用户名: 密码: 验证码:
嗜热厌氧梭菌降解纤维素及产氢特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是最丰富的可再生资源和能够转化成燃料的底物,将纤维质的生物量转化为可再生能源具有重大的意义。由于纤维素具有高度有序、紧密结合的晶体结构,又与半纤维素相联结,外周还由木质素包围,要把它直接水解成可利用的葡萄糖相当困难。目前对木质纤维素酶解多使用来源于丝状真菌的纤维素酶,但由于酶降解效率低下,酶解过程受产物抑制,酶蛋白不耐高温等,制约了其大规模应用。某些纤维素降解菌,如热纤梭菌具有高效的纤维素降解复合体——纤维小体,能有效降解纤维素,具有直接把生物质转化为乙醇和H_2的能力,为利用一种微生物直接转化生物质的设想提供了可能。但在利用热纤梭菌进行乙醇发酵过程中往往伴有乙酸和丁酸等副产物的产生,而且最终产物的最高积累浓度仅为3%左右,只及酿酒酵母与发酵单胞菌属的25~30%。利用DNA重组技术重新设计糖酵解途径,阻断副产物的形成路线,解除乙醇生物合成的代谢阻遏作用,同时提高细胞对高浓度乙醇的耐受性,是高产乙醇的梭菌属工程菌构建的主要内容。
     高温厌氧菌还具有产H_2的能力。氢气具有热值高,无污染的特点。生物产氢包括光合产氢和发酵产氢。发酵产氢需要设备简单,不需光照,但H_2的摩尔产量低和原材料价格高仍是未解决的问题。发酵产氢只能利用有机物降解的15%能量。因此提高H_2的产量将是今后研究的重点。另外,也可利用两步法,将发酵产氢与光合产氢或与产甲烷结合,提高对生物质的利用效率。使用纤维素或废水产氢,可降低原料的成本。
     本论文通过研究嗜热厌氧纤维素降解菌的降解特性,对其纤维素酶系和调控机制有更深入的了解,同时可利用其能够转化纤维素生成氢气的特性,研究纤维素发酵产氢的可行性。
     本论文的主要研究内容如下:
     1.嗜热厌氧纤维素降解菌的筛选与鉴定
     以纤维素为唯一碳源,对嗜热厌氧纤维素降解菌进行富集。采用纤维素粉和纤维二糖滚管法对富集后的菌群进一步纯化,得到纤维素降解菌JN4和其伴生菌GD17。JN4能有效降解微晶纤维素和滤纸,也可利用玉米芯粉、玉米秸粉、木糖渣等天然底物作为碳源生长,GD17在富集液中数量较多,能利用纤维二糖、葡萄糖和木糖生长。通过形态观察,生理生化特性和16S rDNA分析进行鉴定,确定JN4为热纤梭菌(Clostridium thermocellum),GD17为热解糖高温厌氧杆菌(Thermoanaerobacterium thermosaccharolyticum)。
     2.C.thermocellum JN4和伴生菌T.thermosaccharolyticum GD17的生长和产氢特性
     以纤维二糖为碳源,确定了C.thermocellum JN4和T.thermosaccharolyticumGD17的最适生长温度为55~60℃,并进行了生长曲线的测定。利用GC和HPLC对发酵产物的分析表明,C.thermocellum JN4分解纤维素生成H_2、乙酸、乙醇和乳酸,T.thermosaccharolyticum GD17可利用各种还原糖生成乙酸、乙醇、乳酸和丁酸。C.thermocellum JN4可降解微晶纤维素、滤纸,未经预处理的玉米秸粉和玉米芯粉。对C.thermocellum JN4的胞外蛋白酶活测定表明,C.thermocellum JN4以微晶纤维素为碳源生长时,发酵液具有CMC酶活、磷酸膨胀纤维素酶活和微晶纤维素酶活。以纤维二糖为碳源时,C.thermocellum JN4的H_2产率(Y_(H2))约为0.7mol H_2/mol二糖;以纤维二糖、葡萄糖和木糖为碳源时,T.thermosaccharolyticum GD17的H_2产率(Y_(H2))分别为4mol H_2/mol纤维二糖,2.2mol H2/mol葡萄糖和1.7mol H_2/mol木糖。
     3.C.thermocellum JN4单独培养和与T.thermosaccharolyticum GD17混合培养利用纤维素生长和产氢的动力学研究
     以微晶纤维素为碳源,研究了厌氧管内C.thermocellum JN4单独培养和与T.thermosaccharolyticum GD17混合培养的生长和产氢动力学。结果表明单独培养C.thermocellum JN4可有效降解0.5%微晶纤维素,生长后期有纤维二糖、葡萄糖的积累,乳酸、乙酸和乙醇的量逐渐增加,到60 h达到稳定,产H_2能力为0.8 mol H_2/mol葡萄糖。加入伴生菌T.thermosaccharolyticum GD17,与Cthermocellum JN4共同培养,可将C.thermocellum JN4产生的纤维二糖和葡萄糖完全利用,乙酸和乙醇产量与C.thermocellum JN4单独接种相比变化不大,有端岵?并在60 h后仍有增长,乳酸产生在60 h之后开始下降,最终完全检测不到,而混合菌的产H_2能力提高到1.8 mol H_2/mol葡萄糖。
     4.2L反应器中C.thermocellum JN4单独培养和与T.thermosaccharolyticumGD17混合培养利用纤维素的生长和产氢情况
     用自制的2L厌氧反应器在不控制pH的情况下,以滤纸为碳源单独培养C.thermocellum JN4,产氢量约为18mmol/1培养基,其它发酵产物有乙酸、乳酸和乙醇,其中乙醇的含量较高,达到24 mmol/1培养基以上,显示该菌有改造成为纤维素乙醇生产菌的可能。与用厌氧管培养不同,发酵液中没检测到纤维二糖和葡萄糖,表明扩大培养较有利于JN4的生长和代谢。C.thermocellum JN4与T.thermosaccharolyticum GD17混合培养,在不控制pH的情况下,产氢量约为35mmol/1培养基,其它发酵产物有乙酸、乳酸、丁酸和乙醇。乳酸含量在50h到达最高,然后逐渐减少,同时丁酸含量逐渐增加,与厌氧管培养结果相似。控制pH在pH6.0-6.5,产氢量约为25mmol/1培养基,比不控制pH要少。其它发酵产物中,乳酸含量最高,这表明pH在6.0-6.5的情况下,更有利于乳酸的生成,造成产氢量的减少。如果延长培养时间,T.thermosaccharolyticum GD17可利用乳酸,会有更多的H_2产生。
     5.C.thermocellum JN4外切葡聚糖酶基因celS的原核表达
     以C.thermocellum JN4的基因组为模板,以C.thermocellum ATCC 27405的celS基因为参考设计引物,PCR扩增得到的序列与Genbank的已知序列进行比对,结果表明扩增获得的片段为celS基因,且与Clostridium thermocellum ATCC27405的celS基因仅有3个碱基的差异。将C.thermocellum JN4的celS基因和质粒pET-22b连接,构建表达载体,并利用大肠杆菌BL21(DE3)进行CelS的异源表达,得到的重组蛋白rCelS具有水解磷酸膨胀纤维素的能力。
     6.C.thermocellum JN4外切葡聚糖酶基因CelS的定点突变
     结合蛋白质结构生物学信息,对C.thermocellum JN4的rCelS蛋白催化中心的相关位点进行D255N和Y351F定点突变和原核表达,结果表明定点突变后的两种rCelS蛋白均没有水解磷酸膨胀纤维素的能力。表明Asp255有可能作为广义碱基团在外切葡聚糖酶CelS的催化反应中与广义酸基团Glu87进行翻转型催化反应。Tyr351是CelS的保守位点,将其变成Phe可能对CelS的结构与催化功能造成影响。
Cellulose is the most abundant renewable resource that can be turned into fuel. Effective utilization of cellulose effectively is of great significance.However. cellulose is very difficult to hydrolyze because of lack of cellulases with high activities,which has limited its uses.At present,cellulases are mainly from fungi. Some anaerobic bacteria such as Clostridium thermocellum produce cellulases which can hydrolyze cellulose effectively.C.thermocellum can produce ethanol and H_2. However,the use of C.thermocellum for ethanol fermentation often has organic acids as by-products.The highest concentration of ethanol is only about 3%. Recombinant DNA technology was used to re-design the glycolysis pathway to block the synthetic pathway of by-products and to improve the cell tolerance to ethanol.
     Hydrogen is a clean and sustainable energy carrier for the future because of its high conversion efficiency and nonpolluting nature when used in fuel cells.Anaerobic fermentation has been demonstrated as a technically feasible way to produce hydrogen.Some anaerobic bacteria can use for H_2 production.However.the cost of hydrogen production and low hydrogen yield could limit its widespread application as an energy source in the future.Cellulose is the promising economical source for hydrogen production.Hydrogen production by fermentation can use only 15% energy of the organic matter.Therefore,to improve the H_2 production is becoming the focus of energy research.Combination of hydrogen production by fermentation with photosynthetic hydrogen production or methane production can improve the efficiency of the use of biomass.
     Thermophilic anaerobic bacteria can effectively utilize cellulose and have great potential for H_2 production.The study of cellulose degradation characteristics of thermophilic anaerobic bacteria can help us have a better understanding of their cellulases and regulation mechanisms.Furthermore,we can make use of cellulose fermentation to product hydrogen.
     The main results of the thesis are as follows:
     1.Screening and identification of thermophilic anaerobic bacteria
     Using cellulose as the sole carbon source,the thermophilic anaerobic bacteria that can utilize cellulose were enriched from rotten wheat straw.Single colonies were isolated by using agar roll tubes containing cellobiose.A cellulose-degrading bacterium JN4 was obtained and identified as C.thermocellum by 16S rDNA analysis and morphological observation.Another bacterium that was the most abundant in the sample was isolated and identified as Thermoanaerobacterium thermosaccharolyticum.
     2.Growth and H_2 production properties of C.thermocellum and T. thermosaccharolyticum
     The optimal growth temperature of C.thermocellum JN4 and T. thermosaccharolyticum GD 17 was 60℃by using cellobiose as carbon source.The growth curves of the two strains were determined.GC and HPLC analysis showed that the fermentation products of C.thermocellum JN4 were H_2,acetate,lactate and ethanol using cellulose as carbon source.C.thermocellum JN4 could utilize microcrystalline cellulose,filter paper and several kinds of natural substrates such as corn cob powder and corn stalk powder.The extracellular proteins of C. thermocellum JN4 showed CMCase,PASCase and cellobiohydrolase activity when grown on microcrystalline cellulose.The fermentation products of T. thermosaccharolyticum GD17 were H_2,acetate,butyrate and ethanol using reducing sugar as carbon source.The production of hydrogen by both strains was investigated. The hydrogen yield of C.thermocellum was 0.7mol H_2(mol cellobiose)~(-1).The hydrogen yield of T.thermosaccharolyticum GD17 was 4mol H_2(mol cellobiose)_(-1), 2.2 tool H_2(mol glucose)~(-1) and 1.7mol H_2(mol xylose)~(-1).
     3.The growth kinetics and hydrogen production of C.thermocellum JN4 and co-cultures of C.thermocellum JN4 and T.thermosaccharolyticum GD17 using microcrystalline cellulose as carbon source
     Using microcrystalline cellulose as carbon source and Hungate tubes,batch fermentation was performed to investigate the growth characteristics and H_2 production of C.thermocellum JN4 cultures and co-cultures of C.thermocellum JN4 and T.thermosaccharolyticum GD17.The results showed that C.thermocellum JN4 can degrade microcrystalline cellulose to produce hydrogen,ethanol,acetate and lactate,but cannot completely utilize cellobiose and glucose produced by the cellulose degradation.Its hydrogen yield was about 0.8 mol H_2(mol glucose)~(-1),with lactate as the main product.When C.thermocellum JN4 was co-cultured with T. thermosaccharolyticum GD17,hydrogen production increased about 2-fold and H_2 yield reached a high level of 1.8 mol H_2(mol glucose)~(-1).Butyrate was the most abundant byproduct and lactate was not detected at the end of the co-culture process.
     4.The growth and H_2 production of C.thermocellum JN4 and co-cultures of C. thermocellum JN4 and T.thermosaccharolyticum GD17 in 2L anaerobic reactor
     Using filter paper as carbon source in 2L anaerobic reactor.C.thermocellum JN4 can produce 18mmol H_2/1 culture.Other fermentation products are ethanol,acetic acetate and lactate.The higher ethanol content of 24 mmol/1 culture indicated that the strain had the potential of cellulosic ethanol production.Differences from cultures in Hungate tubes,cellobiose and glucose were not detected.That means that the scale-up of cultivation may benefit the growth and metabolism of C thermocellum JN4.When C thermocellum JN4 was co-cultured with T. thermosaccharolyticum GD17 without pH control,the H_2 production increased to 35mmol/1 culture.Other fermentation products are ethanol,acetate,lactate and butyrate.Lactate increased until 50h and then decreased.At the same time, butyrate increased,which was similar to the cultures in Hungate tubes.When C. thermocellum JN4 was co-cultured with T.thermosaccharolyticum GD17 with pH control at pH 6.0~6.5,the H_2 production was 25mmol/l culture.Lactate was the predominant fermentation product.Because no H_2 was produced in lactate fermentation,the H_2 production decreased.
     5.Cloning and expression of Clostridium thermocellum JN4 celS gene in Escherichia coli
     The gene was cloned by using the genome of Clostridium thermocellum JN4 as template.The primers were designed according to C.thermocellum ATCC 27405 celS gene.The nucleotide sequence data were submitted to GenBank.There were only 3 bases' difference between the submitted sequence and C.thermocellum ATCC 27405 celS gene.So the fragment we cloned should be celS gene.The PCR-amplified gene fragment,following restriction-enzyme digestions,was ligated with the similarly digested plasmid pET-22b.The ligated plasmid was introduced into E.coli BL21(DE3).The recombinant protein rCelS had PASCase activity. But the activity was low.
     6.Site-directed mutagenesis of Clostridium thermocellum JN4 celS gene and expression in Escherichia coli
     According to protein structural information,two sites were site-directed mutagenesis.The one was D255N and the other was Y351F.The sites were chosed because they were key sites of catalytic function.The mutations were expressed in Escherichia coli but neither of them had PASCase activity.So we speculated that Asp255 may be the base group of the catalytic center.Tyr351 is a conservative site and the change to Phe may impact the structure of CelS catalytic center.
引文
Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA. Dominguez-Espinosa R. (2004).Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22: 477-485.
    Arai T. Ohara H, Karita S. Kimura T. (2001). Sequence of celQ and properties of CelQ, a component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol. 57: 660-666.
    Baskaran S, Arm HJ, Lynd LR. (1995). Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog. 11:276-281.
    Bayer EA, Kenig R, Lamed R. (1983). Studies on the adherence of Clostridium thermocellum to cellulose. J Bacteriol. 156: 818-827.
    Bayer EA, Shimon LJW, Shoham Y, Lamed R. (1998). Cellulosomes-Structure and Ultrastructure. J Struc Biol 124: 221-234.
    Bayer EA, Belaich JP, Shoham Y, Lamed R. (2004). The cellulosome: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 58: 521-554.
    Bayer EA, Lamed R, Himmel ME. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Current Opinion in Biotechnology. 18: 237-245.
    Beguin P, Cornet P. Aubert JP. (1985). Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum J. Bacteriol. 162: 102-105.
    Beguin P. (1990). Molecular biology of cellulose degradation. Anu Rev Microbiol. 44:219-248.
    Beguin P, Lemaire M. (1996). The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31:201-236.
    Berger E, Zhang D, Zverlov VV, Schwarz WH. (2007). Two noncellulosomal cellulases of Clostridium thermocellum , Cel9I andCel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett. 268: 194-201
    Bemardez TD, Lyford K, Lynd LR. (1994). Kinetics of the extracellular cellulose complex of Clostridium thermocellum for pretreated mixed hardwood and avicel.Appl Microbiol Biotechnol. 41: 620-625.
    Bisaillon A, Turcot J, Hallenbeck PC. (2006). The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy. 31: 1504-1508
    Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem. 72: 248-54.
    Burdette DS, Jung SH, Shen GJ. Hollingsworth RI. Zeikus JG. (2002). Physiological function of alcohol dehydrogenases and long-chain (C-30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol. 68:1914-1918.
    Chandrakant P and Bisaria VB. (2000). Simultaneous bioconversion of glucose and xylose to ethanol Sacchaormyces cerevisiae in the presence of xylose isomerese.Opt Micor biol Biotechnol. 53: 301-309.
    Chang JS, Lee KS, Lin PL. ( 2002). biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy. 27: 1167-1174.
    Chen CC, Lin CY, Chang CY. (2001). Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol. 57: 56-64.
    Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, et al. (2001).Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol. 51:1729-35.
    Chen WM, Tseng ZJ, Lee KS, Chang JS. (2005). Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30(10):1063-1070.
    Cheong DY, Hansen CL. (2006). Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen.Process Biochem. 41: 1736-1745.
    Cheong. DY, Hansen, CL. (2007). Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Bioresource Technology 98:2229-2239.
    Cho HY. Yukawa H. Inui M. Doi RH. Wong SL. (2004). Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800.Appl Environ Microbiol. 70: 5704-5707.
    Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA. (1999). Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol. 52: 741-755.
    Collet C, Schwitzguebel JP, Peringer, P. (2003). Improvement of acetate production from lactose by growing Clostridium thermolacticum in mixed culture. J Appl Microbiol. 95:824-831.
    Coughlan MP, Maye F. (1992). The cellulose-decomposing bacteria and their enzyme systems. The Prokaryotes, vol. 2. Springer, New York, 460-516.
    Das D and Veziroglu TN. (2001). Hydrogen production by biological processes: a survey of literature .Int J HydrogenE nergy. 26: 13-28.
    Datar R, Huang J, Maness PC, Mohagheghin A, Czernik S, Chornet E. (2007).Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy. 32: 932-939.
    Demain AL, Klapatch TR, Jung KH, Lynd LR. (1996). Recombinant DNA technology in development of an economical conversion of waste to liquid fuel.Ann N Y Acad Sci. 782: 402-412.
    Demain AL, Newcomb M, Wu JMD (2005) . Cellulase, clostridia, and ethanol.Microbiology and Molecular Biology Reviews. 69: 124-154.
    Desvaux M. (2005). Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741-764.
    Devillard E, Goodheart DB, Karnati SKR, Bayer EA, Lamed R, Miron J, Nelson KE,Morrison M. (2004). Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two proccssive endocellulases, Cel48A and Cel9B,both of which possess a novel modular architecture. J Bacteriol. 186: 136-145.
    Din N, Damude HG Gilkes NR, Miller RC. (1994). Cl-C_x revisited: intromolecular synergism in a cellulase. Proc Natl Acad Sci. 91:11383-11387.
    Ding SY, Xu Q, Crowley M. (2008). A biophysical perspective on the cellulosome:new opportunities for biomass conversion. Current opinion in biotechnology. 19:218-227.
    Dugba PN, Zhang R. (1999). Dairy wastewater with two-stage anaerobic sequencing batch reactor system—thermophilic versus mesophilic operations. Bioresour Technol. 68: 225-233.
    Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y. (2003). Regulation of the cellulosomal celS (ceI48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol. 185: 3042-3048.
    Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y. (2003b). Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J Bacteriol 185:5109-5116.
    Dror TW, Rolider Adi, Bayer EA, Lamed R, Shoham1 Y. (2005). Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J Bacteriol. 187: 2261-2266.
    Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ. (2006). Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol. 97(3): 500-505.
    Fan Z, Lynd LR. (2007). Conversion of paper sludge to ethanol, II: process design and economic analysis. Bioprocess Biosyst Eng. 30: 35-45.
    Fang HHP, Liu H, Zhang T. (2002). Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44-52.
    Fang HHP, Zhang T, Liu H. (2002b). Microbial diversity of a mesophilic H2-producing sludge. Appl Microbiol Biotechnol 58:112-8.
    Fang HHP, Li CL, Zhang T. (2006). Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy. 31:683-692.
    Fang HHP, Zhu H, Zhang T. (2006b). Photophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy . 31: 2223-2230.
    Felix CR and Ljungdahl LG. (1993). The cellulosome: the extracellular organelle of Clostridium. Annu. Rev. Microbiol. 47:791-819.
    Ferchichi M, Crabbe E, Gil GH, Hintz W, Almadidy A. (2005). Influence of initial pH on hydrogen production from cheese whey. J Biotechnol. 120: 402-409.
    Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C,Belaich JP, Bayer EA. (2005). Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem. 280: 16325-16334.
    Georgieva TI, Mikkelsen MJ, Ahring BK. (2007). High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Central European Journal of Biology. 2: 364-377.
    Girbal L, Soucaille P. (1998). Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16: 11-16
    Gold ND, Martin VJJ. (2007). Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol. 189:6787-6795.
    Grepinet O. Beguin P. (1986). Sequence of the cellulase gene of Clostridium thermocellum coding for endoglucanase B. Nucleic Acids Res. 14: 1791-1799.
    Guedon DME, Petitdemange H. (2000). Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol. 66: 2461-2470.
    Guimaraes BG, Souchon H., Lytle BL, Wu JHD, Alzari PM. (2002). The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J. Mol. Biol.320: 587-596.
    
    Gustavo DV, Sonia A, Felipe A, Antonio LR, Luis MRC, Elias RF. (2008).Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol. 7: 27-45. 郭尧君(Guo YJ). (1999).蛋白质电泳实验技术.北京:科学出版社
    
    Hallenbeck PC, Benemann JR. (2002). Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy. 27: 1185-1193.
    Hallstead JR. Vercoe PE. Gilbert HJ, Davidson K. Hazlewood GP. (1999). A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology. 145: 3101-3108.
    Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. (2007). Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy. 32: 172-184.
    Hayashi H, Takagi KI, Fukumura M, Kimura T. (1997). Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome J. Bacteriol. 179: 4246-4253.
    Hayashi H, Takehara M. Hattori T. Kimura T. (1999). Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB and characterization of XynA from Clostridium thermocellum. Appl Microbiol Biotechnol. 51:348-357.
    Hazlewood GP, Romaniec MPM, Davidson K, Grepinet O. Beguin P. Millet J,Raynaud O, Aubert JP. (1988). A catalogue of Clostridium thermocellum endoglucanase. β-glucosidase and xylanase genes cloned in Escherichia coli.FEMS Microbiology Letters. 51:231-236.
    Herrero AA, Gomez RF. (1980). Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol. 40:571-577.
    Herrero AA, Gomez RF, Snedecor B, Tolman CJ, Roberts MF. (1985). Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol. 22: 53-62.
    Herrero AA, Gomez RF, Roberts MF. (1985b). 35P NMR studies of Clostridium thermocellum Mechanism of end product inhibition by ethanol. J Biol Chem. 260:7442-7451.
    Hogsett DA, Ahn HJ, Bernardez TD, South CR, Lynd LR. (1992). Direct microbial conversion: Prospects, progress, and obstacles. Appl. Biochem. Biotechnol.34-35:527-541.
    Iyer P, Brims MA, Zhang H, Ginkel SV. Logan BE. (2004). H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol. 66:166-173.
    Janssen PH and Morgan H. (1992). Heterotrophic sulfur reduction by Thermologa sp. Strain FjSS.B1.FEMS Microbiol Lett. 96: 213-218.
    Janssen PH and Morgan H. (1992b). Glucose catabolism by Spirochaeta thermophila EI 19.B1. J Bacteriol.174: 2449-2453.
    Jennert KCB, Tardiff C, Young DI, Young M. (2000). Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiol. 146: 3071-3080.
    Jo JH, Lee DS, Park JM. (2008). The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology, 99: 8485-8491.
    Johnson EA, Madia A, Demain AL. (1981). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum.Appl Environ. Microbiol. 41: 1060-1062.
    Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL. (1982). Saccharification of complex cellulosis substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol. 43: 1125-1132.
    Johnson EA, Demain AL. (1984). Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum.Arch Microbiol. 137: 135-138.
    Joliff G, Beguin P, Aubert JP. (1986). Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermocellum. Nucleic Acids Res. 14:8605-8613.
    Kaji M, Taniguchi Y, Matsushita O, Katayama S, Miyata S, Morita S, Okabe A.(1999). The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol Lett. 181:329-336.
    Kataoka N, Miya A, Kiriyama K, (1997). Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36: 41-47.
    Kapdan IK, Kargi F. (2006). Bio-hydrogen production from waste materials. Enzyme Microb Technol. 38: 569-582.
    Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K.(2005). Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng 100:524-530.
    Klapatch, TR, Hogsett DA, Baskaran S, Pal and S. (1994). Organism development and characterization for ethanol production using thermophilic bacteria. Appl Biochem Biotechnol. 45-46: 209-223.
    Klapatch TR, Guerinot ML, Lynd LR. (1996). Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 16: 342-347.
    Klapatch, TR, A. L. Demain, and L. R. Lynd. (1996b). Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum.Appl Microbiol Biotechnol. 45: 127-131.
    Koskinen PEP, Lay CH, Beck SR. (2008). Bioprospecting thermophilic microorganisms from Icelandic hot springs for hydrogen and ethanol production.Energy and Fuels. 22: 134-140.
    Kosugi AK, Murashima, Doi RH. (2001). Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates. J Bacteriol. 183: 7037-7043.
    Kruus K, Andreacchi A, Wang WK, Wu JHD. (1995) . Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol. 44: 399-404.
    Kruus K, Wang WK, Ching J, Wu JH. (1995b). Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol. 177: 1641-1644.
    Kumar N, Das D. (2001) . Redirection of biochemical pathway for the enhancement of H_2 production by Enterobacter cloacae. Biotechnol Lett. 23 :537-541.
    
    Kurokawa J. Hemjinda E. Arai T. Kimura T. (2002). Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3 c carbohydrate-binding module. Appl.Microbiol. Biotechnol. 59: 455-461.
    
    Lamed R, Zeikus JG. (1980). Ethanol production by thermophilic bacteria:relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol. 144: 569-578.
    
    Lamed RJ, Lobos JH, Su TM. (1988). Effect of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol. 54: 1216-1220.
    
    Lay JJ, Lee YJ, Noike T. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 33(11): 2579-2586.
    
    Lay JJ. (2000). Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng. 68(3): 269-278.
    
    Lay, JJ. (2001). Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng. 74: 280-287.
    
    Levin DB, Pitt L, Love M. (2004). Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy. 29(2): 173-185.
    
    Levin DB, Islam R, Cicek N, Sparling R. (2006). Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31:1496-1503.
    
    Lee, YE, Jain MK, Lee C, Lowe SE, Zeikus JG. (1993). Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xyanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb, nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst. Bacteriol. 43:41-51.
    Lee CM, Chen PC, Wang CC, Tung YC. (2002). Photohydrogen production using purple non-sulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27: 1308-1314.
    Lemaire M, Beguin P. (1993). Nucleotide sequence of the celG gene of Clostridium thermocellum and characterization of its product, endoglucanase CelG. J Bacteriol. 175:3353-3360.
    Levin DB, Islam R, Cicek N, Sparling R. (2006). Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31: 1496-1503.
    Li DM, Chen HZ. (2007). Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy 32:1742-1748.
    Liang DB, Cheng SS and Wu KL. (2002). Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen energy. 27:1157-1165.
    Lin CY, Chang RC. (1999). Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol. 74: 498-500.
    Lin CY, Lay CH. (2004). Carbon/nitrogen-ratio effect on fermentative H_2 production by mixed microflora. Int J Hydrogen Energy. 29:41-45.
    Lin, PY; Whang, LM; Wu, YR. (2007). Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. Int J Hydrogen Energy. 32:1728-1735.
    Lin WR, Lee CC, Hsu JJ, Hamel JF, Demain AL. (1998). Properties of acetate kinase activity in Clostridium thermocellum cell extracts. Appl. Biochem. Biotechnol.69: 137-145.
    Lin WR, Peng Y, Lew S, Lee CC, Hsu JJ, Hamel JF, Demain AL. (1998b).Purification and characterization of acetate kinase from Clostridium thermocellum. Tetrahedron 54: 15915-15925.
    
    Liu H, Zhang T, Fang HPP. (2003). Thermophilic H2 production from cellulose containing wastewater. Biotechnol. Lett. 25: 365-369.
    Liu SY. Rainey F. Morgan HW. Mayer F. Wiegel J. (1996). Thermoanaerobacterium aotearoense sp. now. a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol. 46: 388-396.
    Lo YC, Bai MD, Chen WM, Chang JS. (2008). Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresource Technology 99: 8299-8303.
    Logan BE, Oh SE, Kim IS, Van GS. (2002). Biological H2 production measured in batch anaerobic respirometers. Environ Sci Technol. 36: 2530-2535.
    Logan BE, Regan JM. (2006). Microbial fuel cells-challenges and applications.Environ Sci Technol. 40: 5172-5180.
    Lu Y, Zhang YH, Lynd LR. (2006). Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA, 103:16165-16169.
    Lynd LR. (1989) . Production of ethanol from lignocellulosic material using thermophilic bacteria: critical evaluation of potential and review. Adv Biochem Eng Biotechnol. 38: 1-52.
    Lynd LR, Grethlein HG, Wolkin RH. (1989b) . Fermentation of cellulose substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol. 55:3131-3139.
    Lynd, LR, Ahn HJ, Anderson G, Hill P, Kersey DS, Klapatch TR. (1991).Thermophilic ethanol production. Investigation of ethanol yield and tolerance in continuous culture. Appl Biochem Biotechnol. 28-29: 549-570.
    Lynd LR, Elander RT, Wyman CE. (1996). Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotech. 57/58: 741-761.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66:506-577.
    
    Lynd LR, van Zyl WH, McBride JE, Laser M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 16: 577-583.
    Mechaly A, Yaron S, Lamed R. (2000). Cohesin-dockerin recognition in cellulosome assembly: Experiment versus hypothesis. Proteins-structure function and genetics. 39: 170-177.
    Mackie RI, Bryant MP. (1995). Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures. Appl Microbiol Biotechnol. 43: 346-350.
    Mccarter JD and Withers SG. (1994). Mechanisms of enzymatic glycoside hydrolysis.Curr Opin Struct Bio. 4: 885-892.
    Meyer J and Gagnon J. (1991). Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry. 30: 9697-9704.
    Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP. (2005).Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol, 71:1215-1222.
    Mishra, S, Beguin P, Aubert and JP. (1991). Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J Bacteriol. 173: 80-85.
    Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol.73: 59-65.
    Morag, E, Bayer, EA Hazlewood, GP. (1993). Cellulase-S(S) (CelS) is Synonymous with the major cellobiohydrolase (Subunit-S8) from the cellulosome of Clostridium thermocellum. Appl Biochem and Biotech. 43: 147-151.
    Morag E, Yaron S, Lamed R. (1996). Dissociation of the cellulosome of Clostridium thermocellum under nondenaturing conditions. J Biotech. 51: 235-242.
    Morimoto K, Kimura T, Sakka K, Ohmiya K. (2005). Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246: 229-234.
    Mu Y, Yu HQ. (2006). Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules.Biotechnol Bioeng 94: 980-987.
    Mu Y, Wang G, Yu HQ. (2006b). Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb Technol 38: 905-913.
    Murashima K, Chen CL, Kosugi A, Tamaru Y, Doi RH, Wong SL. (2002).Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes. J Bacteriol 184: 76-81.
    Nandi S, Sengupta S. (1998). Microbial production of hydrogen: an overview. Crit Rev Microbiol. 24:61-84.
    Navarro A. Chebrou MC, Beguin P, Aubert JP.Res. (1991). Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Microbiol. 142: 927-936.
    Ng TK, Ben-Bassat A, Zeikus JG. (1981) . Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol.41: 1337-1343.
    Nguyen TAD. Kima JP, Kim MS, Oh YK, Sim SJ. (2008). Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int. J. Hydrogen Energy. 33:1483-1488.
    Newcomb M and Wu JHD. (2004). Transcription regulators of the Clostridium thermocellum cellulase system. Biotechnology of lignocellulose degradation and biomass utilization. 148-154. Uni Publishers, Tokyo, Japan.
    Oh YK, Kim SH, Kim MS, Park S. (2004). Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88: 690-698.
    Ohmiya K, Sakka K, Kimura T, Morimoto K. (2003). Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J Biosci Bioeng 95: 549-561.
    Palazzi E, Fabiano B, Perego P. 2000. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 22: 205-13.
    Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaich JP, Driguez H, Haser R.(1998). The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 A resolution. EMBO J. 17: 5551-5562.
    Parsiegla G, Reverbel-Leroy C, Tardif C, Belaich JP, Driguez H, Haser R. (2000).Crystal structures of the cellulase Cel48F in complex with inhibitors and substrates give insights into its processive action. Biochemistry 39:11238-11246.
    Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. (2008). Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Molecular Biology. 375: 499-510.
    Perret S, Belaich A, Fierobe HP, Belaich JP, Tardif C. (2004). Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol. 186: 6544-6552.
    Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A. (2004).Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol. 186: 253-257.
    Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC.(1998). X-ray crystal structure of the Fe only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853-1858.
    Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N. (1997). Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment and Bioeng. 83: 358-363.
    Rani SK, Swamy MV, Seenayya G. (1997). Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum.Biotechnol Lett. 19: 819-823.
    Reimann A, Biebl H, Decker WD. (1996) . Influence of iron, phosphate, and methyl viologen on glycerol fermentation of Clostridium butyricum. Appl Microbiol Biotechnol. 45: 47-50.
    
    任南琪 (RenNQ) , 李建政. (2003). 生物制氢技术.太阳能. 2: 4-6.
    Reverbel-Leroy C, Pages S, Belaich A, Belaich J. Tardif C. (1997) . The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol. 179:46-52.
    Sabathe F, Belaich A, Soucaille P. (2002). Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett.217: 15-22.
    Sabathe F, Soucaille P. (2003). Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol 185: 1092-1096.
    Sambrook J and Russell D, (2001). Molecular cloning: a laboratory manual, 3nd, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Santangelo JD, Durre P, Woods RD. (1995). Characterization and expression of the hydrogenase-encoding gene from Clostridium acetobutylicum P262.Microbiology 141: 171-180.
    Sato K, Tomita M, Yonemura S, Goto S. (1993). Characterization of and ethanol hyper-production by Clostridium thermocellum I-1-B. Biosci Biotechnol Biochem. 57:2116-2121.
    Schulein M. (2000). Protein engineering of cellulases. Biochim Biophys Acta. 1543:239-252.
    Schwarz WH. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56: 634-649.
    Shen H, Gilkes NR, Kilburn, DG, Miller RC, Warren RAJ. (1995). Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Biochem J. 311: 67-74.
    Soutschek BE, Hartl L, Staudenbauer WL. (1985). Transformation of Clostridium thermohydrosulfuricum DSM 586 with plasmid DNA. Biotechnol Lett. 7:705-710.
    Sparling R,Islam R,Carlo C,Herman C,Levin DB.(2006).Formate synthesis by Clostridium thermocellum 27405 during anaerobic fermentation.Can J Microbiol.52:681-688.
    孙宪昀(Sun XY).(2007).斜卧青霉木质纤维素酶的合成调控研究.山东大学博士学位论文.
    Taguchi F,Hasegawa K,Saito-Taki T.(1996).Simultaneous production of xylanese and hydrogen using xylan in a batch cultures of Clostridium sp.Strain No.2.J Ferment Bioeng.18:178-180.
    Tailliez P,Girard H,Millet J,Beguin P.(1989).Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum.Appl Environ Microbiol.55:207-211.
    Talabardon M,Schwitzguebel JP,Peringer P.(2000).Anaerobic thermophilic fermentation for acetic acid production from milk permeate.J Biotechnol.76:83-92.
    Tanisho S,Kuromoto M,Nadokurs N.(1998).Efect of CO_2 removal on hydrogen production by fermentation.Int J Hydrogen Energy 23:559-563.
    Tardif C,Maamar H,Balfin M,Belaich JP.(2001).Electrotransformation studies in Clostridium cellulolyticum.J Ind Microbiol Biotechnol.16:1-4.
    Thomas KNG,Arie B,Zeikus JG.(1981).Ethanol production by thermophilic bacteria:fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum.Appl Environ Microbiol.41:1337-1343.
    Tormo J,Lamed R,Chirino AJ,Morag E,Bayer EA,Shoham Y,Steitz TA.(1996).Crystal structure of a bacterial family-Ⅲ cellulose-binding domain:a general mechanism for attachment to cellulose.EMBO J.November 1;15(21):5739-5751.
    Tuka,K,Zverlov VV,Velikodvorskaya GA.(1992).Synergism between Clostridium thermocellum cellulases cloned in Escherichia coli.Appl Biochem Biotechnol.37:201-207.
    Tyurin MV,Desai SG,Lynd LR.(2004).Electrotransformation of Clostridium thermocellum. Appl. Environ. Microbiol. 70: 883-890.
    Uneo Y, Kawai T, Sato S. (1995). Biological production of hydrogen from cellulose by natural anaerobic micorflora. J. Ferment. Bioeng. 79: 395- 397.
    Ueno, Y, Otsuka, S, Morimoto M. (1996). Continuous production of hydrogen from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng. 82: 194-197.
    Ueno Y, Haruta S, Ishii M, Igarashi Y. (2001). Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol. 57: 555-562.
    Ueno Y, Haruta S, Ishii M, Igarashi Y. (2001b) .Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. J Biosci Bioeng 92: 397-400.
    Ueno Y, Fukui H, Goto M. (2007). Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41:1413-1419.
    Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F, Poggi-Varaldo HA.(2005). Semi-continuous solid substrate anaerobic reactors for H_2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrogen Energy. 30: 1383-1391.
    van Niel EWJ, Budde, MAW,de Haas GG,Van der W, Claassen PAM, Stams AJM.(2002), Distinctive properties of high hydrogen producing extreme thermopiles,Cadicellulosiruptor sacchaortyticus and Thermotoga elfii. Int J Hydrogen Energy. 27: 1391-1398.
    van Niel EWJ, Claassen PAM, Stams AJM. (2003). Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81: 255-262.
    Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM. (2002). Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. 27: 1381-1390.
    Wang, WK, Kruus K, Wu JHD. (1994). Cloning and expression of the Clostridium thermocellum celS gene in Escherichia coli. Appl Microbiol Biotechnol. 42: 346-352.
    Weil J, Westgate P, Kohlmann K, Ladisch and MR. (1994). Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb Technol. 16: 1002-1004.
    Weimer PJ, Zeikus JG. (1977). Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33:289-297.
    Wells JE, Russell JB. (1996). The effect of growth and starvation on the lysis of the ruminal cellulolytic bacterium Fibrobacter succinogenes. Appl Environ Microbiol 62: 1342-1346.
    Wonganu B, Pootanakit K, Boonyapakron K, Champreda V, Tanapongpipat S, Eurwilaichitr L. (2008). Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr Purif. 58: 78-86.
    Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS. (2006). Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.Biotechnol Bioeng 93: 934-946.
    Wyman CE. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. (2003). Biotechnol Prog. 19: 254-62.
    杨素萍(Yang SP). (2002). 光合细菌生物制氢研究.山东大学博士学位论文.
    Yao Q, Sun T, Chen G, Liu W. (2007). Heterologous expression and site-directed mutagenesis of endoglucanase CelA from Clostridium thermocellum. Biotechnol Lett. 29: 1243-1247.
    Yokoi H ,Mori S, Hiorse J, Hayashi S, Takasaki YHZ. (1998). Hydrogen production from starch by a mixed culture of Clostridium butyricum and Rhodobacters pM-19. Biotechnol Lett. 20: 890- 895.
    Yokoi H, Maki R, Hirose J, Hayashi S. (2002). Microbial production of H_2 from starch-manufacturing wastes. Biomass Bioenerg. 22: 389-395.
    Yokoyama H, Moriya N, Ohmori H, Waki M, Ogino A, Tanaka Y. (2007).Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol.77: 213-222.
    Yu HQ, Fang, HHP. (2000). Thermophilic acidification of dairy wastewater. Appl Microbiol Biotechnol. 54: 439-444.
    Yu HQ, Zhu ZH. (2002). Hydrogen production from rice winery waste water in an upflow anaeorbic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy. 27: 1359-1365.
    Zabranska J, Stepova J, Wachtl R, Jenicek P, Dohanyos M. (2000). The activity of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates. Water Sci. Technol. 42: 49-56.
    Zhang T, Liu H, Fang HHP. (2003). Biohydrogen production from starch in wastewater under thermophilic conditions. J Environ Manage. 69: 149-156.
    Zhang Y, Lynd LR. (2003). Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Anal Chem. 75: 219-227.
    Zhang YH, Lynd LR. (2005). Cellulose utilization by Clostridium thermocellum:bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci USA. 102:7321-7325.
    Zhang YH, Lynd LR. (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellulodextrins and cellobiose in cell extracts of Clostridium thermocellum. App Environ Microbiol. 70: 1563-1569.
    Zhang YH, Lynd LR. (2005). Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol. 187: 99-106.
    Zverlov VV, Fuchs KP, Schwarz WH, Velikodvorskaya GA. (1994). Purification and cellulosomal localization of Clostridium thermocellum mixed linkage 13-Glucanase LicB (1,3-1,4-b -glucanase). Biotechnol. Lett. 16: 29-34.
    Zverlov VV, Velikodvorskaya GA, SchwarzWH, KellermannJ, Staudenbauer WL.(1999). Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5. Appl Mirobio Biotechnol. 51: 852-859.
    Zverlov VV, Velikodvorskaya GA, Schwarz WH. (2002). A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum:investigation of the exo- mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology 148: 247-255.
    
    Zverlov VV, Fuchs KP, Schwarz WH. (2002b). Chi18A, the Endochitinase in the Cellulosome of the Thermophilic, Cellulolytic Bacterium Clostridium thermocellum. Appl. Env. Microbiol. 68: 3176-3179.
    
    Zverlov VV, Velikodvorskaya GA, Schwarz WH. (2003). Two new cellulosome components encoded downstream of cell in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149: 515-524.
    
    Zverlov VV, Kellermann J, Schwarz WH. (2005). Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics. 5: 3646-3653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700