gain two-wave mixing in BaTiO3 with a self-bent pump beam. Opt. Lett., 1995, 20(16): 1689~1691
    [13] J.P.Huignard and A.Marrakchi. Signal beam amplification in two wave mixing experiments with photo refractive B.S.O crystals. Opt. Commun., 1981, 38: 249~256
    [14] J.Feinberg, D.Heinman, A.R.Tanguay, Jr.R.W.Hellwarth. Photorefractive effects and light-induced charge migrateon in barium titanate. J.Appl.Phys., 1980, 51(3): 1297~ 1305
    [15] J.Feinberg. Self-pumped continuous-wave phase conjugate using internal reflection.Opt.Lett., 1982, 7(10): 486~488
    [16] Mark Cronin-Golomb, Baruch Fischer, Jeffer O.White, Ammon Yariv. Passive phase conjugate mirror based on self-induced oscillation in an optical ring cavity. Appl. Phys. Lett., 1983, 42(11): 919~921
    [17] T.Y.Chang, R.W.Hellwarth. Optical phase conjugateon by backscattering in barium titanate. Opt.Lett., 1985, 10(8): 408~410
    [18] M.Segev, B.Crosignani, Amnon Yariv, et al. Spatial Solitons in Photorefractive Media. Phys. Rev. Lett., 1992, 68(7): 923~926
    [19] B.Crosignani, M.Segev, D.Engin, et al. Self-trapping of Optical Beams in Photorefractive Media. J. Opt. Soc. Am. B, 1993, 10(3): 446~453
    [20] G..C.Duree, J.L.Shultz, G..J.Salamo, et al. Observation of Self-Trapping of an optical Beam Due to the Photorefractive Effect. Phys. Rev. Lett., 1993, 71(4):533~536
    [21] M.Segev, G..C.Valley, B.Crosignani, et al. Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field. Phys. Rev. Lett., 1994, 73(24): 3211~3214
    [22] D.N.Christodoulides, M.I.Carvalho. Bright, Dark, and Gray Spatial Soliton States in Photorefractive Media. J. Opt. Soc. Am. B, 1995, 12(9): 1628~1633
    [23] S.R.Singh, D.N.Christodoulides. Evolution of Spatial Solitons in Biased Photorefractive Media. Opt. Commun., 1995, 118(5): 569~576
    [24] M.Shih, M.Segev, G..C.Valley, et al. Observation of Two-Dimensional Steady-State Photorefractive Screening Solitons. Electron. Lett., 1995, 31(30): 826~827
    [25] M.Shih, P.Leach, M.Segev, et al. Two-Dimensional Steady-State Photorefractive Screening Solitons. Opt. Lett., 1996, 21(5): 324~326
    [26] Z.Chen, M.Mitchell, M.Shih, et al. Steay-State Dark Photorefractive Screening Solitons. Opt. Lett., 1996, 21(9): 629~631
    [27] K.Kos, H.Meng, G..Salamo, et al. One-dimensional Steady-State Photorefractive Screening Solitons. Phys. Rev. E, 1996, 53(5): R4330~R4333
    [28] Z.Chen, M.Segev, S.R.Singh et al. Sequential Formation of Dark Potorefractive Spatial Solitons: Experiments and Theory. J. Opt. Soc. Am. B, 1997, 14(6): 1407~1417
    [29] G.C.Valley, M.Segev, B.Crosignani,et al. Dark and Bright Photovoltaic Spatial Solitons. Phys. Rev. A, 1994, 50(6): R4457~R4460
    [30] M.Taya, M.C.Bashaw, M.M.Fejer, et al. Observation of Dark Photovoltaic SpatialSolitons. Phys. Rev. A, 1995, 52(4): 3095~3100
    [31] M.Segev, G.C.Valley, M.C.Bashaw et al. Photovoltaic Spatial Solitons. J. Opt. Soc. Am. B, 1997, 14(7): 1772~1781
    [32] W.L.She, K.K.Lee and W.K.Lee. Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons. Phys. Rev. Lett., 1999, 83(16): 3182~3185
    [33] J.S.Liu, K.Q.Lu, J.Xu, et al. Properties of Screening-Photovoltaic Spatial Solitons in Biased Photovoltaic-Photorefractive Crystals. Proc. SPIE, 1998, 3554: 81~89
    [34] W.E.Torruellas, Z.Wang, D.J.Hagan, et al. Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett., 1995, 74(25): 5036~5039
    [35] R.Schiek, Y.Baek, G.I.Stegeman. One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides. Phys. Rev. E, 1996, 53: 1138~1141
    [36] O.Cohen, R.Uzdin, T.Carmon, et al. Collisions between Optical Spatial Solitons Propagating in Opposite Directions. Phys. Rev. Lett., 2002, 89(13): 133901-1~133901-4
    [37] O.Cohen, T.Carmon, M.Segev, et al. Holographic solitons. Opt. Lett., 2002, 27(22): 2031~2033
    [38] J.S.Liu. Holographic solitons in photorefractive dissipateive system. Opt. Lett, 2003, 28 (22): 2237~2239
    [39] P.A.Belangre, L.Gagnon, C.Pare. Solitary pulses in an amplified nonlinear dispersive medium. Opt. Lett., 1989, 14(17): 943~945
    [40] G.Khitrova, H.M.Gibbs, Y.Kawamura, et al. Spatial soliton in a self-focusing semiconductor gain medium. Phys. Rev. Lett., 1993, 70(7): 920~923
    [41] V.G.Kukushkin. Misaligned laser resonator with inhomogeneous optical components. Sov. J.Quantum Electron, 1987, 17(2): 233~235
    [42] K. Nozaki, N. Bekki. Pattern selection and spatiotemporal transition to chaos in ginzburg-landau equation. Phys. Rev. Lett., 1983, 51(24): 2171~2174
    [43] N.N.Akhmediev, V.V.Afanasjev. Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex ginzburg-landau equation. Phys. Rev. Lett., 1995, 75(12): 2320~2323
    [44] N.N.Akhmediev, V.V.Afanasjev, J M.Soto-Crespo. Singulary and special soliton solutions of the cubic-quintic complex ginzburg-landau equation. Phys. Rev. E, 1996, 53(1): 1190~1201
    [45] J.M.Soto-Crespo, N.N.Akhmediev, V.V.Afanasjev. Stability of the pulselike solutions of the quintic complex ginzburg-landau equation. J. Opt. Soc. Am. B, 1996, 13(7): 1439~1449
    [46]刘思敏,郭儒,许京军.非线性光学及其应用.北京:科学出版社, 2004. 56~125
    [47]许煜寰等.铁电与压电材料.北京:科学出版社, 1974. 102~198
    [48]刘思敏,许京军,郭儒.相干光学原理及应用.天津:南开大学出版社, 2001. 184~232
    [49]钱士雄,王恭明.非线性光学.上海:复旦大学出版社, 2001. 158~164
    [50]石顺祥,关义春,安毓英,过巳吉.光致折射晶体中双光束耦合的动态特性研究.中国激光,1989,16(8):462~467
    [51]周忠祥,孙万钧,孙秀冬等.光折变晶体中双光束耦合时间响应特性的研究.中国激光,1996,23(2):187~192
    [52] N.J.Zabshy, M.D.Kruskal. Interaction of“soliton”in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett., 1965, 15(6): 240~243
    [53]郝中华.光折变空间孤子的理论研究: [博士学位论文].西安:西安电子科技大学图书馆, 2004
    [54] A.Hasegawa, F.Tappert. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers I. Anomalous Dispersion. Appl. Phys. Lett., 1973, 23(3): 142~144
    [55] M.Vaupel, C.Seror and R.Dykstra. Self-focusing in photorefractive two-wave mixing. Opt. Lett., 1997, 22(19): 1470~1472
    [56] M.Vaupel, O.Mandel, N.R.Heckenberg. Two-wave-mixing induced self-focusing in an active photorefractive oscillator. J. Opt. B, 1999, 1(1): 96~100
    [57] G.Shvets, A.Pukhov. Electromagnetically Induced Guiding of Counterpropagating Lasers in Plasmas. Phys. Rev. E, 1999, 59(1): 1033~1037
    [58] D.Taverner, N.G.R.Broderick, D.J.Richardson, et al. All-optical and gate based on coupled gap-soliton formation in a fiber bragg grating. Opt. Lett., 1998, 23(4): 259~261
    [59] Y.D.Wu. New all-optical wavelength auto-router based on spatiall solitons. Opt. Express, 2004, 12(18):4172~4177
    [60] S.V.Serak, N.V.Tabiryan, M.Peccianti, et al. Spatial soliton all-optical logic gates. IEEE.Pho.Tech.Lett., 2006, 18(12):1287~1289
    [61] G.Bartal, O.Cohen, O.Manela et al. Observation of random-phase gap solitons in photonic lattices. Opt. Lett., 2006, 31(4): 483~485
    [62] K.Wieslaw, L.D.Barry, D.Cornelia. Photorefractive Solitons. IEEE. J. Quatu. Electon., 2003, 39(1): 3~12
    [63] M.Morin, G.Duree, G.Salamo, et al. Waveguides Formed by Qusi-Steady Photorefractive Spatial Soliton. Opt. Lett., 1995, 20(20): 2066~2068
    [64]王程,刘劲松,张光勇等.光折变空间孤子的顶侧面观测法.物理学报,2007,56(1): 258~262
    [65] J.S.Liu, D.Y.Zhang, C.H.Liang. Stability of Bright Screening Photovoltaic Spatial Solitons. Chinese Physics, 2000, 9(9): 667~671
    [66]许超彬,郭旗. (1+2)维强非局域空间光孤子的相互作用.物理学报, 2005, 54(11): 5194~5200
    [67] C.F.Hou, Y.B.Pei, Z.X.Zhou, et al. Bright-dark incoherently coupled photovoltaic soliton pair. Chin. Phys., 2005, 14(2):349~352
    [68] J.S.Liu, H.L.Zhang, G.Y.Zhang and C.Wang. Evolution and stability of spatial solitons in a photorefractive two-wave mixing system. Chin. Phys., 2006, 15(2): 394~402
    [69]郭旗,张霞萍,胡巍,寿倩.基于强非局域空间光孤子特性的光子开关和光子逻辑门.物理学报, 2006, 55(4): 1832~1839
    [70] Z.Chen, M.Segev, T.H.Coskun, et al. Coupled photorefractive spatiall-soliton pairs. J.Opt.Soc.Am.B, 1997, 14(11): 3066~3077
    [71]张绘蓝,张光勇,王程等.全息明孤子的波导特性.物理学报, 2007, 56(1): 236~239
    [72] J.S.Liu. Existence and stability of ragid photovoltaic solitons in an open-circuit amplifying or absorbing photovoltaic medium. Phys. Rev. E, 2003, 68(2): 026607-1~ 026607-7
    [73] P.Delaye, A.Blouin, D.Drolet, et al. Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field. J.Opt.Soc.Am.B, 1997, 14(7):1723~1734
    [74] M.Gross, F.Ramaz, B.C.Forget et al. Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media. Optics Express, 2005, 13(18): 7097~7122
    [75]崔三烈.光纤传感原理与应用技术.哈尔滨:哈尔滨工程大学出版社, 1995. 95~170
    [76]王惠文.光纤传感技术与应用.北京:国防工业出版社, 2001. 24~81
    [77] N.V.Kukhtarev, V.B.Markov, S.G.Odulov, et al. Holographic storage in electro-optic crystals. Beam coupling and light amplification. Ferroelectrics, 1979, 22: 961~964
    [78] P.Refregier, L.Solymar, H.Rajbenbach, et al Two-beam coupling in photorefractive Bi12SiO20 crystal with moving grating: theory and experiments. J.Appl.Phys., 1985, 58(1): 45~57
    [79] M.Yamauchi, K.Hibino. Measurement of air turbulence for on-machine interfereometry. Appl. Optics, 2003, 42: 6869~6876
    [80] H.Schillinger, R.Sauerbrey. Electrical conductiveity of long plasma channels in air generated by self-guided femtosecond laser pulses in air. Appl. Phys. B, 1999, 68: 753~756
    [81] S.Skupin, L.Berge, U.Peschel, et al. Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters. Phys.Rev.E, 2004, 70: 046602
    [82] J.W.Strohbehn. Remote sensing of clear-air turbulence. J. Opt. Soc. Am., 1970, 60(7): 948~950
    [83] H.EI-Kashef, G.E.Hassan, I.EI-Ghazaly. Mach-Zehnder optical system as a sensitive measureing instrument. Appl.Optics, 1994, 33(16): 3540~3544
    [84] J.Frejlich, A.A.Kamshilin and P.M.Garcia. Selective two-wave mixing in photorefractive crystal. Opt.Lett., 1992,17(4): 249~251
    [85] L.Solymar, D.J.Webb, A.Grunnet-Jensen. The Physics and Applications of Photorefractive Materials. Clarendon: Oxford, 1996. 24~85
    [86] X.Yue, A.Adibi, T.Hudson, et al. Role of cerium in lithium niobate for holographic recording. J.Appl.Phys., 2000, 87(9): 4051~4055
    [87] C.Gregor, E.Matthias, K.Armin, et al. Real-time holographic interferometry with double two-wave mixing in photorefractive crystals. Appl. Opt., 2000, 39(13): 2091~ 2100
    [88] H.Su, Y.M.Kim, K.T.Chong. A novel method for high-performance fault detection of induction machine. SPIE, 2005, 6041: 60412E
    [89] F.M.Atay, T.Durakbasa, A.Duyar. A novel method for fault detection in electrical motors. Sound and vibration, 2001, 35(2): 26~29
    [90]赵志洲,赵玉华,李海宝.基于振动测试的桥梁健康状况测量.煤炭技术, 2006,25(7): 95~96
    [91]王国营.大型水坝实时检测系统的设计与实现.计算机工程与应用, 2006, 25: 194~196
    [92] A.D.Kersey, M.A.Davis, H.J.Patrick, et al. Fiber grating sensors. J. Lightwave Technol., 1997, 15:1442~1463
    [93] N.Takahashi, K.Yoshimura, S.Takahashi. Detection of ultrasonic mechanical vibration of solid using fiber bragg grating. Jpn. J. Appl. Phys., 2000, 39: 3134~3138
    [94] N.Takahashi, W.Thongnum, S.Takahashi. Temperature stabilization of fiber bragg grating vibration sensor with automatic wavelength control. SPIE, 2002. 4920
    [95]张昕明,余有龙.光纤光栅传感系统信号解调技术.光电子技术与信息, 2002, 15(4): 17~20
    [96]王立新,沈竹.光纤光栅振动传感器的新型解调方案.武汉理工大学学报, 2004, 26(6): 39~41
    [97] L.A.Ferreier, J.L.Santos, F.Farahi. Pseudoheterodyne demodulation technique for fiber bragg grating sensor using two matched gratings. IEEE Photon. Techno. Lett., 1997, 9(4): 487~489
    [98]盛秋琴,施可彬.光纤光栅振动传感匹配检测方法的研究.光学学报, 2002, 22(7): 847~852
    [99] A.D.Kersey, W.Morie. High resoluteion fiber-grating based strain sensor with interfereometric wavelength-shift detection. Electrion Lett, 1992, 28(3): 236~238
    [100]李松晶,朱冬.含气泡和气穴的液压管路瞬态实验研究.机床与液压, 2006, 8: 146~147
    [101]林伟国,郑志受.基于动态压力信号的管道泄漏检测技术研究.仪器仪表学报, 2006, 27(8): 907~910
    [102]李晓平,宫敬.混输管线气量瞬变过程研究.油气田地面工程, 2006, 25(3): 15~16
    [103]黄章勇.光纤通信用光电子器件和组件.北京:北京邮电大学出版社, 2001. 134~158
    [104] G.A.Koepf. Space laser communication: a review of major programs in the unitied states. International journal of electronics and comm. unications, 2002, 56(4): 232~242
    [105]王佳,俞信.自由空间光通信技术的研究现状和发展方向综述.光学技术, 2005,31(2): 259~265
    [106] J.C Ricklin, F.M.Davidson. Bit error rate in a free-space laser communication system with a partially coherent signal beam. Optics in Atmospheric Propagation and Adaptive Systems V, SPIE, 2003, 4884: 95~102
    [107]左昉,谢福增.二路收发的空间光通信系统.激光与红外, 2004, 34(6): 419~421
    [108] P.YEH. Two-Wave Mixing in Nonlinear Media. IEEE J.Quan.Elect., 1989, 25(3): 484~519
    [109] H.Kogelnik. Coupled Wave Theory for Thick Hologram Gratings. Bell System Technical Journal, 1969, 48(9): 2909~29475
    [110]刘思敏,郭儒,凌振芳.光折变非线性光学.北京:中国标准出版社, 1992. 5~40
    [111]过巳吉,石顺祥,关义春,安毓英.光致折射晶体中高速调制光束传输和放大的理论研究.光学学报, 1990, 10(4): 299~305
    [112]石顺祥,关义春,刘娟,过巳吉.光折变晶体中高速调制光放大特性的研究.光学学报, 1991, 11(9): 805~809
    [113]丁莉芸,姜德生,黄俊.掺杂CdS纳米粒子聚合物的光折变效应研究.光学学报, 2006, 26(10):1526~1531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700