用户名: 密码: 验证码:
高热负载水冷弧矢聚焦双晶单色器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着上海第三代同步辐射光源(SSRF)光束线工程的建设,作为光束线关键设备之一的高精度晶体单色器需求数量将达到几十台。而涉及诸多关键技术的高精度晶体单色器,目前还主要依赖从国外进口,所以自行研制高精度的晶体单色器势在必行。本论文将在上海光源X射线衍射光束线(BL1481)和小角散射光束线(BL1681)中的水冷弧矢聚焦单色器研制过程中,主要从以下几个方面对高精度晶体单色器的若干关键技术进行了研究。
     1.探讨了高热负载热缓释技术中不同冷却介质和不同冷却结构,分析了晶体热载变形对单色器的能量分辨影响,归纳总结了各自的优缺点,提出了第一晶体高精度定向切槽、扩散焊接特殊加工技术,降低了晶体热载变形,提高了晶体的衍射面面形精度及衍射性能。
     2.为提高实验站样品处光斑的通量,深入分析了晶体压弯聚焦机构的特点,提出了柔性铰链传递弯矩进行晶体弯曲聚焦技术,实现了光束的水平聚焦,使单色器能够接收较大发散度的入射光束,提高了样品处的光子通量。
     3.针对光束线对单色器的高可靠性和高稳定性要求,分析了晶体偏离理想位置给Bragg衍射带来的影响,提出了晶体投角、滚角和摆角精密微调及固定出口技术,以获得高精度的光斑位置。
     4.在前面几章的理论研究基础之上,将理论成果应用到水冷弧矢聚焦单色器的工程实践中。以线站对单色器性能指标要求为设计目标,采用有限元分析软件对晶体结构参数进行了优化设计,解决了晶体直接水冷却、弧矢压弯聚焦、固定光束出射口和精密微调机构等关键技术问题,研制成功了国内第一台运用于工程中的水冷弧矢聚焦双晶单色器,其主要技术指标达到或超过国际同类设备的水平,已在上海光源调试成功,投入使用。
Many high precision double crystal monochromators(DCM) will be needed in the SHANGHAI 3~(rd) generation synchrotron radiation beamlines, with the Projects being construction.However.High precision DCM involved several key techniques has been imported from foreign country at present.So the developing of high precision DCM dependent ourselves in internal is imperative under the situation.
     In this dissertation, several key techniques of high precision DCM are presented on the development of sagittal focusing DCM with direct water cooling will be used in the BL14B1 and BL16B1 of SSRF.They are includes several aspects:
     Firstly,different cooling mediums and different structures for High Heat-load cooling technology have been discussed,influence of deformance due High Heat-load for energy resolution of DCM has been analysed,fault&default of mediums and structures' have been summarized,high precision direction incision and diffusion banding technology for Si crystal had been puts forward,deformance due High heat-load had been minished,and diffraction surface precision and diffracted performance of crystal had been advanced.
     Secondly ,bending focusing mechanism had been deeply analysed in order to increasing beam flux,bending focusing technology using hinge passed bending moment had been put forward,horizontal focused beam had been achieved,divergence of incidence beam of DCM had been enlarged,energy resolution of monochromatic beam had been increased.
     Thirdly,aimed at high reliability and stability requirement of DCM,influence of crystal deviation from ideal position for Bragg diffraction had been analysed,precision pitch,roll,and yaw adjustment and Fixed-exit technologies had been put forward,in order to achieving high precision beam position.
     On the basis of the theory of ahead charpters, sagittal focusing double crystal monochromator with direct water cooling has been designed and manufactured used to X-Ray diffraction beamline.Aimed to the requirements of monochromator performance,structure parameters of crystal had been optimized by FEA ,several key techniques had been solved,such directed water cooling of crystal,saggital bending focusing,Fixed-exit,and precision adjustment mechanism.The first saggital focusing and directed water cooling DCM used in project had been successfully developed and manufactured in internal,the main technic indexs had been achieved or exceeded the level of international congeneric equipments.
引文
1.马礼敦,杨福家.同步辐射应用概论[M].上海:复旦大学出版社,2001
    2.徐朝银.同步辐射光学与工程[M].中国科学技术大学国家同步辐射实验室(内部教材),2004
    3.E.E.Koch,et al.,Handbook on Synchrotron Radiation[M],Vol.1A(chapt 1-6),1983;G.V.Marr et al.,Vol2(chapt2),1987;G.Brown,Vol.3(chapt2-4),1991
    4.G.margaritondo.Introduction to synchrotron radiation.New York:Oxford University Press,1988.
    5.唐鄂生,同步辐射的科学应用与第三代同步辐射光源.物理,1995,24(7):383-391
    6.冼鼎昌.同步辐射应用的发展.物理,1995,24(11):642-650.
    7.国家上海同步辐射中心(筹),上海光源初步设计,2004年
    8.S.Krinsky,M.L.Perlman,R.E.Watson.Charecteristics of synchrotron radiation and of its source.Handbook on syncjrotron radiation,Vol.1,north Holland,Amsterdam,chapter 2,1983
    9.K.J.Kim.X-ray data booklet.Lawrence Berkeley Laboratory Pub.490,4.1-4.16,1985
    10.Tuncer kuzay.Functional description of APS beamline front ends.ANL/APS/TB-5
    11.Peatman,William Burling.Gratings,mirror,and slits:beamline design for soft X-ray synchrotron radiation sources.Amsterdam:Gordon and Breach Science Publishers,c1997.
    12.Mills,Dennis M.Third-generation hard x-ray synchrotron radiation sources:source properities,optics,and experimental techniques.New York:Wiley,c2002.
    13.Herman WINICK.Overview of synchrotron radiation facilities outside the USA.Nucl.Instum.Methods.1990,A291(1):487-492.
    14.M.Shleifer.et.al.Mechanical design of a high-resolution tunable crystal monochromator for the multiple energy computed tomography project.Nucl.Instum.Methods.1994,A347(1):356-359.
    15.S.Keitel.et.al.Si(1-x)Ge_x gradient crystals:a new monochromator material for hard X-rays.Nucl.Instum.Methods.1998,A41(1):427-430.
    16.Li-jun lu Prefocusing optics for soft-X-ray synchrotron-radiation monochromators Applied optics.1995,35(19):3267-3634.
    17.T.TANAKA et.al.YB_(66):A nev soft-X-ray monochromator for synchrotron radiation.Nucl.Instum.Methods.1990,A291(1):243-249.
    18.G.BONFANTE.High-resolution soft-x-ray monochromators of new design.Nucl.Instum.Methods.1990,A291(1):213-218.
    19.Helio Tolentino.et.al.High-resolution monochromator for soft and hard X rays.Rev.Sci.Instrum.1992,63(1):946-949.
    20. MARC LEMONNIER. et.al. High vacuum two crystal soft X-ray monochromator. Nucl. Instum. Methods. 1978,152(1):109~111.
    21.T.Tanaka, et.al. YB66:A new soft-X-ray monochromator for synchrotron radiation. Nuclear . Instuments and . Methods. 1990, A291(1):243~249.
    22.G.Bonfante..High-rsolution soft-X-ray monochromator of new design. Nuclear . Instuments and . Methods. 1990, A291(1):213~218.
    23.H.Tolentino, et.al.High resolution monochromator for soft and hard X-rays. Review Scientific. Instruments. 1992,63(1): 946-949.
    24.M.Lemonnier, et.al.High vacuum two crystal soft X-ray monochromator. Nuclear . Instuments and . Methods. 1978,152(1):109~lll.
    25.H.Winick.Overview of synchrotron radiation facilities outside the USA. Nuclear . Instuments and . Methods. 1990, A291(1):487~492.
    26.M.Shleifer, et.al.Mechanical design of a high-resolution tunable crystal monochromator for the multiple energy computed tomography project. Nuclear .Instuments and Methods. 1994, A347(1):356~359.
    27.S.Keitel, et.al.Sil-XGeX gradient crystals:a new monochromator material for hard X-ray. Nuclear. Instuments and . Methods. 1998, A41(1):427~430.
    28.D.M.Mills.Third-generation hard x-ray synchrotron radiation sources: properties, optics, and experimental techniques[M]. John Wiley & sons, NY, 2002
    29.Experimental Facilities Division Progress Report (1996-97)[R].APS,BNL,1997:APS-TB-30
    30.N.Watanabe, M.Suzuki, et al. Rotated-inclined focusing monochromator withsimultaneous tuning of asymmetry factor and radius of curvature over a widewavelength range[J]. J.Synchrotron Rad.Vol.6(1999):64-68
    31.Lu Li-Jun. Simple plane grating monochromator for synchrotron radiation. Nucl. Instum. Methods. 1994, A339(1):604~609.
    32.Werner Jark. et.al. Optimisation of a spherical grating monochromator for soft X-ray microscopy applications. Nucl. Instum. Methods. 1994, A349(1):263~268.
    
    33.Herman WINICK. Overview of synchrotron radiation facilities outside the USA. Nucl. Instum. Methods. 1990, A291(1):487~492.
    34.W.D.LEE. et.al. Performance of a gallium-cooled 85o inclined silicon monochromator for a high power density X-ray beam. Nucl. Instum. Methods. 1992, A320(1):381-387.
    35.J.Hrdy. et.al. Properties of an inclined double crystal monochromator for synchrotron radiation. Nucl. Instum. Methods. 1993, A327(1):605~611.
    36.Cullie J.SPARKS. et.al. Sagittal focusing of synchrotron X-radiation with curved crystals. Nucl. Instum. Methods. 1982,194(1): 73-78.
    37.T.A. Callcott. A simple variable line space grating monochromator for synchrotron light source beamlines. Nucl. Instum. Methods.1993, A319(1): 128-134.
    38.R. Reininger. et.al. A soft X-ray grating monochromator for undulator radiation. Nucl. Instum. Methods. 1990, A288(1):343~348.
    39.J.van Elp. et.al. Optical layout and resolution of the ASTRID plane folding mirror spherical grating monochromator.Nucl. Instum. Methods. 1995, A381(1):548~553.
    40.F. Lama. Optical design of an extended range plane grating monochromator for a bending magnet beamline. Nucl. Instum. Methods.1994, A339(1):610~616.
    41.L.R.Hughey. Improved resolution and flexibility of the SURF II high-throughput 2-m normal-incidence monochromator. Nucl. Instum. Methods.1994, A347(1):294~298.
    42.J. FROUIN. et.al. A special design for a wide range monochromator on the wiggler beamline at lure-DCI. Nucl. Instum. Methods. 1988, A266(1):484~490.
    43.A.A.Antonov. et.al. Focusing shaped pyrographite monochromators in synchrotron radiation experiments. Nucl. Instum. Methods. 1991, A308(1):442~446.
    44.Tetsuya I.,High-resolution X-ray monochromator. Nuclear. Instuments and . Methods. 2005, A547:42~49.
    45.S.Baik, A.Kira, et al. Proc. of 9th International Conference on SynchrotronRadiation Instrumentation (SRI2006) [C]. AIP Conference Proceedings,879(2007)
    46.T.Warwick, J.Stohr, et al. Proc. of 8th International Conference on SynchrotronRadiation Instrumentation (SRI2003) [C]. AIP Conference Proceedings,705(2004)
    47.S.Goto, et al.Proc.of 4th International Workshop on Mechanical EngineeringDesign of Synchrotron Radiation Equipment and Instrumentation(MEDSI2006)[C].Spring-8,Japan, 2006
    48.Y. Dabin, et al. Proc. of 3th International Workshop on Mechanical EngineeringDesign of Synchrotron Radiation Equipment and Instrumentation (MEDSI2004)[C]. ESRF, France, 2004
    49.Hitoshi Yamaoka. et.al. Performance of a bender for a water cooled monochromator crystal at a high power wiggler beamline of the ESRF. Rev. Sci. Instrum. 1995,66(2): 2267-2269.
    50.Zhibi Wang. Thermal and deformation analyses of a cryogenically cooled silicon monochromator for high-heat-flux synchrotron sources. Rev. Sci. Instrum. 1995, 66(2): 2092-2094.
    51.A. K. Freund. et.al. Performance of very thin silicon single-crystal foils under high X-ray power density. Rev. Sci. Instrum. 1992, 63(1): 437-439.
    52.Gerard Marot. et.al. Liquid nitrogen cooling of monochromator crystals exposed to intense synchrotron Nucl. Instum. Methods. 1991,A306(1):386~390.
    53.John.Arthur.Experience with microchannel and pin-post water cooling of silicon monochromator crystals. Optical Engineering. 1995, 34(2): 441-451.
    54.J.CHRZAS. et.al. Modeling the performance of water and liquid-gallium-cooled X-ray optical components-a comparison with experiment. Nucl. Instum. Methods. 1990, A291(1):300~304.
    1.R.K.Smither.Sumarry of a workshop on high load X-ray optics held at Argonne National Labortory.Nuclear Instruments and Methords. 1990,291:286-299.
    2.G.S.Knapp,et.al.High resolution monochromator systems using thermal gradient induced variable bragg spacing. Nuclear Instruments and Methords.l986,A-246(1):365-367.
    3.G.Lann,A chromatic premirror system for a double-crystal monochromator. Nuclear Instruments and Methords.l990,A291(1):225-227.
    4.S.Joksch,et.al.Heating effects of monochromator crystals at a high-intensity wiggler beam line. Nuclear Instruments and Methords. 1990, A291(1):325-331.
    5.MacDOwell A.A.et.al.,Soft x-ray beamline for surface EXAFS studies in the energy range 60 ≤ hv ≤ 11100 eV at the Daresbury SRS,Review of Scientific Instruments. 1986,57(11) :26671 -2679.
    6.J. Susini. Design parameters for hard X-ray mirror: The European Synchrotron Radiation Facility Case. Optical Engineering, 1995, 34(2): 361-376
    7.R.K.Smither.Sumarry of a workshop on high load X-ray optics held at Argonne National Labortory.Nuclear Instruments and Methords. 1990,291:286-299.
    8.P.Carpentier,et.al.Synchrotron monochromator heating problem,cryogenic cooling solution. Nuclear Instruments and Methords.2001, A456(1):163-176.
    9.R. K. Smither, et al. Liquid gallium cooling of silicon crystal in high intensity photon beams. Review of Scientific Instruments. 1989,60(7): 1486-1492
    10.H.Yamaoka, et al. Experimental results from a water-cooled monochromator with micro-channels on an ESRF wiggler beamline. Nuclear Instruments and Methods. 1994, 351:559-564
    11.K. Takeshita, et al. Finite element analysis of thermal distortion of directly water-cooled silicon crystal monochromator. SPIE. 1992, 1739: 528-531
    12.T.Oversluizen, et al. Performance of a directly water-cooled silicon crystal for use in high-power synchrotron radiation applications. Review of Scientific Instruments. 1989, 60(7): 1493-1500
    13.J. Arther. Experience with microchannel and pin-post water cooling of silicon monochromator crystal. Optical Engineering. 1995,2: 441-444
    14.L.E.Berman, M. Hart. Performance of water jet cooled silicon monochromators on a multipole wiggler beamline at NSLS. Nuclear Instruments and Methods. 1991, 300: 415-421
    15.L.E.Berman,M.Hart.Adaptive.crystal.optics for high power synchrotron sources. Nuclear Instruments and Methods. 1991, 302: 558—562
    16.T.Tonnessen, et al. Cooled silicon crystal monochromator test results. SPIE. 1992, 1739: 622-627
    17.K.Tamasaku,et.al.Performance of crysgenically cooled monochromators at Spring-8.SPIE 2002:132-141.
    18.C.Gordon.Analysis and design of precision optical components in high-intensity, third-generation x-ray beamlines.Chicago:The University of Illinois,2001.31 -36
    19.T.Mochizuki,et.al.Cryogenic cooling monochromators for the Spring-8 undualtor beamlines. Nuclear Instruments and Methods.2001,467-468:647-649
    20.P.Carpentier,et ac.Synchrotron monochromator heating problem,cryogenic cooling solution. Nuclear Instruments and Methods A456(2001)163-176.
    21. High-heat-load Optics, User Technical support of APS.
    1.E.S.Karakozov.Caleulation of the contact surface in the solid Phase welding of metale[J].Weld.Prod.,1973,20(2)
    2.K.J.Ronka,F.J.J.Vanloo,MetallurgiealandMaterialsTransaetionsA[J],1998,29:2951-2956
    3.张杰等.焊前处理方式对LF6铝合金扩散焊的影响[J].材料科学与工艺,1995,4:108-111,
    4.Simbo M.,et al.Silicon-silicon direct bonding methord,J.1986,Appl.Phys.,60:2987
    5.M.Krisch.et.al.Study of dynamically bent crystals for X-ray focusing optics.Nucl.Instum.Methods.1991,A308(1):378-381.
    6.M.Krisch.et.al.Study of dynamically bent crystals for X-ray focusing optics.Nucl.Instum.Methods.1991,A308(1):208-213.
    7.陈春荣.晶体物理讲义长春光机学院1989.52-66.
    8.Albert Henins.Variable radius curved crystal mount.Rev.Sci.Instrum.1987,58(7):1173-1176.
    9.T.Iwazumi.et.al.Double-crystal monochromator for high-power and high-energy synchrotron radiation.Rev.Sci.Instrum.1992,63(1):419-422.
    10.Salvador.Ferrer.et.al.Evaluation of the anticlastic curvature of elastically bent crystals for X-ray focusing optics.Nucl.Instum.Methods.1992,A311(1):444-447.
    11.M.SANCHEZ DEL RIO.et.al.Ray tracing results for a doubly focusing independent crystal X-ray monochromator.Nucl.Instum.Methods.1990,A291(1):209-212.
    12.J.L.Hazemann.et.al.Modelisation by finite elements of sagittal focusing.Nucl.Instum.Methods.1995,B97(1):547-550.
    13.J.P.Quintana.et.al.Anticlastic curvature measurements on unribbed crystal optics for synchrotron radiation.Rev.Sci.Instrum.1995,66(2):2188-2189.
    14.Federico Zontone.et.al.Heat load and anticlastic effect compensation on an ESRF monochromator:an exhaustive ray-tracing study for a meridional-sagittal geometry.Rev.Sci.Instrum.1992,63(1):501-504.
    15.Koyama,A.et.al.Improvement of a sagittally focusing double-crystal monochromator.Rev.Sci.Instrum.1991,63:916-919.
    16.Matsushita,T.et.al.Sagittally focusing double-crystal monochromator with constant exit beam height at the photon factory.Nucl.Instum.Methods.1986,A246:377-379.
    17.Pascarelli,S.et.al.X-ray Optics of a Dynamical Sagittal-Focusing Monochromator on the GILDA Beamline at the ESRF.J.Synchrotron Rad.1996,3:147-155
    18.Fumkawa,et.al.Spring-8 Annual Report,1995:191-192.
    19.Uruga,T.et.al.X-ray optics research and development for Spring-8 beamlines.Rev.Sci.Instrum.1995,66:2254-2256.
    20.Yabashi.et.al.SPring-8 standard x-ray monochromators.Proc.SPIE,1999,3773:2-13
    21.C.J.Sparks.et.al.X-ray monochromator geometry for focusing synchrotron radiation above 10key.Nucl.Instum.Methods.1980,172(1):237-242.
    22.C.J.Sparks.et.al.Sagittal focusing of synchrotron x-radiation with curved crystals.Nucl.Instum.Methods.1982,194(1):73-78.
    23.G.M.Lamble,et.al.Operation of a dynamically bent sagittally focusing double crystal monochromator for XAFS studies.Rev.Sci.Instrum.1992,63(1):880-884.
    24.徐朝银,X射线衍射和散射光束线的环面聚焦镜设计,中国科学技术大学学报,2000,30.162-168.
    25.刘绍义等,X射线环面聚焦镜压弯调整与面形测量.核技术,2001,24(7):572-574
    26.邓小国等,超环面聚焦镜压弯装置的优化设计.光子学报,2006,36(5):797-800
    27.J.Susini,et.al.Compact active/adaptive x-ray mirror:Bimorph piezoelectric flexible mirror.Rev.Sci.Instrum.1995,66(2):2229-2231.
    28.J.M.PAROS,et al.How to design Flexure Hinges.Machine Design.37.1965.10.Jankowski A F,
    29.J.M.PAROS,et al.How to design Flexure Hinges.Machine Design.37.1965.
    30.C.J.Sparks.et.al.X-ray monochromator geometry for focusing synchrotron radiation above 10kev.Nucl.Instum.Methods.1980,172(1):237-242.
    31.C.J.Sparks.et.al.Sagittal focusing of synchrotron x-radiation with curved crystals.Nucl.Instum.Methods.1982,194(1):73-78.
    32.邓小国等,基于柔性铰链的压弯模型研究.核技术,2007,30(5):411-413
    33.Clemens Schulze,et.al.Proc.SPIE 3448:156-165.
    34.G.E.Ice.et.al.Nucl.Instum.Methods.1984,vol 222(1):121-127.
    35.Jean,B.et.al.Optical Engineering.Vol.34 No.2:361-375
    36.Malcolm,R.et.al.Optical Engineering.Vol.32 No.8:1981-1988
    37.Yasuhiro,Y.et.al.Fixed-height exit bender of synchrotron X-rays above 40 KeV.J.Synchrotron Rad.2001,8:18-21
    38.N C DAS, et.al. Design, fabrication and testing of elliptical crystal bender for the EXAFS beam-line at INDUS-II synchrotron source. Sadhana, 2004,29(5): 545-557.
    
    39.S.Bernstorff. et.al. Fixed-exit double-crystal monochromator for the diffraction beamline at ELETTRA: a new concept for crystal movements. Rev. Sci. Instrum. 1995, 66(2): 2065-2068.
    
    40.PL.COWAN.et.al. A UHV compatible two-crystal monochromator for synchrotron radiation. Nucl. Instum. Methods. 1986, A208(1):349~353.
    41.D. Shu. et.al. UHV compatible compact double-crystal monochromator at BFPC diffraction and scattering beamline 4B9A. Rev. Sci. Instrum. 1989, 60(7):2054~2057.
    42.S.Bernstorff. et.al. Fixed-exit double-crystal monochromator for the diffraction beamline at ELETTRA: a new concept for crystal movements. Rev. Sci. Instrum. 1995, 66(2): 2065-2068.
    43.Tadashi, M. et.al. Sagittally focusing double-crystal monochromator with constant exit beam height at the photon factory. Nucl. Instum. Methods. 1986,A246(1):337~379.
    44.H.Oyanagi. et.al Variable exit beam height double-crystal monochromator for high-power insertion devices. Rev. Sci. Instrum. 1996,67(2): 350-354.
    
    45.T.Matsushita, T.Ishikawa, H.Oyanagi, Nucl. Instr. and Methods, 1986,A246:377-381
    46.M.Nomura, A.Koyama, KEK Report 95-15,February 1996
    1.Holman,J.P.Heat transfer.9thed.New York:McGraw-Hill companies,2002.
    2.Olivier.P,et.al,Feedback system of a liquid-nitrogen-cooled double-crystal monochromator:design and performances.J.Synchrotron Rad.2006,Vol13:59-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700