用户名: 密码: 验证码:
重庆石灰岩地区柏木幼苗对水分胁迫的生理生态适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰岩地区是三大生态脆弱带之一,该地区岩石裸露率高,土壤瘠薄,保水能力极差,临时性干旱经常发生。能够在石灰岩地区这种干旱环境中生长的植物,它们发展了特殊的适应能力,通过自身器官的保护运动、形态重塑以及代谢过程的调整来适应低水多变的环境,形成特殊的适应机制。利用适生植物自身的抗旱能力来进行石灰岩地区植被的恢复和重建,成为石灰岩生态研究中的重要问题。不同强度或不同类型的水分胁迫很可能导致植物不同程度或方式上的适应性反应。因此,为了全面而深入地了解石灰岩山地适生物种对水分胁迫的适应机制,我们以柏木实生苗为材料,通过盆栽水分受控实验,设定了对照、轻度干旱、中度干旱和重度干旱四个不同的水分胁迫强度,以及胁迫初期、胁迫中期和胁迫末期三个胁迫历时,对其在水分胁迫下的生长特性、光合特性、抗氧化系统、渗透调节等生理特性及复水条件下其修复的可能能力,系统研究一系列适应性反应来揭示柏木的抗旱机制,为石灰岩地区的植被恢复提供理论依据和技术支持。我们得出的主要结果如下:
     1.水分胁迫初期,水分胁迫并不能影响柏木幼苗的根长、根系表面积、根系平均直径、根系体积等根系大小参数;但是随着胁迫程度的加剧,包括胁迫历时和胁迫强度的加剧,根系大小参数呈降低趋势。柏木幼苗的苗高和地径都随着胁迫强度的加剧而降低。地上部分的生物量在胁迫初期和胁迫中期并没有受到影响,而胁迫末期干旱处理才与对照有显著差异,但地下部分的生物量随胁迫程度的加重而减低。柏木幼苗的总生物量基本上随着水分胁迫的加剧而降低,但在胁迫初期和中期的轻度干旱下其生物量并没有受到影响。当胁迫强度不够严重时,幼苗的地下部分生物量与地上生物量之比呈降低趋势,但胁迫很严重时,根冠比有增大的趋势。胁迫末期的中度干旱受到水分胁迫影响的根系表面积和根系体积在复水后能够恢复到对照水平,而胁迫中期和胁迫末期的重度干旱复水后,根系所有的形态参数不能够恢复到对照水平。复水后柏木幼苗的苗高没有恢复,而地径有一定程度的恢复。复水促进柏木幼苗根冠和总干物质积累,干旱越重,促进作用越明显,且复水后根冠比升高。
     2.柏木幼苗在水分胁迫下净光合速率、蒸腾速率均下降,气孔导度也是随着土壤干旱的发展而降低,但并没有发现胞间CO_2浓度和气孔导度同时降低,相反在胁迫初期和胁迫中期,当气孔导度降低到某一值时,胞间CO_2浓度出现显著的增高,而在胁迫末期维持比较稳定的值。在胁迫初期和胁迫中期的重度干旱以前,随着对照,轻度干旱和中度干旱胁迫程度的加剧,Ls值增大,但在重度干旱下,Ls值降低。而在胁迫末期,与胁迫初期和中期的重度干旱一致,Ls值降低。叶肉导度Pn/Ci在胁迫初期,重度干旱下才开始显著下降,胁迫中期,中度干旱下开始下降,而胁迫末期在轻度干旱下就开始下降。胁迫初期,在重度干旱之前,我们以内在水分利用效率来计算柏木幼苗的水分利用效率。水分利用效率随着水分胁迫梯度而增加。胁迫中期,在重度干旱之前,水分利用效率几乎没有受到水分胁迫的影响,仍然保持着与对照相同水平。而对于胁迫初期和胁迫中期的重度干旱、胁迫末期这几个阶段,我们以瞬时水分利用效率来描述柏木幼苗的水分利用效率,水分利用效率都表现出显著降低的趋势。复水后,光合速率、蒸腾速率、气孔导度和水分利用效率等生理指标都有不同程度的恢复。其中在中度水分胁迫条件前,幼苗各指标的恢复程度较大,出现了补偿效应。而在重度水分胁迫条件下,柏木幼苗的生理功能受损,上述各指标的恢复程度均较小。
     3.柏木幼苗的色素含量都在水分胁迫下升高,且升高幅度随着胁迫程度的增加而增加,我们认为与胁迫时间和叶片浓缩有关。复水后叶片扩展生长大大加快,含水量增加,色素含量降低。类胡萝卜素和叶绿素的比率由于水分胁迫而增加。复水后,类胡萝卜素和叶绿素的比率降低。叶绿素a/b并没有随着土壤含水量的变化而发生变化。
     4.正常浇水即对照组柏木幼苗的Fv/Fm在0.81-0.82之间,而水分胁迫下柏木幼苗的Fv/Fm显著降低,且胁迫越重,降低幅度越火,同样Fv/F0也表现出相同的趋势。柏木幼苗的光化学猝灭(qP)随着水分胁迫的加剧而呈下降趋势,胁迫越重,影响越严重。NPQ在整个胁迫过程中呈上升趋势,且胁迫越严重,上升的幅度越大。φPSⅡ和ETR也都随着水分胁迫的加剧而呈降低趋势,且胁迫越严重,降幅越大。复水后,柏树幼苗的荧光参数Fv/F0,Fv/Fm,qp,NPQ,φPSⅡ和ETR等在胁迫程度较轻时都能恢复到对照水平,而胁迫严重时,这些指标也能得到恢复,但不能完全恢复到对照水平。
     5.柏木幼苗随着水分胁迫的加剧RWC呈下降趋势,且胁迫越严重,下降幅度越大,复水后,胁迫程度较轻时WRC能恢复到对照水平,而重度胁迫下不能完全恢复到对照水平。在土壤干旱胁迫的进程中,柏木幼苗针叶中自由水/束缚水下降,叶片组织的水分由自由水向束缚水转化,束缚水含量升高。而复水后,柏木幼苗立即增加自由水的含量,以此来恢复其正常的生长。随干旱处理时间的延长,柏木幼苗的可溶性蛋白含量呈先增加后降低的趋势。在胁迫处理初期植物体内的不溶性蛋白变为可溶性蛋白以增强渗透调节能力,而在胁迫处理后期干旱胁迫超过植物所能忍耐的阈值,植物体内的合成代谢受阻,蛋白质降解。随着水分胁迫程度的加剧柏木幼苗中MDA含量有升高的趋势,但在胁迫初期的相邻处理间、胁迫中期的轻度干旱和中度干旱之间及其胁迫末期的前三种处理间都没有显著性差异,说明了柏木幼苗对水分胁迫有一个适应过程。而每个处理时期的重度干旱MDA含量都极显著的高于对照,复水后其他处理组的MDA都下降到对照水平,而重度干旱下MDA含量不能下降到对照水平,说明胁迫程度较轻的情况下,植物能够很快的自我修复,而重度干旱下膜结构的受害程度已经超出植物的忍耐限度,不能进行很好的自我修复。在本研究中,随干旱胁迫的加剧,SOD、POD、CAT、ASP几种保护酶均呈现持续上升趋势,复水后,SOD活性均有所下降,但总体上还是高于对照,CAT在重度干旱后复水也未能下降到对照水平,而轻度干旱下CAT含量下降到对照水平。
     6.可溶性糖和脯氨酸在干旱逆境下随干旱时间的延长和胁迫程度加大其含量增加,且在复水后基本上都能降低到对照水平,是较为有效的渗透调节物质。K~+含量随着干旱胁迫的增加而显著下降。地上部分在胁迫初期,胁迫中期的轻度干旱和中度干旱Na~+有积累,而胁迫中期的重度干旱及胁迫末期Na~+降低,说明Na~+在干旱较轻时起着渗透调节的作用,而重度干旱后Na~+对其渗透调节不起主要作用。Ca~(2+)、Mg~(2+)含量在柏木幼苗内没有明显的积累现象。脯氨酸、可溶性糖起主要渗透调节作用的物质含量在地下部分即根系中的含量大于地上部分。而Na~+在茎叶中的含量大于根系。
     实验表明,柏木幼苗能够通过光合生理、保护酶活性和渗透调节等途径耐受一定程度的水分胁迫,且在水分胁迫较轻时进行补偿生长,能够适应石灰岩山地“临时性缺水”的变水环境。
Karst landscape,one of the three vulnerable ecotones,is very general in the word, especially in the southwest of China.It is often short of water for plants due to low water retention capacity and high exposure of rocks.Therefore,it becomes to be a very important issue to find some drought-resistant plants for vegetation restoration and reconstruction in limestone area.In order to adapt to the drought condition in rocky desert terrain,plants have developed a series of mechanisms,such as organic protective movement,morphology remodeling and metabolic regulation.The plants maybe will have different adaption ways because of different stress strengths or different extents of water stress.In order to understand the suitable trees in limestone area how to resist water stress wholly and completely,we selected Cupressus funebris Endl.as our material,studied the growth characteristics,photosynthetic characteristics,antioxidant system and osmotic adjustment as well as the repair ability after re-watering by water controlled experiment.The experiment was set four water levels,that is,CK,light water stress(LS),middle water stress(MS) and severe water stress(SS) and,three stress stages, that is,early stage,middle stage and end stage.The main results are as following:
     1.Water stress had no effects on the length,surface area,average diameter and volume of roots of Cupressusfunebris Endl.seedlings at the early stage.But with the aggravation of stress,they all decreased.The heights and diameters of Cupressus funebris Endl.seedlings dropped with the decline of water content in soil.The above-ground biomasses did not suffer from water stress at the early and middle stage, however,they had significant differences with CK.The under-ground biomasses decreased with the aggravation of stress.For the total biomasses,they also decreased at all three stages,but they had no difference between LS and CK at early and middle stages.The root and shoots ratio of Cupressusfunebris Endl.seedlings had the trend of decrease at the early and middle stages,but no differences at the end stage.When re-watering,the root surface area and root volume that had decreased when suffered MS at the end stage recovered to the level of CK,and they could not come back to the level of CK when suffered SS at the middle and end stages.The height of Cupressus funebris Endl.seedlings did not recover,while the diameter recovered at certain degree. Re-watering promoted the accumulation of above-ground biomass,under-ground biomass and total biomass.This effect was more obvious with lowering of water content in soil.
     2.The net photosynthetic rate(Pn),transpiration rate(E) and stomatal conductance (Gs)of Cupressus funebris Endl.seedlings were all decreased under water stress. However,Intercellular CO_2 concentration(Ci) did not decrease with Gs.It increased remarkably at the early and middle stages when Gs decreased to a certain value,and kept steady at the end stage.Stomatal limitation value(Ls) went up with the CK,LS and MS at the early and middle stages,while went down under SS.But at the end stage,it went down from CK to SS.Mesophyll conductance(Pn/Ci) fell remarkably under SS at the early stage.But it fell under MS at the middle stage,and under LS at the end stage. Before SS at the early and middle stage,we calculated water use efficiency by intrinsic WUE,which increased or kept unchangeable with the lessening of water content in soil. While instantaneous water use efficiency was used to SS at early and middle stages and all the treatments at end stage,it behaved decreased.After re-watering,Pn,E,Gs and WUE recovered with different degrees.Compensation effect was visible before serious stress when the photosynthesis indexes recovered greatly,while they recovered little under serious stress due to the hurt of physiological function of Cupressusfunebris Endl. seedlings.
     3.Photosynthetic pigment content and the extent increased with the aggravation of water stress,which correlated with the stress time and leaf concentration.After re-watering,the pigment decreased owing to leaf expansion growth and higher water content.Car/Chl went up at water stress while went down after re-water.Chl.a/Chl.b had no change under any stress.
     4.Fv/Fm of well-water Cupressusfunebris Endl.seedlings(CK) was 0.81-0.82, nevertheless,it decreased notably under water stress and the extent increased with the aggravation of water stress.Similarly,Fv/F_0 had the same trend,qP decreased,while NPQ increased with the CK,LS,MS and SS.The extent greatened with the aggravation of water stress.φPSⅡand ETR had the same trend with Fv/Fm and Fv/F_0.After re-watering,all the chlorophyll fluorescence indexes came back to the level of CK when stress was not very severe,whereas they could not recovered to the level of CK when stress was severe.
     5.Relative water content(RWC) in leaves of Cupressusfunebris Endl.seedlings had the trend of decline and the extent greatened with the aggravation of water stress. After re-watering,RWC could come back to the same as CK when the stress was not very serious but it did not when the stress was too serious.During the period of stress, free water transformed to bound water so that the ratio of free water and bound water decreased.On the contrary,the bound water transformed to free water and so the ratio of free water and bound water increased.Soluble protein of the four treatments increased first and decreased afterwards as treatment was prolonged.MDA of the four treatments consistently increased as treatment was prolonged.But there was no significant difference between the neighboring treatments of the early and end stage, MS and LS of the middle stage.However,MDA of SS at any stage was higher than that of CK,and could not recovere to that of CK when re-watering.As for protective enzyme,SOD,POD,CAT,ASP,they went up continuously with the water content lowering in the soil.Re-watering caused SOD go down,but still higher than that of CK; POD,CAT,ASP come back to that of CK under LS,but not under serious stress.
     6.Soluble sugar and proline(Pro) increased consistently with the treatment prolonged and the stress aggravated.After re-watering they could decreased to that of CK.It means that they were good osmotic regulation matter.K~+ declined obviously under water stress.But for Na~+,it increased in the shoots of Cupressusfunebris Endl.at early stage,and also increased under LS and MS at middle stage,nevertheless,it decreased under SS at middle stage and all treatments of end stage.Ca~(2+)、Mg~(2+) did not accumulate not only in the shoots but also in the roots of Cupressusfunebris Endl..The main osmotic regulation matter,soluble sugar and Pro were higher in the roots than that of in the shoots,while Na~+ was opposite.
     Experiment showed that,Cupressus funebris Endl.could tolerate a certain extent water stress and adapt the changeable environment of "temporary water deficit" by the ways of adjusting photosynthetic physiology,protective enzyme active,osmotic regulation and its good compensatory growth ability.
引文
[1]刘国华,傅伯杰,陈利顶等.中国生态退化的主要类型、特征及分布.生态学报,2000,20(1):12-19.
    [2]Sweeting M M.Reflections on the development of Karst geomorphology in Europe and a comparison with its development in China.Z Geomorph,1993,37:127-138.
    [3]李阳兵,魏朝富,李先源,等.土地利用方式对岩溶-土壤种子库的影响.山地学报,2002,20(3):319-324.
    [4]袁道先.中国岩溶学.北京:地质出版社.1993.
    [5]屠玉麟.贵州土地石漠化现状及成因分析.见:李箐.石灰岩地区开发治理.贵阳:贵州人民出版社,1996,110-115.
    [6]王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨.中国岩溶,2002,21(2):101-105.
    [7]王德炉,朱守谦,黄宝龙.石漠化的概念及其内涵.南京林业大学学报(自然科学版),2004,28(6):87-90.
    [8]王世杰,李阳兵.喀斯特石漠化研究存在的问题与发展趋势地球科学进展.2007,27(6):573-582.
    [9]Le Grand H E.Hydrological and ecological problems of Karst regions.Science,1973,179:859-864.
    [10]Ford D C,Williams P W.Karst Geomorphology and Hydrology.London:Unwin Hyman Ltd.1989.
    [11]John G.Human Impact on the Cuilcagh Karst Areas.Italy:Universitadi Padova.1991.
    [12]袁道先.我国西南岩溶石山的环境地质问题.世界科技研究与发展,1997,5:93-97.
    [13]贾亚男,袁道先.土地利用变化对水城盆地岩溶水水质的影响.地理学报,2003,58(6):831-838.
    [14]蒋勇军,袁道先,张贵,等.喀斯特流域土地利用变化对地下水水质的影响.以云南小江流域为例.自然资源学报,2004,19(6):707-715.
    [15]宋林华.喀斯特地貌研究进展与趋势.地理科学进展,2000,19(3):193-202.
    [16]谭明.喀斯特水文地貌学—它的历史形成与最新进展.科学通报,1993,38:1921-1924.
    [17]袁道先.全球岩溶生态系统对比:科学目标和执行计划.地球科学进展,2001,16(4):461-466.
    [18]黄秋昊,蔡运龙,王秀春.我国西南部喀斯特地区石漠化研究进展.自然灾害学报,2007,16(2):106-111.
    [19]王艳强,朱波孙,王玉宽,刘德绍,等.重庆市石漠化敏感性评价.西南农业学报,2005,18(1):70-73.
    [20]李阳兵,侯建筠,谢德体.中国西南岩溶生态研究进展.地理科学,2002,22(3):365-370.
    [21]钟章成,邱永树.重庆三峡库区主要生态环境问题与对策.重庆环境科学,1999,21(1):1-2.
    [22]苏维词,朱文孝.贵州喀斯特山区生态环境脆弱性分析.山地学报,2001,18(5):429-434.
    [23]朱守谦.喀斯特森林生态学研究(Ⅱ).贵州科技出版社.1997.
    [24]朱守谦,何纪星,等.茂兰喀斯特森林小生境特征研究.朱守谦主编.喀斯特森林生态学研究(Ⅲ).贵州科技出版社.2003.
    [25]朱守谦,韦小丽,等.乌江流域喀斯特石质山地水分特征研究.朱守谦主编.喀斯特森林生态学研究(Ⅲ).贵州科技出版社.2003.
    [26]张邦琨,张萍.喀斯特地貌不同演替阶段植被小气候特征研究.贵州气象,2000,24(3):17-21.
    [27]赵平.退化生态系统植被恢复的生理生态学研究进展.应用生态学报,2003,14(11):2031-2036.
    [28]容丽,王世杰,刘宁,杨龙.喀斯特山区先锋植物叶片解剖特征及其生态适应性评价.山地学报,2005,23(1):35-42.
    [29]傅松玲,黄宝龙.皖东石灰岩山地次生林演替趋势与树种的生理特性分析.林业科学,2002,38(1):50-55.
    [30]朱守谦.茂兰喀斯特森林初析.茂兰喀斯特森林科学考察集.贵阳:贵州人民出版社,1987,210-223.
    [31]金静,钟章成,刘锦春,何跃军.石灰岩地区土壤水分对木豆表型可塑性的影响.西南农业大学学报,2005,27(1):89-92.
    [32]韦小丽.不同光环境下香樟、猴樟苗木的生态适应.山地农业生物学报,2003,22(3):208-213.
    [33]何纪星,朱守谦,祝小科.喀斯特森林树种水分生态初步研究.见:朱守谦,喀斯特森林生态研究(Ⅰ),贵州人民出版社,1993,63-73.
    [34]刘锦春,钟章成,何跃军,金静.重庆石灰岩地区十大功劳(Mahonia fortunei)的光合响应研究.西南师范大学学报,2005,30(2):316-320.
    [35]刘锦春,钟章成,何跃军,金静.重庆石灰岩地区十大功劳光合特性动态变 化和对CO_2的响应研究.武汉植物学研究,2006,24(2):140-143.
    [36]刘锦春,钟章成,何跃军.重庆石灰岩地区木豆与十大功劳叶片气体交换的比较.生态学报,2006,6(9):2964-2970.
    [37]刘伟玲,谢双喜,喻理飞.几种喀斯特森林树种幼苗对水分胁迫的生理响应.贵州科学,2003,21(3):51-55.
    [38]刘延惠,张晓珊,胡蕖.喀斯特山地主要适生树种幼苗耗水量季节变化及对土壤干旱的响应.贵州林业科技,2006,34(3):10-15.
    [39]韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化.南京林业大学学报,2005,29(2):47-50.
    [40]韦小丽,朱守谦,徐锡增.4个榆科树种水分参数随季节和年龄的变化规律.山地农业生物学报,2005,24(1):17-21.
    [41]何跃军,钟章成,刘济明,等.石灰岩退化生态系统不同恢复阶段土壤酶活性研究.应用生态学报,2005,16(6):1077-1081.
    [42]周运超.贵州喀斯特植被主要营养元素含量分析.贵州农学院学报,1997,16(1):11-16.
    [43]吴沿友,蒋九余,帅世文,等.喀斯特适生模式植物—诸葛菜的研究和开发.见:彭汝明等主编,地质地球化学研究,贵阳:贵州人民出版社,1996,118-122.
    [44]吴沿友,蒋九余,帅世文等.诸葛菜的喀斯特适生性的无机营养机制探讨.中国油料,1997,19(1):47-49.
    [45]Yousself R A.Chino M.Soil sci.Plant Nutri.1989,35(4):609-621.
    [46]傅松玲,黄宝龙.皖东石灰岩山地次生林演替趋势与树种的生理特性分析.林业科学,2002,38(1):50-55.
    [47]朱海燕,钟章成,刘忠德.不同植物对黑色石灰岩土壤磷素的利用.林业科学,2006,42(7):127-130.
    [48]李建平,李涛,赵之伟.金沙江干热河谷(元谋段)丛枝菌根真菌多样性研究.菌物系统,2003,22(4):604-612.
    [49]雷增普,王昌温,吴炳云.生物制剂在油松侧柏育苗造林中的应用.北京林业大学学报,1991,13(1)增刊.:80-87.
    [50]Li Tao,Li Jianping and Zhao Zhiwei.Arbuscular mycorrhizas in a valley-type savanna in southwest China.Mycorrhiza,2004,14:323-327.
    [51]David P.Janos,Michelle S.Schroeder.Et al.Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchi Chinensis Sonn.trees after propagation by air-layering.Plant and Soil,2001,233:85-94.
    [52]Gehring Catherine A.Growth responses to arbuscular mycorrhizas by rain forest seedlings vary with light intensity and tree species.Plant Ecology,2003,167(1):127-139.
    [53]阎秀峰,王琴.接种外生菌根对辽东栎幼苗生长的影响.植物生态学报,2002,26(6):701-707.
    [54]阎秀峰,王琴.两种外生菌根真菌在辽东栎幼苗上的混合接种效应.植物生态学报,2004,28(1):17-23.
    [55]何兴元,吴清凤,周玉芝.刺槐共生菌盆栽接种试验.林业科学,2002,38(4):78-83.
    [56]黄艺,陈有键.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报,2000,11(3):431-434
    [57]冯固,白灯莎,杨茂秋.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应.应用生态学报,1999,10(1):79-82.
    [58]冯固,杨茂秋,白灯莎.VA菌根真菌对石灰性土壤不同形态磷酸盐有效性的影响.植物营养与肥料学报,1997,3(1):43-48.
    [59]弓明钦,陈应龙,仲崇录.菌根研究及应用.北京:中国林业出版社.1997.
    [60]Augé R M.Water relations,drought and vesicular-arbusoular mycorrhizal symbiosis.Mycorrhisa,2001,11:3-42.
    [61]宋会兴,钟章成.干旱生境中VA菌根对宿主植物的影响及其机制.土壤通报.2006,37(4):787-791.
    [62]何跃军,钟章成,刘济明,等.VA真菌对石灰岩适生种群构树幼苗物质代谢的影响.生态学报,2007,27(12):5455-5462
    [63]何跃军,钟章成,刘济明,等.构树幼苗N、P吸收对接种VA真菌的响应.生态学报,2007,27(211):4840-4847
    [64]周厚高,谢义林,黎桦,等.广西石灰岩地区蜈蚣蕨居群的遗传多样性研究.广西植物,2002,22(1):67-70.
    [65]彭忠华,张明生,高翔,等.RAPD标记对喀斯特高海拔山区地方玉米自交系遗传多样性研究.种子,2005,24(2):20-23.
    [66]彭忠华,赵致,张明生,等.SSR标记对高海拔玉米自交系遗传多样性的研究.西南农业大学学报,2005,28(1):17-21.
    [67]赵云龙,朱守谦,祝小科.月月青种群生态研究-萌枝种群的形成和扩展.见:喀斯特森林生态研究(Ⅲ),贵阳:贵州科技出版社.2003.
    [68]赵云龙,朱守谦.月月青种群生态研究-种群的数量特征、年龄结构和分布格局.见:喀斯特森林生态研究(Ⅲ),贵阳:贵州科技出版社.2003.
    [69]彭少麟.亚热带森林群落动态.北京出版社,1996,2-8.
    [70]Bazzaz F A.Regeneration of tropical forests:physiological response of pioneer and secondary species.In:Gomez-Pompa A,Whitmor T C,Hakley M.eds.Rain Forest Regeneration and Management.Parkridge,NJ:Parthenon Publishing Group.1991,91-118.
    [71]Huston M.Smith T.Plant sucession:life history and competition.Amer Naturist,1987,130:168-198.
    [72]喻理飞,朱守谦,魏鲁明,等.退化喀斯特群落自然恢复过程研究—自然恢复演替系列.山地农业生物学报,1998,17(2):71-77.
    [73]司彬,何丙辉,姚小华.喀斯特石漠化形成原因及植被恢复途径探讨.江西农业大学学报,2006,28(3):392-396
    [74]何跃军,钟章成,刘济明,等.石灰岩退化生态系统不同恢复阶段土壤酶活性研究.应用生态学报,2005,16(6):1077-1081.
    [75]王献溥,胡舜士.广西石灰岩地区常绿、落叶阔叶混交林的群落学特点.东北林学院学报,1981,(3):30-47.
    [76]胡舜士,王献溥。广西阳朔石灰岩山地乌冈栎林的群落学特点及其在植被分类中的位置.植物学报,1982,24(3):264-272.
    [77]屠玉麟.林贵州喀斯特森林的初步研究.中国岩溶,1989,8(4):282-290.
    [78]周政贤.茂兰喀斯特森林科学考察集.贵阳:贵州人民出版社。1987.
    [79]钟章成.亚热带常绿阔叶林.重庆:西南师范大学出版社.1989.
    [80]杜道林,刘玉成,李睿.缙云山亚热带栲树林优势种种间联结性研究.植物生态学报,1995,(2):149-157.
    [81]杨汉奎,程仕泽.贵州茂兰喀斯特森林群落生物量研究.生态学报,1991,11(4):307-312.
    [82]朱守谦,魏鲁明.茂兰喀斯特森林生物量构成初步研究.植物生态学报,1995,19(4).358-367.
    [83]屠玉麟.贵州喀斯特农业生态环境的类型划分.中国岩溶,1991,10(2):127-136.
    [84]祝小科.喀斯特森林自然恢复过程的实验研究初报.见:朱守谦.喀斯特森林生态研究(Ⅲ).贵阳:贵州科技出版社.1997.
    [85]祝小科.利用自然力营造针阔混交林研究.北京:中国林业出版社.1997.
    [86]刘济民.茂兰喀斯特漏斗森林种子库研究.西南农业大学学报,1999,21(5).465-472.
    [87]喻理飞.乌江流域喀斯特地区植被-士壤系统水文生态功能研究.见:朱守谦.喀斯特森林生态研究(Ⅱ).贵阳:贵州科技出版社.1997.
    [88]房用,王月海,孟振农,梁玉,等.山东石灰岩山地的植被结构特征.东北林业大学学报,2007,35(3):27-30.
    [89]武维华主编.植物生理学.北京:科学出版社,2003,440.
    [90]曾小平,赵平,彭少麟.鹤山人工马占相思林水分生态研究.植物生态学报,2000,24(1):69-73.
    [91]王克勤.集水造林与水分生态.北京:中国林业出版社,2002,16-25.
    [92]王忠.植物生理学.北京:中国农业出版社,1999,452-455.
    [93]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):77-85.
    [94]梁银丽.旱地小麦品种的特征特性.见:山仑,陈培元主编,旱地农业生理生态基础.北京:北京科学出版社,1998,259-264.
    [95]Van Oosterom E.Adaptation of barley to harsh Mediterranean environments.Phytica,1992,(62):1-14.
    [96]Townley,Smith T F.Testing and selection for drought resistance in wheat.Stress Physiology in Crop Plants,1979,(2):447-464.
    [97]郎有忠,胡健,杨建昌,等.抗旱型稻根系形态与机能的研究.扬州大学学报(农业与生命科学版),2003,24(4):58-61.
    [98]田佩占.大豆品种根系生态类型的研究.作物学报,1984,10(3):173-178.
    [99]景蕊莲.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,1997,17(2):152-157.
    [100]Fukai S,Cooper M.Development of drought resistant cultivars using physiomorphological traits in riee.Field Crop Research,1995,40(2):67-86.
    [101]Vijayalakshmi C,Nagarajan M.Effect of rooting pattern on rice productivity under different water regimes.J.of Agronomy and Crop Science,1994,173(2):113-117.
    [102]赵殿轩,张青娈.玉米抗旱生物学特性及抗旱育种研究的几个问题.玉米科学,1998,(增刊):27-30.
    [103]朱维琴,良欢,陶勤南.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,2002,11(4):430-433.
    [104]柴丽娜,路苹.干旱胁迫冬小麦幼苗根冠比的动态变化与品种抗旱性关系的研究.北京农学院学报,1996,11(2):19-23.
    [105]吴子恺.玉米抗旱育种.玉米科学,1994,2(1):6-9.
    [106]郝树荣,郭相平,王为木,张烈君,等.水稻分蘖期水分胁迫及复水对根系生长的影响.旱地区农业研究,2007,25(1):149-152.
    [107]李友军,马淑琴.小麦抗旱鉴定指标的筛选研究.洛阳农业高等专科学校学报,1999,(1):7-10.
    [108]胡荣海.农作物资源的抗旱性筛选技术及其应用.农牧情报研究,1989,(1):36-41.
    [109]李正理,李荣敖.我国甘肃九种旱生植物同化枝的解剖观察.植物学报,1981,23(3):181-185.
    [110]王世绩,闵曾琪,刘雅荣,等.十种杨树苗木水分关系的研究.林业科学,1982,18(1):6-14.
    [111]李吉跃.太行山区主要造林树种耐旱性的研究(Ⅲ).北京林业大学学报,1991,13(Supp.2):230-239.
    [112]Li W.L.,Berlyn G.P.,Ashton P.M.S.Polyploids and their structure and physiological characteristics relative to water defict in Betula papyrifera.American J.of Botany,1996,83(1):15-20.
    [113]王泽立,张恒悦,阎先喜.玉米抗旱品种的形态解剖学研究.西北植物学报,1998,18(4):581-583.
    [114]唐连顺,李广敏.水分胁迫下玉米细胞超微结构的变化与其膜脂过氧化伤害的关系.植物学报,1994,36(增刊):43-49.
    [115]李锦树,王洪春,王文英,等.干旱对玉米叶片细胞透性及膜脂的影响.植物生理学报,1983,9(3):221-229.
    [116]闫玉基,张佩兰.玉米抗旱性生理指标筛选鉴定的研究.河北省科学院学报,1992,(2):50-54.
    [117]张烈,沈秀瑛,孙彩霞.脯氨酸对玉米苗期抗旱性影响的研究.华北农学报,1999,14(1):38-41.
    [118]雷泽勇,张学丽,周凤艳.沙地樟子松抗旱性的研究.林业科技通讯,1996,(1)6-8.
    [119]Tuomela K.Leaf water relations in six provenances of Eucalyptus microtheca:a greenhouse experiment.Forest Ecology and Management.1997,92:1-10.
    [120]李彦瑾,赵忠,孙德祥,韩刚.干旱胁迫下柠条锦鸡儿的水分生理特征.西北林学院学报,2008,23(3):1-4
    [121]徐兴友,张风娟,龙茹,尹伟伦,等.6种野生耐旱花卉幼苗叶片脱水和根系含水量与根系活力对干旱胁迫的反应.水土保持学报,2007,21(1):180-184.
    [122]Kramer P J,Kozlowski T T.Physiology of woody plants.New York:Academic Press.1979.
    [123]售兵,苏润海,王标,等.水分胁迫下臭椿幼苗几个生理指标的变化.林业 科技,2003,28(3):1-3.
    [124]孔艳菊,孙明高,胡学俭,苗海霞.干旱胁迫对黄栌幼苗几个生理指标的影响.中南林学院学报,2006,26(4):42-46.
    [125]曾凡江,张希明,李小明,等.柽柳的水分生理特性研究进展.应用生态学报,2002,13(5):611-614.
    [126]文建雷,刘志龙,王姝清.水分胁迫条件下元宝枫的光合特征及水分利用效率.西北林学院学报,2003,18(2):1-3.
    [127]阮成江,李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究.林业科学研究,2002,15(6):47-53.
    [128]严昌荣,韩兴国,陈灵芝,等.北京山区落叶阔叶林优势种叶片特点及其生理生态特征.生态学报,2000,20(1):53-60.
    [129]Walter H,Box E O.The desert of central Asia.Elsevier,1982,193-236.
    [130]Deng X,Li X M,Zhang X M.The studies about the photosynthetic response of the four desert plants.Acta Ecologica Sinica,2003,23(3):598-605.
    [131]董学军,杨宝珍,郭柯,等.几种沙尘植物水分生理生态的研究.植物生态学报,1994,18(1):86-94.
    [132]田晶会,贺康宁,王百田,张卫强,等.不同土壤水分下黄土高原侧柏生理生态特点分析.水土保持学报,2005,19(2):175-183.
    [133]邓雄,李小明,张希明.4种荒漠植物气体交换特征的研究.植物生态学报,2002,26(5):605-612。
    [134]李银芳,杨戈,蒋进.两种灌溉方式下的梭梭造林试验.干旱区研究,1992,9(4):38-41.
    [135]赵明,郭志中,李爱德.渗漏型蒸渗仪对梭梭和柠条蒸腾蒸发的研究.西北植物学报,1997,17(3):305-314.
    [136]李银芳.不同水分生境对梭梭耗水量的影响.干旱地区研究,1992,9(4):45-50.
    [137]杨文斌,包雪峰,杨茂仁,等.梭梭抗旱的生理生态水分关系研究.内蒙古林业科技,1996,(3-4):58-62.
    [138]杨文斌,任建民.不同立地梭梭林生长状况、蒸腾速率及其影响因素初探.内蒙古林业科技,1994,(2):1-3.
    [139]高海峰,李银芳,张海波,等.几种旱生植物蒸腾强度的变化.干旱地区研究,1984,(2):49-53。
    [140]韩永伟,张汝民.吉兰泰地区退化梭梭蒸腾生态生理学特性.草地学报,2002,10(1):41-44.
    [141]Dawson T E,Ehleringer J R.Gender-specific physiology,carbon isotope discrimination,and habitat distribution in boxelder,Acernegundo.Ecol,1993,74:798-815.
    [142]Donovan L A,Ehleringer J R.Potential for selection on plants for water-use efficiency as estimated by carbon isotope discrimination.Am J Bot,1994,81:927-935.
    [143]郑海雷,黄子琛,董学军.毛乌素沙地油蒿和牛心朴子生理生态学研究.植物生态学与地植物学学报,1992,16(3):197-207.
    [144]温达志,周国逸,张德强,等.四种禾本科牧草植物蒸腾速率和水分利用效率的比较.热带亚热带植物学报,2000,增刊Ⅲ:67-76.
    [145]Farquhar G D,Oleary M H,Berry J A.The relationship between carbin isotoped discrimination and intercellar carbon dioxide concentration in leaves.Auster J Plant Physiology,1982,9:121-137.
    [146]李荣生,许煌灿,尹光天,等.植物水分利用效率的研究进展.林业科学研究,2003,16(3):366-371.
    [147]王克勤.集水造林与水分生态.北京:中国林业出版社,2002,16-25.
    [148]接玉玲,杨洪强,崔明刚,等.土壤含水量与苹果叶片水分利用效率的关系.应用生态学报,2001,12(3):387-390.
    [149]廖建雄,王根轩.干旱、CO_2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应用生态学报,2002,13(5):547-550.
    [150]牛书丽,蒋高明.内蒙古浑善达克沙地97种植物的光合生理特征.植物生态学报,2003,27(3):318-324.
    [151]Ma C C,Gao Y B,Guo H Y,et al.Interspecific transition among caragana microphylla,C.d avazamcii and C.korshinskii along geographic gradient Ⅱ.Characteristics of photosynthesis and water metabolism.Acta Botanica Sinica,2003,45(10):1228-1237.
    [152]Jiang G M,Dong M.A comparative study on photosynthesis and water use efficiency between clonal and Nonclonal plant species along the northeast China Transect(NECT).Acta Botanica Sinica,2000,42(8):855-863.
    [153]Pyankov V I,Gunin P D.C_4 plants in the vegetation of Mongolia:their natural occurrence and geographical distribution in relation to climate.Oecologia,2000,123:15-31.
    [154]肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应.应用生态学报,2001,12(5):692-696.
    [155]Wu X.M.,Ma J.Provenance variation of photosynthesis and tolerance to water stress in Platycladus(Thujia) Orientalis Franco.Scientia Silvae Sinicae 1988,24(4):448-453.
    [156]Terwilliger V J,Zeroni M.Gas exchange of a desert shrub(Zygophylhm dumosum Boiss.) under different soil moisture regimes during summer drought.Vegetation,1994,115:133-144.
    [157]Filella I,Liusia J,Piol J.Leaf gas exchange and the fluorescence of Phillgra latifolia,Pistacia lentiscus and Quercus ilex samplings in severe drought and high temperature conditions.Environmental and Experimental Botany,1998,39:213-219.
    [158]Jay E A.Factors controlling transpiration and photosynthesis in Tamarix chinensis Lour.Ecology,1982,63(1):46-50.
    [159]Zheng W J,Zheng X P,Zhang C L.A survey of Photosynthetic carbon metabolism in 4 eco-types of Phragmites communis in northwest China:leaf anatomy,ultrastructure,and activities of ribulosel,5-bisphosphate carboxlase,phosphoenopyruvate carboxylase and glycollate oxidase.Physiol Plant,2000,110:201-208.
    [160]李卫华,张承烈.泡泡刺叶磷酸烯醇式丙酮酸羧化酶季节性聚态变化.植物生态学报,2000,24(3):284-288.
    [161]Davies,W.J.,Zhang,J.Root signal and the regulation of growth and development of plants in drying soil.An.Rev.PlantPhysiol,1991,42,55-76.
    [162]Chaves,M.M.,Pereira,J.S.,Maroco,J.,Rodrigues,M.L.,Ricardo,C.P.P.,Osorio,M.L.,Carvalho,I.,Faria,T.,Pinheiro,C.,How plants cope with water stress in the field.Photosynthesis and growth..Ann.Bot.2002,89,907-916.
    [163]Bennett,J.M.,Boote,K.J.,Hammond,L.C.,Relationship among water potential components,relative water content,and stomatal resistance of field-grown peanut leaves.Peanut.Sci.1984,11,31-35.Blum,A.,Ebercon,
    [164]Midgley G.F.,Moll E.J.Gas exchange in arid-adapted shrubs:when is efficient water use a disadvantage? South African J.of Botany,1993,59(5):491-495.
    [165]Hirasawa T.,Wakabayashi K.,Touya S.,Ishihara K.Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants(Helianthus annuus L.)grown under different conditions.Plant and cell Physiology,1995,36(6):955-964.
    [166]Nautiyal S.,Badola H.K.,Pal M.,Negi D.S.Plant responses to water stress:changes in growth,dry matter production,stomatal frequency and leaf anatomy.Biologia Plantarum,1994,36(1):91-97.
    [167]Sankarapandian R.,Krishnadoss D.,Muppidathi N.,Chidambaram S.Variability studies in grain sorghum for certain physiological characters under water stress conditions.Crop Improvement,1993,20(1):45-50.
    [168]夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,28(1):26-31.
    [169]李林锋,刘新田.干旱胁迫对桉树幼苗的生长和某些生理生态特性的影响.西北林学院学报,2003,19(1):14-17.
    [170]蔡锡安,孙谷畴,赵平,曾小平.土壤水分对单性木兰幼苗光合特性的影响.热带亚热带植物学报,2004,12(3):207-212.
    [171]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响.厦门大学学报:自然科学版,2005,44:28-31.
    [172]张秋英,李发东,刘盂雨.冬小麦叶片叶绿素含量及光合速率变化规律的研究.中国生态农业学报,2005,13(3):95-98.
    [173]吴锦容,赵厚本,潘浣钰,彭少麟.土壤水分变化对外来入侵植物飞机草生长的影响.生态环境,2007,16(3):935-938
    [174]郭相平,刘展鹏,王青梅,郭枫,等.采用PEG模拟干旱胁迫及复水玉米光合补偿效应.河海大学学报(自然科学版),2007,25(3):286-290.
    [175]王建伟,周凌云.土壤水分变化对金银花叶片生理生态特征的影响.土壤,2007,39(3):479-482.
    [176]王磊,任树梅,毕勇刚,刘洪禄,等.土壤水分及有机肥料对番茄叶片光合特性及叶绿素含量影响的试验研究.灌溉排水学报,2004,23(2):66-68.
    [177]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    [178]朱新广,张其德,匡延云.NaCl胁迫对PS Ⅱ光能利用和耗散的影响.生物物理学报,1999,15(2):787-790.
    [179]罗俊,张木清,林彦铨,张华,等.甘蔗苗期叶绿素荧光参数与抗旱性关系研究.中国农业科学,2004,37(11):1718-1721.
    [180]肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应.应用生态学报,2001,12(5):692-696.
    [181]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,2000,34(3):248-251.
    [182]许大全,张玉忠,张荣铣.植物生理学通讯,1992,28(4):237-243.
    [183]史胜青,袁玉欣,张金香,施征.不同水分胁迫方式对核桃苗叶绿素荧光 动力学特性的影响.河北农业大学学报,2003,26(2):20-24.
    [184]温达志,叶万辉,林植芳.全光和遮阴下两种亚热带木本植物的光合作用对光的响应.热带亚热带植物学报,2001,9(3):248-255.
    [185]冯玉龙,冯志立,曹坤芳.砂仁叶片光破坏的防御.植物生理学报,2001,27(6):483-488.
    [186]张永强,毛学森,孙宏勇.干旱胁迫对冬小麦叶绿素荧光的影响.中国生态农业学报,2002,10(4):13-15.
    [187]Zhao CH M,Wang G X.Effects of drought stress on photo protection in Amm opiptanthusmong olicus leaves.Acta Botanica Sinica,2002,44(11):1309-1313.
    [188]肖春旺.施水量对毛乌素沙地4种优势植物叶绿素荧光的影响.草地学报,2001,9(4):296-301.
    [189]何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究.西北植物学报,2005,25(11):2226-2233.
    [190]QIU B S,ZHANG A H,LIU Z L,et al.Studies on the photosynhesis of the terrestrial cyanobacterium Nostocf lagelliforme subjected to desiccation and subsequent rehydration.Phycologia,2004,435:521-528.
    [191]LU C M,ZHANG J H.Effects of water stress on photo system photochemistry and its thermo stability in wheat plants.Journal of Experimental Botany,1999,50336:1199-1206.
    [192]王荣华,石雷,汤庚国,梁寅初,等.渗透胁迫对蒙古冰草幼苗保护酶系统的影响.植物学通报,2003,20:330-335.
    [193]张文辉,段宝利,周建云,刘祥君.不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应.植物生态学报,2004,28:483-490.
    [194]蒋明义,郭绍川.渗透胁迫下稻苗中铁催化的膜脂过氧化作用.植物生理学报,1996,22(1):6-12.
    [195]张敬贤,李俊明,崔少平.玉米细胞保护酶活性对苗期干旱的反应.华北农学报,1990,5(增刊):192-231.
    [196]李广敏,唐连顺.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系.河北农业大学学报,1994,17(2):1-5.
    [197]李君,周守标,王春景,李金花.野生和栽培马蹄金抗旱性比较及其抗旱机制初探.植物生态学报,2007,31(3)521-527.
    [198]李文娆,张岁岐,山仑.苜蓿叶片及根系对水分亏缺的生理生化响应.草地学报,2007,15(4):299-305.
    [199]韩刚,党青,赵忠.干旱胁迫下沙生灌木花棒的抗氧化保护响应研究.西 北植物学报,2008,28(5):1007-1013.
    [200]韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学学报,1990,13(1):17-21.
    [201]李德全,邹琦,程炳嵩.植物渗透调节研究进展.山东农业大学学报,1991,22(1):86-90.
    [202]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响.植物生理学报,1990,(1):49-56.
    [203]Downton.Adaptation to water deficits in grape by osmoregulation.Plant Sci,1983,(30):137-143.
    [204]刘红云,梁宗锁,刘淑明,董娟娥.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响.西北林学院学报,2007,22(3):55-59.
    [205]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究.草业学报,1998,7(1):75-80.
    [206]鱼小军,王芳,白小明.草坪草抗旱性研究现状.草业科学,2005,(2):96-100.
    [207]陈少瑜,郎南军,李吉跃,等.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氨酸含量的变化.西部林业科学,2004,33(3):30-33.
    [208]许桂芳.2种过路黄抗旱生理特性的研究.西北林学院学报,2007,22(5):12-14.
    [209]史燕山,骆建霞,王煦,等.5种草本地被植物抗旱性研究.西北农林科技大学学报,2005,5(5):130-134.
    [210]姜孝成,潘晓玲,郭新红.渗透胁迫和外源ABA对旱生植物梭梭幼苗某些生理性状的影响.首都师范大学学报(自然科学版),2001,23(3):65-69.
    [211]周培之,侯彩霞,陈世民.超旱生小乔木梭梭对水分胁迫反应的某些生理生化特殊性(初报).干旱区研究,1988,(1):1-7.
    [212]阮晓,王强,许宁一.白梭梭同化枝对干旱胁迫的生理生态响应.林业科学,2005,41(5):28-32.
    [213]向佐湘,许桂芳,蒋文君.干旱胁迫对4种刺篱植物抗性生理生化指标的影响.浙江林学院学报,2007,24(1):7-11.
    [214]曹帮华,张明如,翟明普,等.土壤干旱胁迫下刺槐无性系生长和渗透调节能力.浙江林学院学报,2005,22(2):161-165.
    [215]杜金友,靳占忠,张洪亮,等.不同玉米自交系干旱胁迫条件下的生理变化.张家口农专学报,2003,(3):42
    [216]杨玉珍,郑银锋,彭方仁.干旱胁迫下香椿苗木脯氨酸累积的动态变化.林 业科技开发,2007,21(3):32-35.
    [217]汤章城,王育启.不同抗旱品种高粱苗中脯氨酸累积的差异.植物生理学报,1986,12(2):154-160.
    [218]张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990,(4):62-65.
    [219]张成军,解恒才,郭佳秋,等.干旱对4种木本植物幼苗脯氨酸含量的影响.南京林业大学学报(自然科学版),2005,29(5):33-36.
    [220]陈少瑜,郎南军,李吉跃,等.干旱胁迫下坡柳等幼苗质膜相对透性和脯氨酸含量的变化.广西植物,2006,26(1):80-84.
    [221]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究.林业科学,2003,39(4):162-167.
    [222]惠竹梅,房玉林,郭玉枝,张振文.水分胁迫对葡萄幼苗4种主要生理指标的影响.干旱地区农业研究,2007,25(3):146-149.
    [223]衣艳君,赵博生.不同抗旱性小麦幼芽中甜菜碱脱氢酶活性和蛋白含量的变化.东北林业大学学报,2001,29(4):69-70.
    [224]景蕊莲,昌小平.变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系.作物学报,1999,25(4):494-498.
    [225]张建新,刘拉平,彭玉奎,等.甜菜碱对小麦幼苗抗旱生理作用的研究.陕西农业科学,1997,(4):21-22.
    [226]钱永生,王慧中.渗透调节物质在作物干旱逆境中的作用.杭州师范学院学报(自然科学版),2006,5(6):476-481.
    [227]陈鹏.潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报).植物生理学通讯,2001,37(6):520-522.
    [228]李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1992,18(1):37-43.
    [229]邵艳军,山仑,李广敏.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究.中国生态农业学报,2006,4(1):68-70.
    [230]王霞,侯平,尹林克,等.水分胁迫对柽柳植物可溶性物质的影响.干旱区研究,1999,16(2):7-11.
    [231]李景平,杨鑫光,傅华,张宝林.阿拉善荒漠区3种旱生植物体内主要渗透调节物质的含量和分配特征.草业科学,2005,22(9),35-38.
    [232]Jones,M.M.& N.C.Turner.Osmotic adjustment in leaves of sorghum in response to water deficits.Plant Physiology,1978,61:122-126.
    [233]Messina F J,Durham S L.Trade-off between plant growth and defense? A comparison of sagebrush populations.Oecologia,2002,131(1):43-51.
    [234]Mackay A D,Barber S A.Effect of cyclic wetting and drying of a soil in root hair growth of maize roots.Plant and S oil,1987,104(2):291-293.
    [235]Sattelmacher B,L ambers H.Morphology and physiology of the seminal root system of young maize(Z eam ay s L.) plants as influenced by a locally restricted nitrate supply.Z,Pflanz en.Bodenk,1995,158(4):493-497.
    [236]Gullo M L,Nardini A,Salleo S,et al.Changes in root hydraulic conductance [KR]of lea oleaster seedlings following drought stress and irrigation.New Phytol.1998,140(1):25-31.
    [237]Shan L,Su P,Guo L K,et al.The response of different crop s to drying-wetting cycle in field.Acta Bot.Boreal.occident.Sin.,2000,20(2):164-170.
    [238]山仑,张岁歧.节水农业及其生物学基础.水土保持研究,1999,6(1):2-6.
    [239]山仑.节水农业与作物高效用水.河南大学学报(自然科学版),2003,33(1):1-5.
    [240]陈晓远,罗远培.开花期复水对受旱小麦的补偿效应研究.作物学报,2001,27(4):512-516.
    [241]陈晓远,罗远培.土壤水分变动对冬小麦生长动态的影响.中国农业科学,2001,34(4):403-409.
    [242]Liang Z S,Kang S Z,Gao J F,et al.Effect of abscisic acid(ABA) and alternative split root osmotic stress on root growth and transpiration efficiency in maize.Acta Agronomica Sinica,2000,26(2):250-255.
    [243]李凤英,黄占斌.夏玉米不同生育阶段干湿变化的补偿效应研究.生态农业学报,2001,9(3):61-63.
    [244]苏佩,山仑.多变低水环境下高粱高产节水生理基础的研究.应用与环境生物学报,1997,3(4):305-308.
    [245]李岩,潘海春,李德全.抗旱性不同的玉米品种在土壤干旱及复水过程中的生理差异.浙江大学学报(农业与生命科学版),2002,28(3):249-254.
    [246]David L,Holshouser,Joshua P.Plant population and row spacing effects on early soybean production system s in the Mid Atlantic U S A.Agronomy Journal,2002,94(3):603-611.
    [247]张喜英,由懋正,王新元.冬小麦调亏灌溉制度田间试验研究初报.生态农业研究,1998,6(3):33-36.
    [248]郭贤仕,山仑.前期干旱锻炼对谷子水分利用效率的影响.作物学报,1994,20(3):352-356.
    [249]胡相明,程积民,万惠娥,赵艳云,等.短期施水对长期干旱铁杆蒿光合作用和叶绿素荧光特征的影响.草地学报,2006,14(3):236-241.
    [250]程林梅,李占林,高洪文.水分胁迫对白羊草光合生理特性的影响.中国农学通报,2004,20(6):231-233。
    [251]Souza R P,Machado E C,Silva J A B,et al.Photosynthetic gas exchange,chlorophyll fluorescence and some associated metabolic changes in cowpea(Vignaunguiculata) during water stress and recovery.Environmental and Experimental Botany,2004,51:45-56.
    [252]董宝娣,张正斌,刘孟雨,徐萍.水分亏缺下作物的补偿效应研究进展.西北农业学报,2004,13(3):31-34.
    [253]许长成,张建华.干旱条件下冬小麦不同叶龄叶绿素荧光及叶黄素循环组分的变化.植物生理学报,1999,25(1):29-37.
    [254]Turner N C,TonesM M.A review and evaluation.New York:W iley,1980.87-103.
    [255]Ting I P.Plant physiology,menlo Park CA:Addison Wesley Press.1982.
    [256]汤章城.植物对水分胁迫的反应和适应性.植物生理学通讯,1983,(4):1-7.
    [257]侯彩霞,黄昊,汤章城.植物细胞的水孔蛋白.植物生理学通讯,1997,33:151-156.
    [256]刘友良.植物水分逆境生理.北京:农业出版社.1991.
    [259]刘晓英,罗远培,石元春.作物对水分胁迫的反应.生态农业研究,1998,6(4):12-15.
    [260]陈波涛,邓龙玲,吴智秀.贵州省柏木引种栽培调查报告.贵州林业科技,1996,24(3):39-44.
    [261]Givnish T J.Adaption to sun and shade:Awhole plant per-spective.Aust.J.Plant Physiol.1988,15:63-92.
    [262]Ashenden T W,Stewart W S,Watkin W.Growth responses of sand dune population of Dactylils glomerata to different levels of water stress.J.Ecol.,1975.63:97-107.
    [263]Dale M P,Causton D R.The ecophysiology of Veronica chamaedary,V.montana and V.officlnalis.The interaction of irradiance and water regime.J.Ecol.1992,80:493-504.
    [264]Fitter A H.Functional significance of root morphology and root system architecture.In:Fitter A H,eds.Ecological Interactions in Soil:Plants,Microbes and Animals.Oxford:Blackwell Scientific Press.1985,87-106
    [265]Grime J P,Campbell B D,Mackey J M I,et al.Root plasticity.nitrogen capture and competitive ability.In:Atkinson A,eds,Plant Root Growth:An Ecological Perspective.Oxford:Blackwell Scientific Press.1991,38 1-397.
    [266]Jastrow J D,Miuer R M.Neighbor influences on root morphology and mycorrhizal fungus colonization in tall grass prairie plants.Ecology,1993,72:561-569.
    [267]Salaiz T A.R C Shearman,E J Kinbacher.Creeping Bentgrass cultivar water use and rooting response.Crop Science,1991,31:1331-1334.
    [268]Sheffer K M,J H Dunn,D D Minner.Summer drought response and rooting depth of three cool-season turfgrass.Hort Science,1987,22:296-297.
    [269]Carrow R N.Drought avoidance characteristics of diverse tall fescue cultivars.Crop Science,1996,36:371-377.
    [270]Wilson J B.Shoot competition and competition.J.Appl Ecol.1988,25,279-296.
    [271]Huston M A,Smith T M.Plant succession:Life history and competition.Am.Nat.1987,130:168-198.
    [272]Tilman D.Plant Strategies and the Structure and Dynamics of Plant Communities.Princeton:Princeton University Press,1988,52-97.
    [273]Green J J,Baddeley J A,Cortina J,Watson C A.Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery,treatments.Journal of Arid Environments.2005,61,1-12
    [274]张娜,梁一民.干旱气候对白羊草群落地下部生长影响的初步观察.应用生态学报,2002,13(7):827-832
    [275]何维明.不同生境中沙地柏根面积分布特征.林业科学,2000,36(5):17-21
    [276]Schuulze E D,Mconey H A,Sala D E.Rooting depth,water availability,an d vegetation coyer along gradient in Patagopia.Oecology,1996,108:503-511
    [277]Berntson G M and Wayne P M.Characterizing the size dependence of resource acquisition within crowded plant populations.Ecology.2000,81,1072-1085.
    [278]McConnaughay K D M and Bazzaz F A.Is physical space a soil resource.Ecology.1991,72,94-103
    [279]Kramer P J and Boyer J S.Water Relations of Plants and Soils.Academic Press,San Diego.1995.
    [280]Berntson G M.Modelling root architecture:Are there tradeoffs between efficiency and potential of resource aquisition? New Phytologist.1993,127,483-493.
    [281]Jackson R B and Caldwell M M.The timing and degree of root proliferation in fertile-soil microsites for three cold-desert perennials.Oecologia 1989,81,149-153
    [282]董鸣.资源异质性环境中的植物克隆生长-觅食行为.植物学报,1996,38(10):828-835
    [283]郭相平,康绍忠,索丽生。苗期调亏处理对玉米根系生长影响的试验研究.灌溉排水,2001,20(1):25-27.
    [284]杨贵羽,罗远培,李保国,等.不同土壤水分处理对冬小麦根冠生长的影响.干旱地区农业研究,2003,21(3):104-109.
    [285]赵俊芳,杨晓光,陈斌.不同灌溉处理对旱稻根系生长及水分利用效率的影响.中国农业气象,2004,25(4):44-48.
    [286]Roden J S.,Ball M C.The effect of elevated CO_2 on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficits.Plant Physiol.,1996,1(11):909-919.
    [287]Li C.,Beminger F,Koskela J.and Sonninen E.Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin.Australian Joumal of Plant.Physiology,2000,27:231-238.
    [288]Lareher W.Physiological Plant Ecology,third edition.Aufl.Springer-Verglag,Berlin,Heidelberg,Newyork.1995:255.
    [289]Fort,C,Fauveau,M.L,Muller,F,Label.P,Granier A.and Dreyer E.Stomatal conductance,growth and root signaling in young oak seedlings subjected to partial soil drying.Tree Physiology,1997,17:281-289.
    [290]温国胜,张明如,张国盛,王林和.干旱条件下臭柏的生理生态对策.生态学报 2006(12):4059-4065
    [291]Tezara W,Mitchell V J,Driscoll S D,et al.Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP.Nature.1999,401,914-917.
    [292]Cornic G.Drought stress inhibits photosynthesis by decreasing stomatal aperture -not by affecting ATP synthesis.Trends Plant Sci.2000,5,187-188.
    [293]Lawlor D H,Comic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.Plant Cell Environ.2002,25,275-294.
    [294]Chaves M M,Oliveira M M.Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture.J.Exp.Bot.2004,55,2365-2384.
    [295]Lawlor D H.Limitation to photosynthesis in water-stressed leaves:stomata vs metabolism and the role of ATP.Ann.Bot.2002,89,275-294.
    [296]Chaves M M.Effects of water deficits on carbon assimilation.J.Exp.Bot.1991,42,1-16.
    [297]Ort D R,Baker N R.A photoprotective role for O_2 as an alternative electron sink in hotosynthesis? Curr.Opin.Plant Biol.2002,5,193-198.
    [298]Asada K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons.Annu.Rev.Plant Physiol.Plant Mol.Biol.1999,50,601-639.
    [299]Turner N C.Further progress in crop water relations.Adv.Agron.1997,58,293-338.
    [300]Chen X M,Begonia G B,Alm D M,et al.Responses of soybean leaf photosynthesis to CO_2 and drought.Photosynthetica 1993,29,447-454.
    [301]温国胜,张国盛,吉川贤.干旱胁迫对臭柏水分特性的影响.林业科学,2004a,40(5):84-87.
    [302]温国胜,吉川贤,张国盛,等.干旱胁迫条件下臭柏的生长.内蒙古农业大学学报,2004b,25(1):5-10.
    [303]黄颜梅,张健,罗承德.西藏柏木抗旱生理研究.四川林业科技,1998,19(4):31-36.
    [304]兰小中,廖志华,王景升.西藏高原濒危植物西藏巨柏光合作用日进程.生态学报,2005,25(12):3172-3175.
    [305]温国胜,王林和,张国盛.臭柏的光合速率与生态因子的关联分析.福建林学院学报,2004c,24(3):206-210.
    [306]赵平,曾小平,彭少麟.植被恢复树种在不同实验光环境下叶片气体交换的生态适应特点.生态学杂志,2003,22(3):1-8
    [307]Arndt.S.K.,Clifford S.C,Wanek W.,Jones H.G.and Popp M.Physiological and morphological adaptations of the fruit tree ZiziPhus rotundifolia in response to progressive drought stress.Tree Physiology 2001,21:1-11.
    [308]Bussis D,Kauder F and Heineke D.Acclimation of potato plants to polyethylene glycol-induced water deficit 1.Photosynthesis and metabolism.J.ExP.Bot.,1998,49:1349-1360.
    [309]Farquhar G D,Sharkey T D.1982.Stomatal conductance and photosynthesis.Ann.Rev.Plant Physiol.,33:317-345
    [310]Flexas J and Medrano H.Drought-inhibition of photosynthesis in C3 plants:stomatai and non-stomatal limitatioll revsisited,Annals of Botany,2002,89:183-189.
    [311]Iacono F,Buccella A,Peterlunger.E.Water stress and rootstock Influence on leaf gas exchange of grafted and ungrafted gralpevines.Scientia Horticulturae,1998,75(1-2):27-39.
    [312]Siddique M R B,Hamid A,and Islam M S.Drought stress effects on photosynthetic rate and leaf gas exchange of wheat.Bot.Bull.Acad.Sin.1999.40:141-145.
    [313]赵平,曾小平,彭少麟,等.海南红豆(Ormosia pinnata)夏季叶片气体交换、气孔导度和水分利用效率的日变化.热带亚热带植物学报,2000,8(1):35-42.
    [314]Penuelas J,Filella I,Llusia J et al.Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia.J Exp Bot,1998,49(319):229-238.
    [315]Rice K J,Black R A,Radamaker G.Photosynthesis,growth,and biomass allocation in habitat ecotypes of cheatgrass(Bromus tectarum).Funct Ecol,1992,6:32-40.
    [316]Heitholt J J.Water use efficiency and dry matter distribution in nitrogen-and water-stressed winter wheat.Agron J,1989,81:464-469.
    [317]苏佩,山仑.拔节期复水对玉米苗期受旱胁迫的补偿效应.植物生理学通讯,1995,31(5):341-344.
    [318]Ormrod D.P.,Lesser V.M.,Olszyk D.M.and Tingey D.T.Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in douglas-fir seedlings.Int.J.Plant Sci.,1999,160(3):529-534.
    [319]Tabaka A,Ito H,Tanaka R.,Tanaka NK,Yoshida K and Okada K.Chlorophyll a oxygenase(CAO) is involved in chlorophyll b formation from chlorophyll a.Proc.Natl.Acad.Sci.USA,1998,95:12719-12723.
    [320]任红旭,陈雄,吴冬秀.CO_2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响作.作物学报,2001,27(6):11-18
    [321]张金池,夏尚光,梁淑英.三种榆树幼苗对水分胁迫的生理响.应林业科技开发,2008,22(1):24-26
    [322]邹琦.植物生理生化实验指导.北京:中国农业出版社,1995.
    [323]任安芝,高玉葆,王巍,王金龙.干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响.生态学报,2005,25(2):225-231
    [324]张成军.辽东栋林中四种木本植物幼苗对土壤干旱的生理生态响应:[博士学位论文].哈尔滨:东北林业大学,2003.23
    [325]杨晓光,于沪宁.夏玉米水分胁迫与反冲机制圾其应用.生态农业研究,1999,7(3):27-31.
    [326]Willeken S H,Vancam P W,et al..Ozone,sulfur dioxide,and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotianaplum baginifolia L.Journal of Plant Physiology,1994,106:177-190
    [327]Kyparissis A and Manetas Y.Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub:ecopysiological comparisons between winter and summer leaves.Acta Oecologica,1993,14(1):23-32.
    [328]徐文铎,郑元润,刘广田,等.内蒙古沙地云杉生长与生态条件关系的研究.应用生态学报,1993,4(4):368-373.]
    [329]曹昀,王国祥.土壤水分含量对菖蒲(Acoruscalamus)萌发及幼苗生长发育的影响.生态学报,2007,27(5):1748-1755
    [330]张亚黎,罗宏海,张旺锋,樊大勇.土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响.植物生态学报.2008,32(3):681-689
    [331]聂华堂,陈竹生,计玉,等.干旱胁迫下柑桔的生理生化变化与抗旱性的关系.中国农业科学,1991,24(4):14-18.
    [332]Schnettger,B.,Critchley,C.,Santore,U.J..Relationship between photoinhibition of photosynthesis,D1 protein turnover and chloroplast structure:effect of protein synthesis.Plant Cell Environ,1994,17:55-64.
    [333]BjOkman O,Demming B.Photon yield of Oz evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins.Planta,1987,170:489-504.
    [334]李敦海,宋立荣,刘永定.念珠藻葛仙米叶绿素荧光与水分胁迫的关系.植物生理学通讯,2000,36(3):205-208.
    [335]杨晓青,张岁岐,梁宗锁,山颖.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报 2004,24(5):812-816
    [336]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,1997,13(2):273-278
    [337]Smimoff N.The role of active oxygen in the response of plants to water deficit and desiccation.New Phytologist,1993,125:27-58.
    [338]Zhang J,Kirkham MB.Lipid peroxidation in sorghum and sunflower seedings as affected by ascorbic acid,benzoic acid and propyl gallate.Journal of Plant Physiology,1996,149:489-493.
    [339]陈少裕.脂膜过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90.
    [340]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125.
    [314]王贺正,马均,李旭毅,等.水分胁迫对水稻结实期活性氧产生和保护系统的影响.中国农业科学,2007,40(7):1379-1387.
    [342]时忠杰,杜阿朋,胡哲森,等.水分胁迫对板栗幼苗叶片活性氧代谢的影响.林业科学研究,2007,20(5):683-687
    [343]徐莲珍、蔡靖、姜在民,等.水分胁迫对3种苗木叶片渗透调节物质与保护酶活性的影响.北林学院学报 2008,23(2):12-16
    [344]Bradford M M.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal Biochem,1976,72:248-254.
    [345]李合生.植物生理生化实验原理和技术.北京:高等教育出版社 2003.
    [346]Stewart R C,Bewley J D.Lipid Peroxidation associated with aging of soybean axes.Journal of Plant Physiolology,1980,65:245-248
    [347]Chance B,Maehly A C.Assay of catalyses and peroxidases.Methods in Enzymology,1955,2:746-755.
    [348]Nakano Y,Asada K.Hydr ogen,per oxide is scavenged by ascorbate2s pecific per oxidase in s p inach chlor op lasts.Plant Call and Physi ology,1981,22:867-880.
    [349]顾龚平,吴国荣,陆长梅,等.PEG处理对大豆幼苗活力及活性氧代谢的影响.中国油料作物学报,2000 22(2):26-30.
    [350]史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响.新疆农业大学学报,2007,30(2):528.
    [357]贺鸿雁,孙存华,杜伟,等.PEG 6000胁迫对花生幼苗渗透调节物质的影响.中国油料作物学报,2006,28(1):76-78.
    [358]王海珍,梁宗锁,韩蕊莲,等.土壤干旱对黄土高原乡土木种水分代谢与渗透调节物质的影响.西北植物学报,2004,24(10):1822-1827.
    [359]魏良民.几种旱生植物碳水化合物和蛋白质变化的研究.干旱区研究,1991,8(4):38-41.
    [360]孙国荣.植物生理实验指导.西北农业大学植物生理生化教研室.西安:陕西科学技术出版社,1987:51-55.
    [361]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响.草地学报,2005(9):199-202.
    [362]Scholes J D,Bundock N,Wilde R,et al.The impact of reduced vacular invertase activity on the photosynthetic and carbohydrate metabolism of tomato.Planta,1996,200:265-277.
    [363]周泉澄,陈国祥,陈利,王建安等.高产杂交稻两优培九早育秧苗期抗氧化系统活性的研究.植物研究,2005 25(1):80-85.
    [364]任安芝,高玉葆,等.青菜幼苗体内种保护酶的活性对Pb、Cd、Cr胁迫的反应研究.应用生态学报,2002,13(4):510-512
    [365]韩瑞宏,卢欣石.苗期紫花苜蓿对干旱胁迫的适应机制研究:[博士学位论文].内蒙古:内蒙古农业大学,2006.
    [366]王霞,侯平,尹林克,冯大千.水分胁迫对柽柳植物可溶性物质的影响.干旱区研究,1999,16(2):6-11
    [367]王品英,敖红,等编.植物生理生化实验技术与原理.东北林业大学出版社.2003.
    [368]李合生.植物生理生化实验原理和技术.北京:高等教育出版社 2003.
    [369]霍仕平,晏庆九,宋光英,等.玉米抗旱鉴定的形态和生理生化指标研究进展.干旱地区农业研究,1995,13(3):67-73.
    [370]张明生,彭忠华,谢波,谈锋.甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系.中国农业科学,2004,37(1):152-156
    [371]赵纪东,傅华,吴彩霞.水分胁迫对白刺幼苗生物量和渗透调节物质积累的影响.西北植物学报,2006,26(9):1788-1793
    [372]Blumwal D E,Aharon G S,Apse M P.Sodium transport in plant cells.Biochimicaet Biophysica Acta,2000,1465:140-151.
    [373]Wang S M,Wang G,Wang Y R.Thecharacteristics of Na~+,K~+ and free praline distribution in several drought-resistandt plants of Alxa desert,China.Journal of Arid Environments,2004,56:525-539.
    [374]Tan W,Blake T J,Boyle T JB.Drought tolerance in faster and slower growing black spruce Picea mariana progenies:Ⅱ.Smotic adjustment and changes of soluble carbohydrates and amino acids under osmotic stress.Physiol.Plant,1992,85 4:645-651.
    [375]Maggio.A.,Reddy,M P.,Joly,R J.Leaf gas exchange and solute accumulation in the halophyte Salyadara persica grown at moderate salinity.Environmental and Experimental Botany,2000,44(1):31-38.
    [376]Bajji M,Kinet J M,Lutts S.Salt stress effects on roots and leaves of Atriplex halimus L.and their corresponding callus cultures.Plant Science,1998,137(2):131-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700