用户名: 密码: 验证码:
植物生长可塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出了植物可塑性新的分类方法,并用该方法研究一年草本植物苍耳(Xanthium sibiricum Parin.)、荞麦(Fagopyrum esculentum Moench.)和曼陀罗(Datura stramonium L.)在不同密度和不同种植时间条件下的形态可塑性、生物量分配以及分生组织分配的策略,揭示了植物的不同特征在不同环境的可塑性差异。
     1.通过比较异速关系斜率和常数,我们将植物可塑性划分为四类:
     1.1关系可塑性:环境改变后,植物性状特征间的大小依赖关系消失;
     1.2尺度指数可塑性:异速生长的尺度指数(斜率)在不同环境条件下差异显著;
     1.3特征常数可塑性:异速生长的尺度指数没有显著差异,但是特征常数(截距)有显著差异;
     1.4生长速率可塑性:尺度指数和特征常数都没有显著性差异,但生长速率不同。
     2.植物的形态可塑性受到以下几个方面因素的影响:
     2.1不同的形态特征对环境的响应不同,在密度制约条件下,冠幅存在关系可塑性,叶片数则是特征常数可塑性,而直径是生长速率可塑性;
     2.2植物形态特征对不同环境的反应不同,冠幅在密度制约条件下存在关系可塑性,但在不同种植时间则不是这种可塑性;
     2.3异速关系与选择的分析指标有关系,异速生长是研究特征和个体大小之间的关系,个体大小即可用总生物量描述,有时也可用高度描述。我们的研究表明,不论是在密度制约还是在不同种植时间处理中,植物性状特征对总生物量的依赖程度明显增高,也就是说如果选择总生物量作为个体大小指标,那么得到的性状特征可塑性就相对较小;
     2.4对于不同分枝类型的植物,分枝角度和分枝数的可塑性存在很大差异。
     3.生物量分配的可塑性明显小于形态特征的可塑性。与形态特征一样,生物量分配的可塑性也受到环境和不同部分的生物量、选择的个体大小指标的影响。在不同种植时间条件下,生物量分配的可塑性比在不同密度制约条件下的可塑性要大。繁殖生物量分配的可塑性大于根、茎、叶生物量分配的可塑性。生物量分配对总生物量的依赖程度大于对高度的依赖程度。
     4.分生组织分配是一种研究生物量分配策略和植物可塑性的有用方法。不同的分枝结构导致在竞争条件下植物分生组织分配表现出不同的可塑性,通常繁殖分配的可塑性较小,营养生长的可塑性较大。
This paper presented a new classification of plant plasticity, and this method was used to research on three annual plants Xanthium sibiricum Parin., Fagopyrum esculentum Moench. and Datura stramonium L. under density and sowing date treatments. The morphological plasticities, biomass allocations and meristem allocations were studied to reveal the differences of plasticities of different plant traits under different environments.
     1. According to allometric slope and constant, we divided plant plasticity into four categories:
     1.1 Relationship plasticity: the size dependences of traits disappear as the environment changes;
     1.2 Scale index plasticity: allometric scale index (slope) is significantly different in different environmental conditions;
     1.3 Constant feature plasticity: allometric scale index is not significantly different, but the characteristics constant (interception) is significantly different;
     1.4 Growth rate plasticity: allometric scale index and characteristics constant are not significantly different, but the growth rate is different.
     2. Morphological plasticity was affected by the following factors:
     2.1 The responses of different morphological traits to environment were different. Under density restriction condition, crown was relationship plasticity, the number of leaves was constant feature plasticity, and diameter was growth rate plasticity.
     2.2 The responses of plant morphological traits to different environments were various. Crown was relationship plasticity under density restriction condition, but was not the same type of plasticity under sowing date treatments.
     2.3 Allometric relationship is influenced by the indicator of plant size. Allometry is to study the relationship between characteristics and size, however the size can be described by total biomass, and in some cases by height. Our research found that both in the density or sowing date treatments, the dependence of traits on the total biomass was significantly higher than on height, indicating that if size is expressed by the total biomass, the plasticity of morphological features was smaller.
     2.4 The plasticities of branch and branch angle were different among different type of branching.
     3. The allocation of biomass plasticity was small than morphological traits plasticity. As well as morphological characteristics, the allocation of biomass plasticity was affect by the environment, different part of biomass, and the indicators of size. The allocation of biomass plasticity was higher under different sowing date treatments than density treatments. Reproduction biomass plasticity was higher than stem, root and leaf plasticities. The dependence of biomass allocation on total biomass was higher than on height.
     4. Meristiem allocation is an effective method to investigate plant allocation strategies and plasticity. Different architectures have different possibilities for, and different constraints on, plasticity of meristem allocation in response to competition. Reproductive allocation appeared to be the least plastic allocation pattern.
引文
1. Gallagher R and Appenzeller T. Beyond reductionism[J]. Science, 1999, 284(5411): 79.
    2. Schwinning S and Weiner J. Mechanisms determining the degree of size asymmetry in competition among plants[J]. Oecol, 1998, 113: 447-455.
    3. Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in Genetics, 1965, 13: 115-155.
    4. Sultan S E. Phenotypic plasticity for plant development, function and life history[J]. Trends in Plant Science, 2000, 5(12): 537-542.
    5. Miner B G, Sultan S E, Morgan S G, et al. Ecological consequences of phenotypic plasticity[J]. Trends in Ecology & Evolution, 2005, 20(12): 685-692.
    6. Via S, Gomulkiewicz R, De Jong G, et al. Adaptive phenotypic plasticity: consensus and controversy[J]. Trends in Ecology & Evolution, 1995, 10(5): 212-217.
    7. Pigliucci M. Phenotypic plasticity: beyond nature and nurture[J]. 2001: JHU Press.
    8. Sultan S E. Promising directions in plant phenotypic plasticity[J]. Plant Ecol. Evol. Syst, 2004, 6(4): 227–233.
    9. Sultan S. Phenotypic plasticity and plant adaptation[J]. Acta Botanica Neerlandica, 1995, 44: 363 -383.
    10. Nicotra A B, Chazdon R L, and Schlichting C D. Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper(Piperaceae)species[J]. American Journal of Botany, 1997, 84(11): 1542-1552.
    11.许凯扬,叶万辉,曹洪麟, et al.植物群落的生物多样性及其可入侵性关系的实验研究[J].植物生态学报, 2004, 28(3): 385-391.
    12.陆霞梅,周长芳,安树青, et al.,植物的表型可塑性、异速生长及其入侵能力[J].生态学杂志, 2007, 26(9): 1438- 1444.
    13. Woltereck R. Weitere experimentelle Untersuchungenüber Artver?nderung,speziellüber das Wesen quantitativer Artunterschiede bei Daphnien[J]. Verhandlungen der deutschen zoologischen Gesellschaft, 1909, 19: 110-173.
    14. Johannsen W. The genotype concept of heredity[J]. American Naturalist, 1911, 45: 129-159.
    15. Schmalhausen I I. Factors of evolution[M]. 1949, New York: Blakiston Press.
    16. Lewontin R C. The adaptation of populations to varying environments[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1957, 22: 395-408.
    17. Levins R. Evolution in a changing environment[M]. 1968, Princeton, N.J.: Princeton University Press.
    18. Sultan S E. Phenotypic plasticity and the neo-Darwinian legacy[J]. Evolutionary Trends in Plants, 1992, 6: 61-71.
    19. Schlichting C D. Phenotypic plasticity in plants[J]. Plant Species Biology, 2002, 17: 85–88.
    20. Stebbins G L. Botany and the synthetic theory of evolution, ed. E. Mayr and W.B. Provine[M]. 1980, Cambridge: Harvard University Press.
    21. Pianka E. Evolutionary Ecology. 4th Edition ed[M]. 1988, New York: Harper and Row.
    22. Travis J. Ecological genetics of life-history traits: variation and its evolutionary significance, ed. L. Real[M]. 1994, Princeton, NJ: Princeton University. Press.
    23. Schmitt J, Dudley S A, and Pigliucci M. Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants[J]. The American Naturalist, 1999, 154: S43-S54.
    24. Schlichting C D. The evolution of phenotypic plasticity in plants[J]. Annu. Rev. Ecol. Syst, 1986, 17: 667-693.
    25. Via S. Genetic constraints on adaptive evolution[M]. 1987, New York: Springer-Verlag.
    26. Stearns S C. The evolutionary significance of phenotypic plasticity[J]. BioScience, 1989, 39(7): 436-445.
    27. Scheiner S. Genetics and evolution of phenotypic plasticity[J]. Annual Reviews in Ecology and Systematics, 1993, 24: 35-68.
    28. Sultan S E. Phenotypic plasticity in plants: a case study in ecological development[J]. Evolution & Development, 2003, 5(1): 25-33.
    29. Stuefer J F, De Kroon H, and During H J. Exploitation of environmentalheterogeneity by spatial division of labor in a clonal plant[J]. Functional Ecology, 1996, 10(3): 328-344.
    30. Weinig C. Plasticity versus canalization: population differences in the timing of shade-avoidance responses[J]. Evolution, 2000, 54(2): 441-451.
    31. Lankinen ?. In vitro pollen competitive ability in Viola tricolor: temperature and pollen donor effects[J]. Oecologia, 2001, 128(4): 492-498.
    32. Meyre D, Leonardi A, Brisson G, et al. Drought-adaptive mechanisms involved in the escape/tolerance strategies of Arabidopsis Landsberg erecta and Columbia ecotypes and their F1 reciprocal progeny[J]. Journal of Plant Physiology, 2001, 158(9): 1145-1152.
    33. Wahl S, Ryser P, and Edwards P J. Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply[J]. Annals of Botany, 2001, 88(6): 1071-1078.
    34. Vogler D W, Das C, and Stephenson A G. Phenotypic plasticity in the expression of self-incompatibility in Campanula rapunculoides[J]. Heredity, 1998, 81(5): 546-555.
    35. Fornoni J and Nunez-Farfan J. Evolutionary ecology of Datura stramonium: genetic variation and costs for tolerance to defoliation[J]. Evolution, 2000, 54(3): 789-797.
    36. Imbert E and Ronce O. Phenotypic plasticity for dispersal ability in the seed heteromorphic Crepis sancta (Asteraceae) [J]. Oikos, 2001, 93(1): 126-134.
    37. Dam N M V and Baldwin I T. Competition mediates costs of jasmonate-induced defences, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuata[J]. Functional Ecology, 2001, 15(3): 406 - 415.
    38. Ryser P and Eek L. Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources[J]. American Journal of Botany, 2000, 87(3): 402-411.
    39. Michael D, Delphine L, Benedicte Q, et al. Environmental and genetic control of morphogenesis in crops : towards models simulating phenotypic plasticity[J]. Australian journal of agricultural research, 2005, 56(11): 1289-1302.
    40. Rubner M. On the influence of body size on metabolism and energy exchange (in German) [J]. Zeitschrift für Biologie, 1883, 19: 535-562.
    41.韩文轩,方精云.幂指数异速生长机制模型综述[J].植物生态学报, 2008, 32(4): 951-960.
    42. Huxley J S and Teissier G. Terminology of relative growth[J]. Nature, 1936, 137: 780-781.
    43. Gayon J. History of the concept of allometry[J]. American Zoologist, 2000, 40: 748-758.
    44. Levinton J. Genetics, paleontology and macroevolution[M]. 1988, Cambridge: Cambridge University Press.
    45. Gould S J. Allometry and size in ontogeny and phylogeny[J]. Biological Reviews, 1966, 41: 587-640.
    46. White J. The allometric interpretation of the self-thinning rule[J]. Journal of Theoretical Biology, 1981, 89: 475-500.
    47. Menges E S. Biomass allocation and geometry of the clonal forest herb Laportea canadensis: Adaptive Responses to the Environment or Allometric Constraints? [J] American Journal of Botany, 1987, 74(4): 551-563.
    48. McMahon T A. The mechanical design of trees[J]. Scientific American, 1975, 223: 92-102.
    49. Weiner J and Thomas S C. Competition and allometry in three species of annual plants[J]. Ecology, 1992, 73(2): 648-656.
    50. Weiner J and Fishman L. Competition and allometry in Kochia scoparia[J]. Annals of Botany, 1994, 73(3): 263-271.
    51. Stearns S C. The evolution of Life histories[M]. 1992, Oxford: Oxford University Press.
    52. Bonser S P and Aarssen L W. Meristem allocation: a new classification theory for adaptive strategies in herbaceous plants[J]. Oikos, 1996, 77(2): 347-352.
    53. Hancock J F and Pritts M P. Does Reproductive effort vary across different life forms and seral environments? A review of the literature[J]. Bulletin of the Torrey Botanical Club, 1987, 114(1): 53-59.
    54. Wilson A M and Thompson K. A comparative study of reproductive allocation in 40 british grasses[J]. Functional Ecology, 1989, 3(3): 297-302.
    55. Tilman D. Plant strategies and the dynamics and structure of plant communities[M]. 1988, Princeton: Princeton University Press.
    56. Taylor D R, Aarssen L W, and Loehle C. On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plantlife sistory strategies[J]. Oikos, 1990, 58(2): 239-250.
    57. Cody M L. A general theory of clutch size[J]. Evolution, 1966, 20(2): 174-184.
    58. Watson M A. Developmental constraints: effect on population growth and patterns of resource allocation in a clonal Plant[J]. Amer. Nat, 1984, 123(3): 411-426.
    59. Reekie E G and Bazzaz F A. Reproductive effort in plants. 1. carbon allocation to reproduction[J]. Amer. Nat, 1987, 129(6): 876-896.
    60. Watson M A and Casper B B. Morphogenetic constraints on patterns of carbon dstribution in plants[J]. Annu. Rev. Ecol. Syst, 1984, 15: 233-258.
    61. Reekie E G and Bazzaz F A. Reproductive effort in plants. 3. effect of reproduction on vegetative activity[J]. The American Naturalist, 1987, 129(6): 907-919.
    62. Salomonson A, Ohlson M, and Ericson L. Meristem activity and biomass production as response mechanisms in two forest herbs[J]. Oecologia, 1994, 100: 29-37.
    63. Law R. The Cost of reproduction in annual meadow grass[J]. Amer. Nat, 1979, 113(1): p3-16.
    64. Smith B H. The Optimal design of a herbaceous body[J]. Amer. Nat, 1984, 123(2): 197-211.
    65. Bazzaz F A and Harper J L. Demographic analysis of the growth of Linum usitatissimum[J]. New Phytologist, 1977, 78(1): 193-208.
    66. Maillette L. Canopy development, leaf demography and growth dynamics of wheat and three weed species growing inpure and mixed stands[J]. The Journal of Applied Ecology, 1986, 23(3): 929-944.
    67. Lehtil? K, Tuomi J, and Sulkinoja M. Bud Demography of the Mountain Birch Betula Pubescens Ssp[J]. Tortuosa Near Tree Line. Ecology, 1994, 75(4): 945-955.
    68. Hamilton N R S, Schmid B, and Harper J L. Life-History Concepts and the Population Biology of Clonal Organisms[C]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1987, 232(1266): 35-57.
    69. Tuomi J and Vuorisalo T. What are the units of selection in modular organisms? [J]. Oikos, 1989, 54(2): 227-233.
    70. Fagerstr?m T. The meristem-meristem cycle as a basis for defining fitness inclonal plants[J]. Oikos, 1992, 63(3): 449-453.
    71. Wikberg S. Fitness in Clonal Plants[J]. Oikos, 1995, 72(2): 293-297.
    72. Geber M A. The cost of meristem limitation in Polygonum arenastrum: negative genetic correlations between fecundity and growth[J]. Evolution, 1990, 44(4): 799-819.
    73. Olejniczak P. Evolutionarily stable allocation to vegetative and sexual reproduction in plants[J]. Oikos, 2001, 95(1): 156-160.
    74. Campbell B D and Grime J P. An experimental test of plant strategy theory[J]. Ecology, 1992, 73(1): 15-29.
    75. Waite S and Hutchings M J. Plastic energy allocation patterns in Plantago Coronopus[J]. Oikos, 1982, 38(3): 333-342.
    76. Samson DA and Werk K S. Size-Dependent effects in the analysis of reproductive effort in plants[J]. The American Naturalist, 1986, 127(5): 667-680.
    77. Klinkhamer P G L and Jong T J D. Plant size and seed production in the Monocarpic Perennial Cynoglossum officinale L[J]. New Phytologist, 1987, 106(4): 773-783.
    78. Hartnett D C. Size-dependent allocation to sexual and vegetative reproduction in four clonal composites[J]. Oecologia, 1990, 84(2): 254-259.
    79. Sugiyama S and Bazzaz F A. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity[J]. Functional Ecology, 1998, 12(2): 280-288.
    80. Niklas K J. Plant Allometry[M]. 1994, Chicago: University of Chicago Press.
    81. Shipley B. Analysing the allometry of multiple interacting traits. Perspect. Plant Ecol. Evol. Syst, 2004, 6(4): 235-241.
    82. Bonser S P and Aarssen L W. Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability[J]. AM. J. BOT, 2003, 90(3): 404–412.
    83. Müller I, Schmid B, and Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants[J]. Plant Ecol. Evol. Syst, 2000, 3(2): 115-127.
    84. Bonser S P and Aarssen L W. Allometry and plasticity of meristem allocation throughout development in Arabidopsis thaliana[J]. J. Ecol, 2001, 89(1): 72-79.
    85. Bonser S P and Aarssen L W. Meristem allocation and life-history evolution in herbaceous plants[J]. Can. J. Bot, 2006, 84(1): 143-150.
    86. Duffy N M, Bonser S P and Aarssen L W. Patterns of variation in meristem allocation across genotypes and species in monocarpic Brassicaceae[J]. Oikos, 1999, 84(2): 284-292.
    87. Weiner J. Allocation, plasticity and allometry in plants[J]. Plant Ecol. Evol. Syst, 2004, 6(4): 207–215.
    88. Wright S D and McConnaughay K D M. Interpreting phenotypic plasticity: the importance of ontogeny[J]. Plant Species Biol, 2002, 17: 119–131.
    89. K D M McConnaughay, and Coleman J S. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients[J]. Ecology, 1999, 80(8): 2581-2593.
    90. Coleman J S, McConnaughay K D M., and Ackerly D D. Interpreting phenotypic variation in plants[J]. Trends Ecol. Evolut, 1994, 9(5): 187-191.
    91. Crick J C and Grime J P. Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology[J]. New Phytologist, 1987, 107(2): 403-414.
    92. Robinson D. Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variations in growth[J]. Annals of Botany, 1986, 58(6): 841-848.
    93. ?gren G I and Ingestad T. Root: shoot ratio as a balance between nitrogen productivity and photosynthesis[J]. Plant, Cell & Environment, 1987, 10(7): 579-586.
    94. Evans G C. The quantitative analysis of plant growth[M]. 1972: University of California Press, CA.
    95. Harper J L and Ogden J. The reproductive strategy of higher plants: I. The concept of strategy with special reference to Senecio Vulgaris L[J]. J. Ecol, 1970, 58(3): 681-698.
    96. Harper J. Population Biology of Plants[M]. 1977, London: Academic Press.
    97. Weiner J. The influence of competition on plant reproduction. Plant Reproductive Ecology: Patterns and Strategies, ed. J.L. Doust and L.L. Doust[M]. 1988, New York: Oxford University Press.
    98. Bloom A, Chapin F, and Mooney H. Resource Limitation in plants-an economic analogy[J]. Annual Reviews in Ecology and Systematics, 1985, 16:363-392.
    99. Brouwer R. Nutritive influences on the distribution of dry matter in the plant[J]. Journal of Agricultural Science, 1962, 10: 399–408.
    100. Chapin F S. The mineral nutrition of wild plants[J]. Annual Review of Ecology and Systematics, 1980, 11: 233–260.
    101. Gedroc J J, McConnaughay K D M., and Coleman J S. Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? [J]. Functional Ecology, 1996, 10(1): 44-50.
    102. Olff H, Andel J V, and Bakker J P. Biomass and root: shoot allocation of five species from a grassland succession series at different combinations of light and nutrient supply[J]. Functional Ecology, 1990, 4: 193-200.
    103. Tilman D and Wedin D. Plant traits and resource reduction for five grasses growing on a nitrogen gradient[J]. Ecology, 1991, 72(2): 685-700.
    104. Aerts R, De Caluwe H, and Konings H. Seasonal allocation of biomass and nitrogen in four Carex Species from mesotrophic and Eutrophic Fens as affected by nitrogen supply[J]. The Journal of Ecology, 1992, 80(4): 653-664.
    105. Olff H. Effects of light and nutrient availability on dry matter and N allocation in six successional grassland species[J]. Oecologia, 1992, 89(3): 412-421.
    106. Van de Vijver C A D M, Boot R G A, Poorter H. and Lambers H. Phenotypic plasticity in response to nitrate supply of an inherently fast-growing species from a fertile habitat and an inherently slow-growing species from an infertile habitat[J]. Oecologia, 1993, 96(4): 548-554.
    107. K?rner C and Renhardt U. Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution[J]. Oecologia, 1987, 74(3): 411-418.
    108. Poorter H, Remkes C, and Lambers H.. Carbon and nitrogen economy of twenty-four wild species differing in relative growth rate[J]. Plant Physiology, 1990, 94: p 621-627.
    109. Casper B B, Cahill J J F, and Hyatt L A. Above-ground competition does not alter biomass allocated to roots in Abutilon theophrasti[J]. New Phytologist, 1998, 140: 231-238.
    110. Pigliucci M and Hayden K. Phenotypic plasticity is the major determinant of changes in phenotypic integration in Arabidopsis[J]. New Phytologist, 2001, 152(3): 419-430.
    111. Reddy V R, Pachepsky Y A, and Whisler F D. Allometric relationships in field-grown soybean[J]. Ann. Bot, 1998, 82: 125-131.
    112. Reekie E G. An explanation for size-dependent reproductive allocation in Plantago major[J]. Can. J. Bot, 1998, 76(1): 43-50.
    113. Welham C V and Setter R A. Comparison of size-dependent reproductive effort in two dandelion (Taraxacum officinale) populations[J]. Can. J. Bot. , 1998, 76(1): 166-173.
    114. Wang T H., zhou D W, et al. Size-dependent reproductive effort in Amaranthus retroflexus: the influence of planting density and sowing date[J]. Can. J. Bot, 2006, 84(3): 485-492.
    115. West G B, Brown J H, and Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276: 122-126.
    116.陶建平,钟章成,光照对苦瓜形态可塑性及生物量配置的影响[J].应用生态学报, 2003, 14(3): 336-340.
    117.董鸣.资源异质性环境中的植物克隆生长:觅食行为[J].植物学报, 1996, 38(10): 828-835.
    118. Doust A N. Grass architecture: genetic and environmental control of branching[J]. Current Opinion in Plant Biology, 2007, 10(1): 21-25.
    119. Dong M. Morphological plasticity of the clonal herb Lamiastrum galeobdolon L. Ehrend & Polatschek in response to partial shading[J]. New Phytol, 1993, 124: 291-300.
    120. de Kroon H., Huber H, Stuefer J F, et al. A modular concept of phenotypic plasticity in plants[J]. New Phytol, 2005, 166: 73–82.
    121. Weiner J, Berntson G M, and Thomas S C. Competition and growth form in a woodland annual[J]. J. Ecol, 1990, 78(2): 459-469.
    122. Weiner J. Asymmetric competition in plant populations[J]. Trends in Ecology & Evolution, 1990, 5(11): 360-364.
    123. Westoby M. The self-thinning rule[J]. Advances in Ecological Research, 1984, 14: 167-226.
    124. King D. Tree dimensions: maximizing the rate of height growth in dense stands[J]. Oecologia, 1981, 51(3): 351-356.
    125. Abul-Faith H A and Bazzaz F A. The biology of Ambrosia trifida L. II. germination, emergence, growth and survival[J]. New Phytologist, 1979, 83(3): 817-827.
    126. Ellison A M. Density-dependent dynamics of Salicornia Europaea Monocultures[J]. Ecology, 1987, 68(3): 737-741.
    127. Monsi M, Uchijima Z, and Oikawa T. Structure of foliage canopies and photosynthesis[J]. Annual Review of Ecology and Systematics, 1973, 4: 301-327.
    128. Kohyama T. Growth patterns of Abies mariesii saplings under conditions of open-growth and suppression[J]. Botanical Magazine Tokyo, 1980, 93: 13-24.
    129. Sorrensen-Cothern K A, Ford E D, and Sprugel D G. A model of competition incorporating plasticity through modular foliage and crown development[J]. Ecological Monographs, 1993, 63(3): 277-304
    130. Weller D E. Self-Thinning exponent correlated with allometric measures of plant geometry[J]. Ecology, 1987, 68(4): 813-821.
    131. Franco M. The influences of neighbours on the growth of modular organisms with an example from trees philosophical transactions of the royal society of London[J]. Series B, Biological Sciences, 1987, 313(1159): 209-225.
    132. Geber M A. Interplay of morphology and development on size inequality: A polygonum greenhouse study[J]. Ecol. Monogr, 1989, 59(3): 267-288.
    133. Holbrook N M and Putz F E. Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (Sweet Gum) [J]. American Journal of Botany, 1989, 76(12): 1740-1749.
    134. Weiner J and Thomas S C. Size variability and competition in plant monocultures[J]. Oikos, 1986, 47(2): 211-222.
    135. Gates D J. Bimodality in even-aged plant monocultures[J]. Journal of Theoretical Biology 1978. 71(4): 525-540.
    136. Cannell M G R, Rothery P, and Ford E D. Competition within stands of Picea sitchensis and Pinus contorta[J]. Annals of Botany, 1984, 53: 349-362.
    137.李建东,吴榜华,盛连喜.吉林植被[M]. 2001,长春:吉林省科学技术出版社. 183-194.
    138.杨允菲,张宝田.羊草种群年龄结构及无性繁殖对策的分析[M].植物学报, 1995, 37(2): 147-153.
    139. Sokal R R and Rolhf F J. Biometry Third edition ed[M]. 2000, New York: W.H. Freeman and Company.
    140. Donohue K. Germination timing influences natural selection on life-historycharacters in Arabidopsis thaliana[J]. Ecology, 2002, 83(4): 1006-1016.
    141. Pigliucci M, and Marlow E T. Differentiation for flowering time and phenotypic integration in Arabidopsis thaliana in response to season length and vernalization[J]. Oecologia, 2001, 127: 501-508.
    142. Weinig C. Differing selection in alternative competitive environments: shade-avoidance responses and germination timing[J]. Evolution, 2000, 54: 124-136.
    143. Zhou D W, Wang T H, and Valentine I. Phenotypic plasticity of life-history characters in response to different germination timing in two annual weeds[J]. Can. J. Bot, 2005, 83: 28–36.
    144. Marks M and Prince S. Influence of germination date on survival and fecundity in wild Lettuce Lactuca Serriola[J]. Oikos, 1981, 36(3): 326-330.
    145. Greulich S and Bornette G. Competitive abilities and related strategies in four aquatic plant species from an intermediately disturbed habitat[J]. Freshwater Biology, 1999, 41(3): 493 - 506.
    146. Silvertown J. The demographic and evolutionary consequences of seed dormancy. In Plant population ecology, ed. A. Davy and M. Hutchings[M]. 1988, Oxford: Blackwell. 205-219.
    147. Mack R Nand Pyke D A. The demography of Bromus Tectorum: variation in time and space[J]. The Journal of Ecology, 1983, 71(1): p. 69-93.
    148. Sans F X and Masalles R M. Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae) [J]. Can. J. Bot. , 1994, 72: 10-19.
    149.李仲芳,王刚.种内竞争对一年生植物高生长与生物量关系的影响[J].兰州大学学报(自然科学版), 2002, 38(2): 141-146.
    150. Lieonart J, Salat J, and Torres G J. Removing allometric effects of body size in morphological analysis. [J] Journal of Theoretical Biology, 2000, 205(1): 85-93.
    151. Kollmann J, Dietz H, and Edwards P J. Allocation, plasticity and allometry[J]. Plant Ecol. Evol. Syst, 2004, 6(4): 205–206.
    152. Obeso J. R. A hierarchical perspective in allocation to reproduction from whole plant to fruit and seed level, Perspect[J]. Plant Ecol. Evol. Syst, 2004, 6 (4): 217–225.
    153. Obeso J R. The costs of reproduction in plants[J]. New Phytologist, 2002. 155: 321-348.
    154. Bazzaz F and Ackerly D. Reproductive allocation and reproductive effort in plant. In: fennere, M (ed.), Seeds: the ecology of regeneration in plant communities[M]. C.A.B. international, Oxton, U.K., 1992, 1-26.
    155. Wilson J B. A Review of Evidence on the control of shoot: root ratio, in relation to models[J]. Annals of Botany, 1988, 61: 433-449.
    156. Gadgil M and Bossert W H. Life historical consequences of natural selection[J]. The American Naturalist, 1970, 104(935): 1-24.
    157. Iwasa Y and Roughgarden J. Shoot/root balance of plants: Optimal growth of a system with many vegetative organs[J]. Theoretical Population Biology, 1984, 25(1): 78-105.
    158. Grime J P. Plant strategies and vegetation processes[M]. 1979, Chichester: Wiley.
    159. Abrahamson W G and Gadgil M. Growth form and reproductive effort in goldenrods (Solidago, Compositae)[J].. The American Naturalist, 1973, 107(957): 651-661.
    160. Bazzaz F A and Reekie E G. The meaning and measurement of reproductive effort in plants. Studies on Plant Demography, ed. J. White[M]. 1985, London: Academic Press. 373-387.
    161. Schmid B and Weiner J. Plastic relationships between reproductive and vegetative mass in Solidago altissima[J]. Evolution, 1993, 7(1): 61-74.
    162. Micha? Jand Bazzaz F A. The fallacy of ratios and the testability of models in biology[J]. Oikos, 1999, 84(2): 321-326.
    163. Pearsall WH. Growth studies VI. On the relative size of growing plant organs[J]. Annals of Botany, 1927, 41: 549-556.
    164. Coleman J S and K D M McConnaughay. A non-functional interpretation of a classical optimal partitioning example[J]. Functional Ecology, 1995, 9(6): 951-954.
    165. Clarke M R B. The reduced major axis of a bivariate sample[J]. Biometrika, 1980, 67(2): 441-446.
    166. Halle F, Oldeman, R A A, et al. Tropical trees and forests, an architectural analysis[J]. New Phytol, 1979, 83(3): 858-859.
    167. White J. The Plant as a Metapopulation[J]. Annu. Rev. Ecol. Syst, 1979, 10: 109-145.
    168. Tremmel D C and Bazzaz F A. Plant architecture and allocation in differentneighborhoods: implications for competitive success[J]. Ecology, 1995, 76(1): 262-271.
    169. Diggle P K. The Expression of andromonoecy in Solanum hirtum (Solanaceae): phenotypic plasticity and ontogenetic contingency. Am. J. Bot, 1994, 81(10): 1354-1365.
    170. Diggle P K. Ontogenetic contingency and floral morphology: The effects of architecture and resource limitation[J]. International Journal of Plant Sciences (Supplement), 1997, 158(6): S99-S107.
    171. Schmitz G and Theres K. Genetic control of branching in Arabidopsis and tomato[J]. Curr. Opin. Plant Biol, 1999, 2: 51-55.
    172. Niklas K J and Enquist B J. An allometric model for seed plant reproduction[J]. Evol. Ecol. Res, 2003, 5: 79-88.
    173. Sussex I M and Kerk N M. The evolution of plant architecture[J]. Curr. Opin. Plant Biol, 2001, 4: 33-37.
    174. Bazzaz F A. Habitat selection in plants[J]. Amer. Nat, 1991, 137: 116-130.
    175. Slade A J and Hutchings M J. The Effects of Nutrient Availability on Foraging in the Clonal Herb Glechoma Hederacea[J]. J. Ecol, 1987, 75(1): 95-112.
    176. Kroons H D and Hutchings M J. Morphological plasticity in clonal plants: the foraging concept reconsidered[J]. J. Ecol, 1995, 83(1): 143-152.
    177. McSteen P and Leyser O. Shoot branching[J]. Annual Review of Plant Biology, 2005, 56(1): 353-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700