用户名: 密码: 验证码:
猫初级视皮层17区神经元的动态反应特性及21a区的反馈投射对17区信息处理的调制影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对哺乳类动物视觉皮层如何编码视觉刺激的消失的研究并不多见。在这里,我们研究了猫视皮层17区的88个神经元从刺激开始以及刺激消失后的动态反应特性。在62.5%的神经元中(88个中的55个,31个简单细胞,24个复杂细胞),我们观察到由静止光栅诱发的可信的撤刺激瞬时反应(offset transient response),它与给刺激瞬时反应(onset transient response)有相似的最优方位,方位敏感强度,累积检测能力,峰反应幅度和峰潜伏期。但是,这种撤刺激瞬时反应显著地依赖于刺激呈现的时间,意味着神经元回路需要更长的时间来共激活以产生撤刺激瞬时反应。简单细胞和复杂细胞的撤刺激瞬时反应的特性并不一样。复杂细胞的给刺激瞬时反应和撤刺激瞬时反应的峰潜伏期比简单细胞的有更强的线性关系,有更高的撤刺激瞬时反应的峰反应幅度,并且给刺激瞬时反应和撤刺激瞬时反应的产生都不依赖于光栅的空间相位。我们所做的线性消褪光栅的实验证明,引起撤刺激瞬时反应的是感受野亚区内局部的光强变化。
     人类和其他一些哺乳类对水平-垂直的视觉刺激的敏感度要高于倾斜方位的刺激(这一现象被称为“倾斜效应”)。虽然产生这种效应的神经机制目前尚不很清楚,但是一种可能性是:参与处理水平-垂直方位信息的神经元数量要大于参与处理倾斜方位的。猫视皮层21a区接受17区输入并有反馈投射至17区。本实验室以往的研究发现猫视皮层17区和21a区内对水平-垂直方位敏感的皮层区域明显大于对倾斜方位敏感的皮层区域。而且在21a区的倾斜效应更为明显。本文利用内源信号光学成像技术结合定点微量注射药物的方法,探索高级视皮层21a区的反馈调制对初级视皮层17区的倾斜效应得影响。我们首次发现,增加21a区的活动水平可以使17区的水平-垂直与倾斜方位的敏感区的不均一分布的差值水平从4.9%上升到18.8%,已经接近21a区的23.2%的水平,而降低21a区的活动水平则可以减弱17区的这种不均一分布。然而,在21a区加药不能改变17区全方位功能图的基本图式。对比加药前和恢复后,加药前和微量注射谷氨酸以及加药前和微量注射GABA的全方位功能图发现,大部分像素点的最优方位变化不大。这一结果意味着21a区的反馈调制可以改变大量17区神经元的最优方位,虽然每个神经元改变的幅度很小,但在总体上却可以引起17区的皮层区域最优方位的分布模式发生改变。
     结果提示,从高级皮层的反馈调制可以自上而下地调动低级视皮层中更多的神经元来处理某一种特定的自下而上的视觉信息,使得视觉系统对该信息的敏感度较以前有更大的提高。反馈调制在信息处理上的这种偏好性,可能是高级视皮层的一种重要的生理功能。
Few researches have been done on how the mammalian visual cortex encodes the disappearance of visual stimuli. Here we study the dynamic response of 88 area 17 neurons in cats, from both the stimulus onset and offset. A reliable offset transient response to stationary grating could be seen in 62.5% of the neurons (55 in 88, 31 simple, 24 complex), showing a similar preferred orientation, orientation bias, cumulative detecability, peak response amplitude and latency with that of the onset transient response. However, this offset response, was significantly more dependent on the stimulus duration than the onset transient response, indicating that it needs longer time for the neurocircuit to coactivate in generating offset transient response. Simple and complex cells behaved differently in offset transient response. Complex cells exhibited a stronger linear relationship between the onset and offset response peak latency than simple cells, a greater offset peak response amplitude compared with that of the onset response, and were independent of grating spatial phase both in the onset and offset response in contrast to the simple cells. The linear fading-grating test demonstrated that it was the luminance change in receptive field subregions that generated offset transient response.
     Visual system of human and some other mammalians are physiologically or psychologically more sensitive to vertical and horizontal visual stimuli than to those obliquely oriented (usually referred to as the 'oblique effect'). Although the neurobiological basis of this bias is not fully understood, one possibility is that more neural machinery is devoted to processing vertical and horizontal contours than to processing oblique ones. The over representation of vertical and horizontal orientations in an orientation map has been found in area 17 as well as area 21a in cat's visual cortex which receives input from and sends output to area 17. The over representation was greater in area 21a than in area 17. It is interesting to investigate whether feedback influence from area 21a could affect the unequal representation in area 17. Using a combination of intrinsic signal optic imaging and pharmacological techniques, we found for the first time that on average, increasing activity of area 21a enhanced the difference of over representation in area 17 from 4.9% to 18.8%, near the level found in area 21a (23.2%), while decreasing activity of area 21a reduced the over representation. However, the basic pattern of orientation map sampled before and during drug application maintained unchanged, and the preferred orientation of most pixels in the orientation map changed little between control and recovery, control and glutamate microinjection, as well as control and GABA microinjection. These findings imply that positive feedback modulation from area 21a alters the preferred orientation of a large number of neurons in area 17, although in a small degree of switch, thus making the global distribution of preferred orientation changed.
     The finding suggests that feedback from higher-order cortex can recruit more neural machinery in lower-order cortex in order to process certain kind of information, thus making an important contribution to higher level of visual function.
引文
Bair, W., Cavanaugh, J. R., Smith, M. A. and Movshon, J. A., 2002. The timing of response onset and offset in macaque visual neurons. J Neurosci. 22,3189-3205.
    Bowen, R. W., Pola, J. and Matin, L., 1974. Visual persistence: Effects of flash luminance, duration and energy. Vision Res. 14,295-303.
    
    Bullier, J., 2001. Integrated model of visual processing. Brain Res Brain Res Rev. 36,96-107.
    Chen, X., Liang, Z., Shen, W. and Shou, T., 2005. Differential behavior of simple and complex cells in visual cortex during a brief IOP elevation. Invest Ophthalmol Vis Sci. 46,2611-2619.
    Cleland, B. G., Dubin, M. W. and Levick, W. R., 1971. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 217,473-496.
    Cleland, B. G. and Lee, B. B., 1985. A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. J Physiol. 369,249-268.
    Creutzfeldt, O. D., Kuhnt, U. and Benevento, L. A., 1974. An intracellular analysis of visual cortical neurones to moving stimuli: response in a co-operative neuronal network. Exp Brain Res. 21, 251-274.
    Daniels, J. D., Norman, J. L. and Pettigrew, J. D., 1977. Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Exp Brain Res. 29,155-172.
    Dowling, J. E., 1987. The Vertebrate Retina: an approachable Part of the Brain. Harvard Univ. Press, Cambridge.
    Enroth-Cugell, C. and Robson, J. G., 1966. The Contrast Sensitivity of Retinal Ganglion Cells of the Cat. J Physiol. 187,517-552.
    Fernald, R. and Chase, R., 1971. An improved method for plotting retinal landmarks and focusing the eye. Vis Res. 11,95-96.
    Galuske, R. A., Schmidt, K. E., Goebel, R., Lomber, S. G and Payne, B. R., 2002. The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci U S A. 99, 17083-17088.
    Gillespie, D. C., Lampl, I., Anderson, J. S. and Ferster, D., 2001. Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex. Nat Neurosci. 4,1014-1019.
    Hochstein, S. and Shapley, R. M., 1976. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 262,237-264.
    Hoffmann, K. P. and Stone, J., 1971. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32, 460-466.
    Huang, L., Chen, X. and Shou, T., 2004. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res. 998, 194-201.
    Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., Giese, M., Steinhage, A. and Schoner, G., 1999. Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci. 19, 9016-9028.
    Kayser, C., Kording, K. P. and Konig, P., 2004. Processing of complex stimuli and natural scenes in the visual cortex. Curr Opin Neurobiol. 14, 468-473.
    Lee, B. B., Creutzfeldt, O. D. and Elepfandt, A., 1979. The responses of magno- and parvocellular cells of the monkey's lateral geniculate body to moving stimuli. Exp Brain Res. 35, 547-557.
    Leventhal, A. G. and Schall, J. D., 1983. Structural basis of orientation sensitivity of cat retinal ganglion cells. J Comp Neurol. 220,465-475.
    Levick, W. R. and Thibos, L. N., 1982. Analysis of orientation bias in cat retina. J Physiol. 329, 243-261.
    Li, W., Thier, P. and Wehrhahn, C, 2001. Neuronal responses from beyond the classic receptive field in V1 of alert monkeys. Exp Brain Res. 139,359-371.
    Mastronarde, D. N., 1987a. Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol. 57,357-380.
    Mastronarde, D. N., 1987b. Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. J Neurophysiol. 57,381-413.
    Mastronarde, D. N., Humphrey, A. L. and Saul, A. B., 1991. Lagged Y cells in the cat lateral geniculate nucleus. Vis Neurosci. 7,191-200.
    Meyer, G. E. and Maguire, W. M., 1981. Effects of sptial -frequency specific adatation and target duration on visual persistence. Journal of Experimental Psychology: Human Perception and Performance. 7, 151-156.
    Movshon, J. A., Thompson, I. D. and Tolhurst, D. J., 1978a. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol. 283, 53-77.
    Movshon, J. A., Thompson, I. D. and Tolhurst, D. J., 1978b. Receptive field organization of complex cells in the cat's striate cortex. J Physiol. 283,79-99.
    Muller, J. R., Metha, A. B., Krauskopf, J. and Lennie, P., 2001. Information Conveyed by Onset Transients in Responses of Striate Cortical Neurons. J Neurosci. 21,6978-6990.
    Orban, G. A., 1984. Neuronal Operations in the Visual Cortex.
    Pei, X., Vidyasagar, T. R., Volgushev, M. and Creutzfeldt, O. D., 1994. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J Neurosci. 14,7130-7140.
    Pettigrew, J. D., Cooper, M. L. and Blasdel, G. G., 1979. Improved use of tapetal reflection for eye-position monitoring. Invest Ophthalmol Vis Sci. 18,490-495.
    Shapley, R., Hawken, M. and Ringach, D. L., 2003. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron. 38,689-699.
    Shen, W., Liang, Z. and Shou, T., 2004. Modulation of projections from area posteromedial lateral suprasylvian (PMLS) on the direction preference in the primary visual cortex of cats. Shanghai International Conference on Physilogical Biophysics. 2004 (abst), 24.
    Shou, T. and Zhou, Y., 1990. Incremental IOP for abolishing the response of cat LGN Y cells and X cells to flash stimulation of the eye. Chin J Physiol Sci. 6,95-99.
    Shou, T. D. and Leventhal, A. G., 1989. Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus. J Neurosci. 9,4287-4302.
    Shou, T. D. and Zhou, Y. F., 1989. Y cells in the cat retina are more tolerant than X cells to brief elevation of IOP. Invest Ophthalmol Vis Sci. 30,2093-2098.
    Sillito, A. M., 1975. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol. 250,305-329.
    Sillito, A. M., Kemp, J. A., Milson, J. A. and Berardi, N., 1980. A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res. 194,517-520.
    Stone, J., Dreher, B. and Leventhal, A., 1979. Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Res. 180,345-394.
    Suder, K., Funke, K., Zhao, Y, Kerscher, N., Wennekers, T. and Worgotter, F., 2002. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models. Exp Brain Res. 144,430-444.
    Troyer, T. W., Krukowski, A. E., Priebe, N. J. and Miller, K. D., 1998. Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity. J Neurosci. 18,5908-5927.
    Vidyasagar, T. R., Pei, X. and Volgushev, M., 1996. Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends Neurosci. 19, 272.
    Vidyasagar, T. R. and Urbas, J. V., 1982. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res. 46, 157-169.
    Zhan, X. and Shou, T., 2002. Anatomical evidence of subcortical contributions to the orientation selectivity and columns of the cat's primary visual cortex. Neurosci Lett. 324, 247-251.
    Zhou, Y., Wang, W., Ren, B. and Shou, T., 1994. Receptive field properties of cat retinal ganglion cells during short-term IOP elevation. Invest Ophthalmol Vis Sci. 35, 2758-2764.
    1. Albrecht, D. G., Geisler, W. S., Frazor, R. A. and Crane, A. M., 2002. Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol. 88, 888-913.
    2. Alitto, H. J. and Usrey, W. M, 2003. Corticothalamic feedback and sensory processing. Curr Opin Neurobiol. 13,440-445.
    3. Altaian, J., Miezin, F. and McGuinness, E., 1985. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci. 8,407-430.
    4. Appel, S., 1972. Perception and discrimination as a function of stimulus orientation: The oblique effect in man and animals. Psych Bull. 78,266-278.
    5. Arieli, A., Shoham, D., Hildesheim, R. and Grinvald, A., 1995. Coherent spatio-temporal pattern of on-going activity revealed by real time optical imaging coupled with single unit recording in the cat visual cortex. J Neurophysiol. 73,2072-2093.
    6. Arieli, A., Sterkin, A., Grinvald, A. and Aertsen, A., 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 273, 1868-1871.
    7. Bair, W., Cavanaugh, J. R. and Movshon, J. A., 2003. Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons. J Neurosci. 23, 7690-7701.
    8. Bair, W., Cavanaugh, J. R. and Movshon, J. A., 2003. Time course and time-distance relationships for surround suppression in macaque V1 neurons. J Neurosci. 23,7690-7701.
    9. Bair, W., Cavanaugh, J. R., Smith, M. A. and Movshon, J. A., 2002. The timing of response onset and offset in macaque visual neurons. J Neurosci. 22, 3189-3205.
    10. Baker, C. L., Jr. and Cynader, M. S., 1986. Spatial receptive-field properties of direction-selective neurons in cat striate cortex. J Neurophysiol. 55, 1136-1152.
    11. Barlow, H. B., 1953. Summation and inhibition in the frog's retina. J Physiol. 119,66-88.
    12. Batschelet, E., 1984. Circular statistics in biology.
    13. Ben-Yishai, R., Bar-Or, R. L. and Sompolinsky, H., 1995. Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA. 92, 3844-3888.
    14. Benedek, G., Norita, M. and Creutzfeldt, O. D., 1983. Electrophysiological and anatomical demonstration of an overlapping striate and tectal projection to the lateral posterior-pulvinar complex of the cat. Exp Brain Res. 52, 157-169.
    15. Bringuier, V., Chavane, F., Glaeser, L. and Fregnac, Y., 1999. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science. 283,695-699.
    16. Bullier, J., 2001. Integrated model of visual processing. Brain Res Brain Res Rev. 36, 96-107.
    17. Bullier, J. and Nowak, L. G., 1995. Parallel versus serial processing: new vistas on the distributed organization of the visual system. Curr Opin Neurobiol. 5,497-503.
    18. Burke, W., Dreher, B. and Wang, C., 1998. Selective block of conduction in Y optic nerve fibres: significance for the concept of parallel processing. Eur J Neurosci. 10, 8-19.
    19. Chapman, B. and Bonhoeffer, T., 1998. Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proc Natl Acad Sci U S A. 95, 2609-2614.
    20. Chen, C. C., Kasamatsu, T., Polat, U. and Norcia, A. M., 2001. Contrast response characteristics of long-range lateral interactions in cat striate cortex. Neuroreport. 12, 655-661.
    21. Chen, X., Liang, Z., Shen, W. and Shou, T., 2005. Differential behavior of simple and complex cells in visual cortex during a brief IOP elevation. Invest Ophthalmol Vis Sci. 46, 2611-2619.
    22. Chen, X., Sun, C, Huang, L. and Shou, T., 2003. Selective Loss of Orientation Column Maps in Visual Cortex during Brief Elevation of Intraocular Pressure. Invest Ophthalmol Vis Sci. 44,435-441.
    23. Cinelli, A. R. and Kauer, J. S., 1995. Salamander olfactory bulb neuronal activity observed by video-rate, voltage sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electrical stimulation. J Neurophysiol. 73,2033-2052.
    24. Cleland, B. G., Dubin, M. W. and Levick, W. R., 1971. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 217,473-496.
    25. Cleland, B. G. and Lee, B. B., 1985. A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. J Physiol. 369, 249-268.
    26. Cleland, B. G., Levick, W. R. and Sanderson, K. J., 1973. Properties of sustained and transient ganglion cells in the cat retina. J Physiol. 228, 649-680.
    27. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S. and Wang, C. H., 1974. Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol. 19, 1-36.
    28. Cohen, M. R. and Newsome, W. T., 2004. What electrical microstimulation has revealed about the neural basis of cognition. Curr Opin Neurobiol. 14, 169-177.
    29. Coppola, D. M., White, L. E., Fitzpatrick, D. and Purves, D., 1998. Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc Natl Acad Sci U S A. 95, 2621-2623.
    30. Cordeiro, M. F., Guo, L., Luong, V., Harding, G., Wang, W., Jones, H. E., Moss, S. E., Sillito, A. M. and Fitzke, F. W., 2004. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A. 101, 13352-13356.
    31. Cottaris, N. P. and De Valois, R. L., 1998. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature. 395, 896-900.
    32. Crair, M. C, Gillespie, D. G. and Stryker, M. P., 1998. The role of visual experience in the development of columns in cat visual cortex. Science. 279, 566-570.
    33. Crair, M. C, Ruthazer, E. S., Gillespie, D. C. and Stryker, M. P., 1997. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol. 77, 3381-3385.
    34. Creutzfeldt, O. D., Kuhnt, U. and Benevento, L. A., 1974. An intracellular analysis of visual cortical neurones to moving stimuli: response in a co-operative neuronal network. Exp Brain Res. 21,251-274.
    35. Daniels, J. D., Norman, J. L. and Pettigrew, J. D., 1977. Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Exp Brain Res. 29, 155-172.
    36. Darian-Smith, C. and Gilbert, C. D., 1995. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J Neurosci. 15, 1631-1647.
    37. Das, A. and Gilbert, C. D., 1995. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature. 375, 780-784.
    38. Das, A. and Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. 387, 594-598.
    39. DeAngelis, G. C., Ohzawa, I. and Freeman, R. D., 1993a. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J Neurophysiol. 69, 1091-1117.
    40. DeAngelis, G. C., Ohzawa, I. and Freeman, R. D., 1993b. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. J Neurophysiol. 69, 1118-1135.
    41. DeAngelis, G. C., Ohzawa, I. and Freeman, R. D., 1995. Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18,451-458.
    42. Derdikman, D., Hildesheim, R., Ahissar, E., Arieli, A. and Grinvald, A., 2003. Imaging spatio-temporal dynamics of surround inhibition in the barrels somatosensory cortex. J Neurosci. 23, 3100-3105.
    43. DeYoe, E. A., Felleman, D. J., Van Essen, D. C. and McClendon, E., 1994. Multiple processing streams in occipitotemporal visual cortex. Nature. 371, 151.
    44. Dinse, H. R. and Jancke, D., 2001. Time-variant processing in V1: from microscopic (single cell) to mesoscopic (population) levels. Trends Neurosci. 24,203-205.
    45. Douglas, R. J., Koch, C, Mahowald, M., Martin, K. A. and Suarez, H. H., 1995. Recurrent excitation in neocortical circuits. Science. 269, 981-985.
    46. Dowling, J. E., 1987. The Vertebrate Retina: an approachable Part of the Brain. Harvard Univ. Press, Cambridge.
    47. Dragoi, V. and Sur, M., 2000. Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. J Neurophysiol. 83, 1019-1030.
    48. Dreher, B., 1986. Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanism of information processing. Cambridge University, Cambridge.
    49. Dreher, B., Michalski, A., Ho, R. H., Lee, C. W. and Burke, W., 1993. Processing of form and motion in area 21a of cat visual cortex. Vis Neurosci. 10,93-115.
    50. Dreher, B., Michalski, A., Ho, R. H. T., Lee, C. W. F. and Burke, W., 1993. Processing of form and motion in area 21a of cat visual cortex. Visual Neuronsci. 10, 93-115.
    51. Dreher, B., Wang, C, Turlejski, K. J., Djavadian, R. L. and Burke, W., 1996. Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. Cereb Cortex. 6, 585.
    52. Enroth-Cugell, C. and Robson, J. G., 1966. The Contrast Sensitivity of Retinal Ganglion Cells of the Cat. J Physiol. 187, 517-552.
    53. Erlhagen, W., Bastian, A., Jancke, D., Riehle, A. and Schoner, G., 1999. The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. J Neurosci Methods. 94,53-66.
    54. Eysel, U. T. and Shevelev, I. A., 1994. Time-slice analysis of inhibition in cat striate cortical neurones. Neuroreport. 5,2033-2036.
    55. Fernald, R. and Chase, R., 1971. An improved method for plotting retinal landmarks and focusing the eye. Vis Res. 11,95-96.
    56. Ferster, D., 1988. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. J Neurosci. 8, 1172-1180.
    57. Ferster, D., 1992. The synaptic inputs to simple cells of the cat visual cortex. Prog Brain Res. 90,423-441.
    58. Ferster, D., Chung, S. and Wheat, H., 1996. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature. 380,249.
    59. Field, D. J. and Tolhurst, D. J., 1986. The structure and symmetry of simple-cell receptive-field profiles in the cat's visual cortex. Proc R Soc Lond B Biol Sci. 228, 379-400.
    60. Fitzpatrick, D., 2000. Cortical imaging: capturing the moment. Curr Biol. 10, R187-190.
    61. Frazor, R. A., Albrecht, D. G., Geisler, W. S. and Crane, A. M., 2004. Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. J Neurophysiol. 91,2607-2627.
    62. Friedman-Hill, S. R., Robertson, L. C., Desimone, R. and Ungerleider, L. G., 2003. Posterior parietal cortex and the filtering of distractors. Proc Natl Acad Sci USA. 100,4263-4268.
    63. Funke, K. and Worgotter, F., 1995. Differences in the temporal dynamics of the visual ON and OFF pathways. Exp Brain Res. 104, 171-176.
    64. Furmanski, C. S. and Engel, S. A., 2000. An oblique effect in human primary visual cortex. Nat Neurosci. 3, 535-536.
    65. Galuske, R. A., Schmidt, K. E., Goebel, R., Lomber, S. G. and Payne, B. R., 2002. The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci U S A. 99, 17083-17088.
    66. Gandhi, S. P. e. a., 1999. Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci U S A. 96,3314-3319.
    67. Georgopoulos, A. P., Schwartz, A. B. and Kettner, R. E., 1986. Neural population coding of movement direction. Science. 233,1416 -1419.
    68. Georgopoulos, A. P., Taira, M. and Lukashin, A., 1993. Cognitive neurophysiology of the motor cortex. Science. 260,47-52.
    69. Gilbert, C. D., 1997. Cortical dynamics. Acta Paediatr Suppl. 422, 34-37.
    70. Gilbert, C. D. and Wiesel, T. N., 1983. Clustered intrinsic connections in cat visual cortex. J Neurosci. 3,1116-1133.
    71. Gilbert, C. D. and Wiesel, T. N., 1990. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689-1701.
    72. Gilbert, C. D. and Wiesel, T. N., 1992. Receptive field dynamics in adult primary visual cortex. Nature. 356, 150-152.
    73. Gillespie, D. C., Lampl, I., Anderson, J. S. and Ferster, D., 2001. Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex. Nat Neurosci. 4, 1014-1019.
    74. Girard, P., Hupe, J. M. and Bullier, J., 2001. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol. 85, 1328-1331.
    75. Goodale, M. A. and Milner, A. D., 1992. Separate visual pathways for perception and action. Trends Neurosci. 15, 20.
    76. Gottlieb, J. P., Kusunoki, M. and Goldberg, M. E., 1998. The representation of visual saliency in monkey parietal cortex. Nature. 391,481-484.
    77. Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R. and Manker, A., 1984. Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature. 308, 848-850.
    78. Grinvald, A., Cohen, L. B., Lesher, S. and Boyle, M. B., 1981a. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element photodiode array. J Neurophysiol. 45, 829-840.
    79. Grinvald, A. and Hildesheim, R., 2004. VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci. 5, 874-885.
    80. Grinvald, A., Lieke, E. E., Frostig, R. D. and Hildesheim, R., 1994. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci. 14,2545-2568.
    81. Grinvald, A., Manker, A. and Segal, M., 1982. Visualization of the spread of electrical activity in rat hippocampal slices by voltage sensitive optical probes. J Physiol. 333, 269-291.
    82. Grinvald, A., Ross, W. N. and Farber, I., 1981b. Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc Natl Acad Sci USA. 78,3245-3249.
    83. Grinvald, A. et. al., 1999. Modern Techniques in Neuroscience Research. Springer, New York.
    84. Groh, J. M., Born, R. T. and Newsome, W. T., 1997. How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J Neurosci. 17,4312-4330.
    85. Hartline, H. K. and Ratliff, F., 1957. Inhibitory interaction of receptor units in the eye of Limulus. J General Physiol. 40, 357-376.
    86. Heath, C. J. and Jones, E. G., 1971. The anatomical organization of the suprasylvian gyrus of the cat. Erg Anat. 45, 1-61.
    87. Hebb, D., 1949. The Organization of Behavior. Wiley, New York.
    88. Heeley, D. W., Buchanan-Smith, H. M., Cromwell, J. A. and Wright, J. S., 1997. The oblque effect in orientation acuity. Vision Res. 37, 235-242.
    89. Hirsch, J. A. and Gilbert, C. D., 1991. Synaptic physiology and horizontal connections in the cat メ s visual cortex. J Neurosci. 11, 1800 1809.
    90. Hochstein, S. and Ahissar, M., 2002. View from the Top: Hierarchies and Reverse Hierarchies in the Visual System. Neuron. 36, 804.
    91. Hochstein, S. and Shapley, R. M., 1976. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 262, 237-264.
    92. Hoffmann, K. P. and Stone, J., 1971. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32,460-466.
    93. Howard, I. P., 1982. Human Visual Orientation. Wiley, New York.
    94. Huang, L., Chen, X. and Shou, T., 2004. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res. 998,194-201.
    95. Hubel, D. H. and Wiesel, T. N., 1959. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 148, 574.
    96. Hubel, D. H. and Wiesel, T. N., 1962. Receptive fields, binocular interactions and functional architecture in the cat メ s visual cortex. J Physiol. 160, 106-154.
    97. Hubel, D. H. and Wiesel, T. N., 1963. Shape and arrangement of columns in cat's striate cortex. J Physiol. 165, 559.
    98. Hubel, D. H. and Wiesel, T. N., 1965. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 28,229.
    99. Hubel, D. H. and Wiesel, T. N., 1998. Early exploration of the visual cortex. Neuron. 20, 401.
    100. Humphrey, A. L. and Saul, A. B., 1992. Action of brain stem reticular afferents on lagged and nonlagged cells in the cat lateral geniculate nucleus. J Neurophysiol. 68, 673-691.
    101. Hung, C. P., Ramsden, B. M., Chen, L. M. and Roe, A. W., 2001. Building surface from borders in areas 17 and 18 of the cat. Vis Res. 41, 1389-1407.
    102. Hupe, J. M., James, A. C., Girard, P. and Bullier, J., 2001a. Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J Neurophysiol. 85, 146-163.
    103. Hupe, J. M., James, A. C., Girard, P., Lomber, S. G., Payne, B. R. and Bullier, J., 2001b. Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol. 85, 134-145.
    104. Hupe, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P. and Bullier, J., 1998. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature. 394, 784-787.
    105. Ikeda, H. and Wright, M. J., 1972. The outer disinhibitory surround of the retinal ganglion cell receptive field. J Physiol. 226, 511-544.
    106. Issa, N. P., Trepel, C, and Stryker, M. P., 2000. Spatial frequency maps in cat visual cortex. J Neurosci. 20, 8504-8514.
    107. Ito, M. and Gilbert, C. D., 1999. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron. 22,593-604.
    108. Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., Giese, M., Steinhage, A. and Schoner, G., 1999. Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci. 19,9016-9028.
    109. Jones, E. G., 1985. The Thalamus. Plenum Press, New York.
    110. Jones, E. G., 2002. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci. 357, 1659-1673.
    111. Jones, H. E., Andolina, I. M., Oakely, N. M., Murphy, P. C. and Sillito, A. M., 2000. Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res. 135,279-284.
    112. Jones, H. E., Grieve, K. L., Wang, W. and Sillito, A. M, 2001. Surround suppression in primate V1. J Neurophysiol. 86, 2011-2028.
    113. Jones, H. E., Wang, W. and Sillito, A. M., 2002. Spatial organization and magnitude of orientation contrast interactions in primate V1. J Neurophysiol. 88, 2796-2808.
    114. Jones, J. P. and Palmer, L. A., 1987. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol. 58, 1187-1211.
    115. Kalt, T. e. a., 1996. Dynamic population coding in rat somatosensory cortex. Soc Neurosci Abstr.22, 105.
    116. Kauer, J. S., 1988. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature. 331, 166-168.
    117. Kauer, J. S., Senseman, D. M. and Cohen, M. A., 1987. Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res. 25,255-261.
    118. Kayser, C., Kording, K. P. and Konig, P., 2004. Processing of complex stimuli and natural scenes in the visual cortex. Curr Opin Neurobiol. 14,468-473.
    119. Kim, D. S. and Bonhoeffer, T., 1994. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex. Nature. 370, 370-372.
    120. Kisvarday, Z. F., Kim, D. S., Eysel, U. T. and Bonhoeffer, T, 1994. Relationship between lateral inhibitory connections and the topography of the orientation map in cat visual cortex. Eur J Neurosci. 6, 1619-1632.
    121. Kleinfeld, D. and Delaney, K. R., 1996. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol. 375, 89-108.
    122. Knierim, J. J. and Van Essen, D. C, 1992. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol. 67,961-980.
    123. Kuffler, S. W., 1953. Discharge patterns and functional organization of mamalian retina. J Neurophysiol. 16, 37-68.
    124. Kulikowski, J. J., Bishop, P. O. and Kato, H., 1981. Spatial arrangements of responses by cells in the cat visual cortex to light and dark bars and edges. Exp Brain Res. 44, 371-385.
    125. Lamme, V. and Roelfsema, P. R., 2000. The distinct modes of vision offered by feedforward and recurrent processing. TINS Vol, No 11.23, 571-579.
    126. Lamme, V. A. F., 1995. The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci. 15, 1605-1615.
    127. Lee, B. B., Creutzfeldt, O. D. and Elepfandt, A., 1979. The responses of magno- and parvocellular cells of the monkey's lateral geniculate body to moving stimuli. Exp Brain Res. 35, 547-557.
    128. Lee, C. W., Ho, H. T. and Dreher, B., 1982. Area 21a and posteromedial lateral suprasylvian area (PMLS) of the cat visual cortex: one or two areas? A horseradish peroxidase study. Proceedings of Australian Physiological and Pharmacological Society. 13, 195.
    129. LeVay, S. and Voigt, T., 1988. Ocular dominance and disparity coding in cat visual cortex. Vis Neurosci. 1,395-414.
    130. Leventhal, A. G., Ault, S. J., Vitek, D. J. and Shou, T., 1989. Extrinsic determinants of retinal ganglion cell development in primates. J Comp Neurol. 286, 170-189.
    131. Leventhal, A. G. and Schall, J. D., 1983. Structural basis of orientation sensitivity of cat retinal ganglion cells. J Comp Neurol. 220,465-475.
    132. Levick, W. R. and Thibos, L. N., 1982. Analysis of orientation bias in cat retina. J Physiol. 329,243-261.
    133. Li, W. and Li, C. Y., 1994. Interation field beyond the classical visual recetive field. Chinese J Neurosci. 1, 3-6.
    134. Li, W., Thier, P. and Wehrhahn, C, 2000. Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J Neurophysiol. 83,941-954.
    135. Li, W., Thier, P. and Wehrhahn, C, 2001. Neuronal responses from beyond the classic receptive field in V1 of alert monkeys. Exp Brain Res. 139,359-371.
    136. Liang, Z., Shen, W., Sun, C. and Shou, T., 2004. Stimulus- off Orientation Selectivity and Multiple Types of Origin in Orientation Selectivity Revealed in Dynamic Process of Neuron's Response in Area 17 of the Cat. Progress in Biochemistry and Biophysics. 31 Supplement, 129.
    137. Maffei, L. and Campbell, F. W., 1970. Neurophysiological localization of vertical and horizontal coordinates in man. Science. 167, 386-387.
    138. Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., Wong, E. C., Hinrichs, H., Heinze, H. J. and Hillyard, S. A., 1999. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci. 2, 364-369.
    139. Mason, R., 1978. Functional organization in the cat's pulvinar complex. Exp Brain Res. 31, 51-66.
    140. Mason, R., 1981. Differential responsiveness of cells in the visual zones of the cat's LP-pulvinar complex to visual stimuli. Exp Brain Res. 43,25-33.
    141. Mastronarde, D. N., 1987a. Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol. 57, 357-380.
    142. Mastronarde, D. N., 1987b. Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. J Neurophysiol. 57, 381-413.
    143. Mastronarde, D. N., Humphrey, A. L. and Saul, A. B., 1991. Lagged Y cells in the cat lateral geniculate nucleus. Vis Neurosci. 7, 191-200.
    144. Maunsell, J. H. and Newsome, W. T., 1987. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci. 10, 363-401.
    145. Mazer, J. A., Vinje, W. E., McDermott, J., Schiller, P. H. and Gallant, J. L., 2002. Spatial frequency and orientation tuning dynamics in area V1. Proc Natl Acad Sci U S A. 99, 1645-1650.
    146. McAdams, C. J. and Maunsell, J. H. R., 1999. Effects of attention on orientation-tuning functions of single neurons in Macaque cortical area V4. J Neurosci. 19,431-441.
    147. McIlmain, J. T., 1964. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J Neurophysiol. 27, 1154-1173.
    148. Moran, J. and Desimone, R., 1985. Selective attention gates visual processing in the extrastriate cortex. Science. 229, 782-784.
    149. Morley, J. W. and Vickery, R. M, 1997. Spatial and temporal frequency selectivity of cells in area 21a of the cat. J Physiol. 501,405-413.
    150. Morley, J. W., Yuan, L. and Vickery, R. M, 1997. Corticocortical connections between area 21a and primary visual cortex in the cat. Neuroreport. 8,1263-1266.
    151. Motter, B. C., 1993. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol. 70,909-919.
    152. Motter, B. C., 1998. The Attentive Brain, ed. Parasuraman, R., 51-69.
    153. Movshon, J. A., Thompson, I. D. and Tolhurst, D. J., 1978a. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol. 283, 53-77.
    154. Movshon, J. A., Thompson, I. D. and Tolhurst, D. J., 1978b. Receptive field organization of complex cells in the cat's striate cortex. J Physiol. 283, 79-99.
    155. Muller, J. R., Metha, A. B., Krauskopf, J. and Lennie, P., 2001. Information Conveyed by Onset Transients in Responses of Striate Cortical Neurons. J Neurosci. 21,6978-6990.
    156. Murphy, P. C. and Sillito, A. M., 1987. Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature. 329, 727-729.
    157. Muschol, M., Kosterin, P., Ichikawa, M. and Salzberg, B. M., 2003. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of ム stuttering conduction メ. J Neurosci. 23, 11352 11362.
    158. Nelson, S., Toth, L., Sheth, B. and Sur, M., 1994. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science. 265, 774.
    159. Newsome, W. T., Britten, K. H. and Movshon, J. A., 1989. Neuronal correlates of a perceptual decision. Nature. 341, 52-54.
    160. Nicolelis, M. A., Ghazanfar, A. A., Faggin, B. M., Votaw, S. and Oliveira, L. M., 1997. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron. 18,529-537.
    161. Nowak, L. G., Sanchez-Vives, M. V. and McCormick, D. A., 2005. Role of synaptic and intrinsic membrane properties in short-term receptive field dynamics in cat area 17. J Neurosci. 25,1866-1880.
    162. O'Connor, D. H., Fukui, M. M, Pinsk, M. A. and Kastner, S., 2002. Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci. 5, 1203-1209.
    163. Orbach, H. S. and Cohen, L. B., 1983. Simultaneous optical monitoring of activity from many areas of the salamander olfactory bulb. A new method for studying functional organization in the vertebrate CNS. J Neurosci. 3,2251-2262.
    164. Orbach, H. S., Cohen, L. B. and Grinvald, A., 1985. Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neurosci. 5,1886-1895.
    165. Orban, G. A., 1984. Neuronal Operations in the Visual Cortex.
    166. Palmer, L. A. and Davis, T. L., 1981. Receptive-field structure in cat striate cortex. J Neurophysiol. 46,260-276.
    167. Palmer, L. A. and Davis, T. L., 1981. Receptive-field structure in cat striate cortex. J Neurophysiol. 46,260-276.
    168. Payne, B. R., 1993. Evidence for visual cortical area homologs in cat and macaque monkey. Cereb Cortex. 3, 1-25.
    169. Pei, X., Vidyasagar, T. R., Volgushev, M. and Creutzfeldt, O. D., 1994. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J Neurosci. 14, 7130-7140.
    170. Perez-Cerda, F., Martinez-Millan, L. and Matute, C, 1996. Anatomical evidence for glutamate and/or aspartate as neurotransmitters in the geniculo-, claustro-, and cortico-cortical pathways to the cat striate cortex. J Comp Neurol. 373,422-432.
    171. Pernberg, J., Jirmann, K. U. and Eysel, U. T., 1998. Structure and dynamics of receptive fields in the visual cortex of the cat (area 18) and the influence of GABAergic inhibition. Eur J Neurosci. 10,3596-3606.
    172. Petersen, C. H., Grinvald, A. and Sakmann, B., 2003. Spatio-temporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined
    173. with whole-cell voltage recordings and anatomical reconstructions. J Neurosci. 23, 1298-1309.
    174. Petersen, C. H., Hahn, T. G., Mehta, M., Grinvald, A. and Sakmann, B., 2003. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci USA. 100,13638-13643.
    175. Pettet, M. W. and Gilbert, C. D., 1992. Dynamic changes in receptive-field size in cat primary visual cortex. Proc Natl Acad Sci U S A. 89, 8366-8370.
    176. Pettigrew, J. D., Cooper, M. L. and Blasdel, G. G., 1979. Improved use of tapetal reflection for eye-position monitoring. Invest Ophthalmol Vis Sci. 18,490-495.
    177. Posner, M. I. and Gilbert, C. D., 1999. Attention and primary visual cortex. Proc Natl Acad Sci U S A. 96,2585-2587.
    178. Potter, M. C., 1976. Short-term conceptual memory for pictures. J Exp Psychol [Hum Learn]. 2, 509-522.
    179. Raczkowski, D. and Rosenquist, A. C., 1983. Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J Neurosci. 3, 1912-1942.
    180. Reid, R. C., 2001. Divergence and reconvergence: multielectrode analysis of feedforward connections in the visual system. Prog Brain Res. 130, 141-154.
    181. Ringach, D. L., 2004. Mapping receptive fields in primary visual cortex. J Physiol. 558, 717-728.
    182. Ringach, D. L., Hawken, M. J. and Shapley, R., 1997. Dynamics of orientation tuning in macaque primary visual cortex. Nature. 387,281-284.
    183. Ringach, D. L., Sapiro, G. and Shapley, R., 1996. A subspace reverse-correlation technique for the study of visual neurons. Vision Res. 37,2455-2464.
    184. Rosenquist, A. C., 1985. Connections of visual cortical areas in the cat. Plenum Publishing Corp., New York.
    185. Salin, P. A. and Bullier, J., 1995. Corticocortical connections in the visual system: structure and function. Physiol Rev. 75, 107-154.
    186. Salinas, E. and Abbott, L. F., 1994. Vector reconstruction from firing rates. J Comp Neurosci. 1,89-107.
    187. Salzberg, B. M., Davila, H. V. and Cohen, L. B., 1973. Optical recording of impulses in individual neurons of an invertebrate central nervous system. Nature. 246, 508-509.
    188. Saul, A. B. and Humphrey, A. L., 1990. Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol. 64,206-224.
    189. Saul, A. B. and Humphrey, A. L., 1992. Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J Neurophysiol. 68, 1190-1208.
    190. Saul, A. B. and Humphrey, A. L., 1992. Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis Neurosci. 8, 365-372.
    191. Schummers, J., Marino, J. and Sur, M., 2004. Local networks in visual cortex and their influence on neuronal responses and dynamics. J Physiol Paris. 98,429-441.
    192. Schummers, J., Sharma, J. and Sur, M, 2005. Bottom-up and top-down dynamics in visual cortex. Prog Brain Res. 149,65-81.
    193. Seidemann, E., Arieli, A., Grinvald, A. and Slovin, H., 2002. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science. 295, 862-865.
    194. Seung, H. S. and Sompolinsky, H., 1993. Simple models for reading neuronal population codes. Proc Natl Acad Sci USA. 90, 10749 -10753.
    195. Shapley, R., Hawken, M. and Ringach, D. L., 2003. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron. 38,689-699.
    196. Sharon, D. and Grinvald, A., 2002. Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science. 295, 512-515.
    197. Shen, W., Liang, Z. and Shou, T., 2004. Modulation of projections from area posteromedial lateral suprasylvian (PMLS) on the direction preference in the primary visual cortex of cats. Shanghai International Conference on Physilogical Biophysics. 2004 (abst), 24.
    198. Sherk, H., 1986. Location and connections of visual cortical areas in the cat's suprasylvian sulcus. J Comp Neurol. 247, 1-31.
    199. Sherman, S. M. and Guillery, R. W., 2001. Exploring the Thalamus.
    200. Sherman, S. M. and Guillery, R. W., 2002. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 33, 163-175.
    201. Shevelev, I. A., Eysel, U. T., Lazareva, N. A. and Sharaev, G. A., 1998. The contribution of intracortical inhibition to dynamics of orientation tuning in cat striate cortex neurons. Neuroscience. 84, 11-23.
    202. Shevelev, I. A., Sharaev, G. A., Lazareva, N. A., Novikova, R. V. and Tikhomirov, A. S., 1993. Dynamics of orientation tuning in the cat striate cortex neurons. Neuroscience. 56, 865-876.
    203. Shevelev, I. A., Volgushev, M. A. and Sharaev, G. A., 1992. Dynamics of responses of V1 neurons evoked by stimulation of different zones of receptive field. Neuroscience. 51, 445-450.
    204. Shipp, S. and Grant, S., 1991. Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex. Vis Neurosci. 6, 339-355.
    205. Shipp, S. and Zeki, S., 1989. The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex. Eur J Neurosci. 1, 309-332.
    206. Shipp, S. and Zeki, S., 1989. The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex. Eur J Neurosci. 1, 333-354.
    207. Shmuel, A. and Grinvald, A., 1996. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J Neusosci. 16, 6945-6964.
    208. Shmuel, A., Korman, M., Sterkin, A., Harel, M., Ullman, S., Malach, R. and Grinvald, A., 2005. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey. J Neurosci. 25, 2117-2131.
    209. Shoham, D., Glaser, D. E., Arieli, A., Kenet, T., Wijnbergen, C., Toledo, Y., Hildesheim, R. and Grinvald, A., 1999. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron. 24, 791-802.
    210. Shoham, D., Hubener, M., Schulze, S., Grinvald, A. and Bonhoeffer, T, 1997. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature. 385, 529-533.
    211. Shou, T., Leventhal, A. G., Thompson, K. G. and Zhou, Y., 1995. Direction biases of X and Y type retinal ganglion cells in the cat. J Neurophysiol. 73, 1414-1421.
    212. Shou, T., Wang, W. and Yu, H., 2000. Orientation biased extended surround of the receptive field of cat retinal ganglion cells. Neuroscience. 98, 207-212.
    213. Shou, T. and Zhou, Y., 1990. Incremental IOP for abolishing the response of cat LGN Y cells and X cells to flash stimulation of the eye. Chin J Physiol Sci. 6, 95-99.
    214. Shou, T. D., He, Z. J., Yu, M. Z. and Zhou, Y. F., 1985. [Different orientation effect of visual evoked potential due to different temporal stimulating frequency]. Sheng Li Xue Bao. 37, 199-203.
    215. Shou, T. D. and Leventhal, A. G., 1989. Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus. J Neurosci. 9,4287-4302.
    216. Shou, T. D. and Zhou, Y. F., 1989. Y cells in the cat retina are more tolerant than X cells to brief elevation of IOP. Invest Ophthalmol Vis Sci. 30,2093-2098.
    217. Sillito, A. M., 1975. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol. 250, 305-329.
    218. Sillito, A. M, 1992. GABA mediated inhibitory processes in the function of the geniculo-striate system. Prog Brain Res. 90,349-384.
    219. Sillito, A. M., Cudeiro, J. and Murphy, P. C, 1993. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res. 93, 6-16.
    220. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. and Davis, J., 1995. Visual cortical mechanisms detecting focal orientation discontinuities. Nature. 378,492-496.
    221. Sillito, A. M. and Jones, H. E., 2002. Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci. 357, 1739-1752.
    222. Sillito, A. M., Kemp, J. A., Milson, J. A. and Berardi, N., 1980. A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res. 194, 517-520.
    223. Slovin, H., Arieli, A., Hildesheim, R. and Grinvald, A., 2002. Long-term voltage-sensitive dye imaging of cortical dynamics in the behaving monkey. J Neurorophysiol. 88, 3421-3438.
    224. Slovin, H., Strick, P. L., Hildesheim, R. and Grinvald, A., 2003. Voltage sensitive dye imaging in the motor cortex I. Intra- and intercortical connectivity revealed by microstimulation in the awake monkey. Soc Neurosci Abstr. 554, 8.
    225. Somers, D. C., Nelson, S. B. and Sur, M., 1995. An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci. 15, 5448-5465.
    226. Somers, D. C, Todorov, E. V., Siapas, A. G., Toth, L. J., Kim, D. S. and Sur, M., 1998. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb Cortex. 8,204.
    227. Steriade, M., Jones, E. G. and McCormick, D. A., 1997. Thalamus.
    228. Steriade, M. and Timofeev, I., 2003. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron. 37, 563-576.
    229. Sterkin, A., Lampl, I., Ferster, D., Grinvald, A. and Arieli, A., 1998. Real time optical imaging in cat visual cortex exhibits high similarity to intracellular activity. Neurosci Lett. 51, S41.
    230. Stevens, J. K. and Gerstein, G. L., 1976. Spatiotemporal organization of cat lateral geniculate receptive fields. J Neurophysiol. 39, 213-238.
    231. Stone, J., Dreher, B. and Leventhal, A., 1979. Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Res. 180, 345-394.
    232. Strick, P., Grinvald, A., Hildesheim, R. and Slovin, H., 2003. Voltage sensitive dye imaging in the motor cortex II. Cortical correlates of Go/No-Go delayed response task. Soc Neurosci Abstr.918,8.
    233. Suder, K., Funke, K., Zhao, Y., Kerscher, N., Wennekers, T. and Worgotter, F., 2002. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models. Exp Brain Res. 144,430-444.
    234. Suga, N., Gao, E., Zhang, Y., Ma, X. and Olsen, J. F., 2000. The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA. 97, 11807-11814.
    235. Suga, N., Xiao, Z., Ma, X. and Ji, W., 2002. Plasticity and corticofugal modulation for hearing in adult animals. Neuron. 36, 9-18.
    236. Sugase, Y. e. a., 1999. Global and fine information coded by single neurons in the temporal visual cortex. Nature. 400, 869-873.
    237. Sun, C, Chen, X., Huang, L. and Shou, T., 2004. Orientation bias of the extraclassical receptive field of the relay cells in the cat's dorsal lateral geniculate nucleus. Neuroscience. 125,495-505.
    238. Sutter, E., 1975. A revised conception of visual receptive fielfs based on pseudorandom spatio-temporal pattern stimuli. Proceedings of the Proceedings of the conference on testing and identification of nonlinear systems, Pasadena. California Institute of Technology, pp.
    239. Symonds, L. L. and Rosenquist, A. C., 1984. Corticocortical connections among visual areas in the cat. J Comp Neurol. 229, 1-38.
    240. Symonds, L. L. and Rosenquist, A. C., 1984. Laminar origins of visual corticocortical connections in the cat. J Comp Neurol. 229, 39-47.
    241. Symonds, L. L., Rosenquist, A. C., Edwards, S. B. and Palmer, L. A., 1981. Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience. 6, 1995-2020.
    242. Takashima, I., Kajiwara, R. and Iijima, T., 2001. Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex. Neuroreport. 12,2889-2894.
    243. Tanaka, K., 1996. Inferotemporal cortex and object vision. Annu Rev Neurosci. 19, 109-139.
    244. Tardif, E., Bergeron, A., Lepore, F. and Guillemot, J. P., 1996. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat. Brain Res. 716,219-223.
    245. Tasaki, I. and Warashina, A., 1976. Dye-membrane interaction and its changes during nerve excitation. Photochem Photobiol. 24, 191-207.
    246. Tasaki, I., Watanabe, A., Sandlin, R. and Camay, L., 1968. Changes in fluorescence, turbidity and birefringence associated with nerve excitation. Proc Natl Acad Sci USA. 61, 883-888.
    247. Thompson, K. G., Leventhal, A. G., Zhou, Y. and Liu, D., 1994. Stimulus dependence of orientation and direction sensitivity of cat LGNd relay cells without cortical inputs: a comparison with area 17 cells. Vis Neurosci. 11,939-951.
    248. Tolhurst, D. J. and Dean, A. F., 1990. The effects of contrast on the linearity of spatial summation of simple cells in the cat メ s striate cortex. Exp Brain Res. 79, 582 588.
    249. Tominaga, T., Tominaga, Y. and Ichikawa, M., 2002. Optical imaging of long-lasting depolarization on burst stimulation in area CA1 of rat hippocampal slices. J Neurophysiol. 88, 1523-1532.
    250. Toth LJ, Rao SC, Kim DS, Somers D and M., S., 1996. Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci U S A. 93,9869-9874.
    251. Treue, S., 2001. Neural correlates of attention in primate visual cortex. TRENDS in Neurosciences. 24,295-300.
    252. Troyer, T. W., Krukowski, A. E., Priebe, N. J. and Miller, K. D., 1998. Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity. J Neurosci. 18, 5908-5927.
    253. Tsodyks, M., Kenet, T., Grinvald, A. and Arieli, A., 1999. The spontaneous activity of single cortical neurons depends on the underlying global functional architecture. Science. 286, 1943-1946.
    254. Tusa, R. J. and Palmer, L. A., 1980. Retinotopic organization of areas 20 and 21 in the cat. J Comp Neurol. 193,147-164.
    255. Tusa, R. J., Palmer, L. A. and Rosenquist, A. C., 1978. The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol. 177, 213-235.
    256. Vajda, I., Lankheet, M. J., Borghuis, B. G. and van de Grind, W. A., 2004. Dynamics of directional selectivity in area 18 and PMLS of the cat. Cereb Cortex. 14,759-767.
    257. Van Essen, D. C., Felleman, D. J., DeYoe, E. A., Olavarria, J. and Knierim, J., 1990. Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. Cold Spring Harb Symp Quant Biol. 55,679.
    258. Vidyasagar, T. R., 1999. A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Brain Res Rev. 30, 66-76.
    259. Vidyasagar, T. R., Kulikowski, J. J., Lipnicki, D. M. and Dreher, B., 2002. Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. Eur J Neurosci. 16, 945.
    260. Vidyasagar, T. R., Pei, X. and Volgushev, M., 1996. Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends Neurosci. 19,272.
    261. Vidyasagar, T. R. and Urbas, J. V., 1982. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res. 46, 157-169.
    262. Vogels, R. and Orban, G. A., 1996. Coding of stimulus invariances by inferior temporal neurons. Prog Brain Res. 112, 195-211.
    263. Volgushev, M., Vidyasagar, T. R. and Pei, X., 1995. Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Vis Neurosci. 12, 621-628.
    264. Waggoner, A. S., 1979. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 8, 47-63.
    265. Waggoner, A. S. and Grinvald, A., 1977. Mechanisms of rapid optical changes of potential sensitive dyes. Ann NY Acad Sci. 303, 217-242.
    266. Walker, G. A., Ohzawa, I. and Freeman, R. D., 2000. Suppression outside the classical cortical receptive field. Vis Neurosci. 17, 369-379.
    267. Wang, C, Waleszczyk, W. J., Burke, W. and Dreher, B., 2000. Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat. Cerebral Cortex. 10, 1217-1232.
    268.Wang,G.,Ding,S.and Yunokuchi,K.,2003.Difference in the representation of cardinal and oblique contours in cat visual cortex.Neurosei Lett.338,77-81.
    269.Wang,Y.,Wang,L.,Li,B.,Wang,L.H.and Diao,Y.C.,1995.How is direction selectivity organized in the extrastriate visual area PMLS of the eat? Neuroreport.6,1969.
    270.Wimborne,B.M.and Henry,G.H.,1992.Response characteristics of the cells of cortical area 21a of the cat with special reference to orientation specificity.J Physiol.449,457-478.
    271.Worgotter,F.,Grundel,O.and Eysel,U.T.,1990.Quantification and comparison of cell properties in cat's striate cortex determined by different types of stimuli.Eur J Neurosei.2,928-941.
    272.Xing,D.,Shapley,R.M.,Hawken,M.J.and Ringach,D.L.,2005.Effect of stimulus size on the dynamics of orientation selectivity in macaque vl.J Neurophysiol.94,799-812.
    273.Young,M.P.,1992.Objective analysis of the topological organization of the primate cortical visual system.Nature.358,152.
    274.Zar,J.H.,1974.Circular distributions:biostatistics analysis.
    275.Zeki,S.and Shipp,S.,1988.The functional logic of cortical connections.Nature.335,311-317.
    276.Zeki,S.M.,1974.Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey.J Physiol.236,549.
    277.Zhan,X.and Shou,T.,2002.Anatomical evidence of subcortical contributions to the orientation selectivity and columns of the cat's primary visual cortex.Neurosci Lett.324,247-251.
    278.Zhou,Y.,Wang,W.,Ren,B.and Shou,T.,1994.Receptive field properties of cat retinal ganglion cells during short-term IOP elevation.Invest Ophthalmol Vis Sci.35,2758-2764.
    279.Zhou,Y.F.,Leventhal,A.G.and Thompson,K.G.,1995.Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate- nucleus of the cat.J Neurosci.15,689-698.
    280.黄洛秀,2002.博士学位论文.
    281.俞洪波and寿天德,2000.脑光学成像技术揭示的猫初级视皮层方位倾斜效应.生理学报.52,431-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700