用户名: 密码: 验证码:
面向动力性能的抗冰导管架平台优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
考虑到我国渤海冬季结冰的环境条件和边际油田的油藏特性,渤海海洋平台多采用比较经济的钢质导管架固定式平台,并通过安装破冰锥体的措施来抗冰。多年的现场监测发现平台存在冰激振动现象,然而,现行平台设计规范没有明确冰激振动的处理方式,所以经济型抗冰振导管架平台的动力设计成为渤海海洋平台的关键问题。本文基于多年的冰激振动现场监测和冰荷载研究的成果,结合“十五”863项目“新型平台抗冰振的关键技术”(2001AA602015-1),开展适用于渤海的面向动力性能的抗冰导管架平台优化设计研究。将基于性能的设计思想和优化概念引入新型平台抗冰振设计研究中,重点研究抗冰导管架平台的动力优化设计,深入讨论了抗冰导管架平台的性能定义、抗冰振设计动冰力的确定、冰激振动的分析和抗冰振优化模型的建立等关键问题,为渤海边际油田的经济型抗冰导管架平台设计提供相关的理论、方法与技术支持。
     本文主要研究内容如下:
     1.在基于性能的设计框架下,明确抗冰导管架平台的性能定义,提出在设计优化中把极值静力性能要求和动力性能要求加以区分处理的解决方案,对抗冰导管架平台明确提出了面向动力性能的优化问题的两种列式。
     2.强烈的冰激振动会导致显著的管节点动应力,这会引发节点的冰激疲劳。为了解决复杂管节点疲劳分析时精度和效率之间的矛盾,在可兼顾整体和局部结构特征的有限元模型的基础上结合虚拟激励法的特点,提出了一个复杂节点冰激疲劳分析的高效谱分析方法。
     3.针对有一类关注减重并需要考虑冰激疲劳的平台,如无人井口平台,从不同的角度入手将冰激疲劳和优化结合,分别提出了考虑节点疲劳寿命和考虑节点疲劳可靠性的两种抗冰导管架平台结构优化问题。
     4.提出了短期动冰力的概念和冰激加速度的条件超越概率的计算方法,在此基础上同时考虑海冰环境的不确定性和结构特性的差异,提出了确定面向抗冰导管架平台动力分析的短期动冰力的两种方法:基于失效概率的方法和基于损失期望的方法。
     5.针对有一类对冰激振动加速度要求高且需限制材料用量的平台,如有人居住的生活动力平台,提出了目标函数为冰激甲板加速度均方根值的抗冰导管架平台结构优化问题,在优化中整合了所建议的确定短期动冰力的方法,旨在解决在优化中需要考虑海冰环境不确定性和结构特性变化的问题。
     6.建立了抗冰导管架平台的概念模型,推导抗冰导管架平台的概念参数和整体性能之间的关系,给出了一个参数优化问题的表述,分析了参数对性能的影响,讨论了刚性和柔性抗冰设计的特点,指出适合渤海的经济型抗冰导管架平台设计应采用柔性抗冰设计,而面向动力性能的抗冰导管架平台优化是实现它的重要手段之一。
In view of characteristics of the enviroments and the oil and gas recourses in the Bohai Sea, where there are many ice-infested marginal fields, the economic steel fixed jacket platforms with the ice-beaking cone have been used widely. For some in-service plalforms in the Bohai Sea, in-field observations show that there are considerable ice-induced vibrations in some cases. However, the current codes do not speicify how to consider the ice-induced vibration. The dynamic problem of the economic ice-resistant jacket platform becomes a key issue. Under the framework of 863 Program (No. 2001AA602015-1), this paper introduced the concepts of performance-based design and structural optimization into the research of the novel ice-resistant platform, and focused on the dynamic design optimization for ice-resistant jacket platform, and discussed key issues, such as the definitions of performances of the ice-resistant jacket platform, the determination of dynamic ice force for dynamic design, the analysises of ice-induced vibrations and the formulation of ice-resistant design optimization.
     Related studies of this paper are listed as follows:
     1. In framework of the performance-based design, the definitions of performances of the ice-resistant jacket platform has been specified. It is suggested that the extreme static performance requirments and the dynamic performance requrirments should be considered separately in design optimization. For ice-resistant jacket platmorms with ice-breaking cone, two forms of dynamic performance-oriented design optimization for ice-resistant jacket platform are developed.
     2. Severe ice-induced vibrations can cause significant dynamic stress of tubular joints, which could evoke fatigue of tubular joints. In order to overcome the conflict beteen the accuracy and the efficiency of fatigue analysis for complex tubular joints, an efficient spectral method of ice-induced fatigue analysis for complex tubular joints has been proposed, which employs the pseudo exitation method and a mixed finite element model that can reflect the global and local characters of the jacket platform.
     3. Two detailed optimization formulations of ice-resistant jacket platforms have been developed from different views to consider the ice-induced fatigue of tubular joint: optimum design considering fatigue life of tubular joints and optimum design considering fatigue reliability of tubular joints, respectively. These proposed optimization models can meet the requirements of the platform such as the wellhead platform without crews, which should consider ice-induced fatigue and weight reduction,
     4. The definition of short-term dynamic ice cases has been specified and an approach to assessing the conditional exceedance probability of ice-induced acceleration is proposed. Based on these, the framework of determination of the short-term dynamic ice case for dynamic analysis of ice-resistant jacket platform is developed, including two approaches: the failure probability-based approach and the expected loss-based approach. This framework can cover the influence of the uncertainty of ice environments and the distinction between different ice-resistant structures.
     5. The acceleration-oriented design optimization of ice-resistant jacket platforms has been developed, which could emphasize ice-induced deck acceleration and need controlling weight. This model can treat the requirements of the platform such as accommodation and power platform with crews. The objective function is the root mean square value of ice-induced deck acceleration caculated by the proposed approach to determination of the short-term dynamic ice force. In this way the uncertainty of ice environments and the variability of ice-resistant structure could be reflected during design optimization.
     6. A simplified conceptual model of ice-resistant jacket platform is developed and employed to make some analytical discussions. The influence of conceptual parameters on conceptual performances of ice-resistant jacket platform is studied in analytical form. Subsequently, a statement of performance-oriented conceptual parameter optimization is proposed. The characteristics of the rigid ice-reistant design and the flexible ice-resistant design are discussed. It is pointed out that in order to meet the requirements of the Bohai Sea the ice-resistant jacket platform design should follow the flexible ice-resistant design and pay more attention to ice-induced vibrations, and this intent could be implemented by the proposed dynamic performance-oriented ice-resistant jacket platform optimization as one of important approaches.
引文
[1]曾恒一.我国海洋石油在创新中发展.船舶工业技术经济信息,2000,(11):23-29.
    [2]Yang G.J.Bohai sea Ice Condition.Journal of Cold Regions Engineering,2000,14(2):54-67.
    [3]中国海洋石油总公司企业标准.中国海海冰条件及应用规定,Q/HSn 3000-2002.
    [4]API RP 2A.Recommended Practice for Planning;Designing and Constructing Fixed Offshore Platforms-Working Stress Design(21st Ed).American Petroleum Institute,2000.
    [5]API RP 2A.Recommended Practice for Planning;Designing and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design(1st Ed).American Petroleum Institute,2003.
    [6]API RP 2N.Recommended Practice for Planning;Designing and Constructing Structures and Pipelines for Arctic Regions.American Petroleum Institute,1995.
    [7]中华人民国和国石油天然气行业标准.寒冷条件下结构和海管规划.设计和建造的推荐作法,SY/T 10031-2000.
    [8]中华人民国和国石油天然气行业标准.海上固定平台规划、设计和建造的推荐做法(工作应力设计法),SY/T 10030-2004.
    [9]中华人民国和国石油天然气行业标准.海上固定平台规划、设计和建造的推荐做法(荷载抗力系数设计法)。SY/T 10009-2002.
    [10]中国海洋石油总公司企业标准.渤海海域钢质固定平台结构设计规定,Q/HSn 3003-2002.
    [11]Peyton H.R.Sea ice strength.University of Alaska.Geophysical Institute.Report UAG R-182.Alaska,1966.
    [12]Sinha N K,Timco G W,Frederking R.Recent advance in ice mechanics in Canada.Applied Mechanics Reviews,1987,40(9):1214-1231.
    [13]Engelbrektson A,Janson E.Field observations of ice action on concrete structures in the Baltic Sea.Concrete International,1985:48-52.
    [14]M(a|¨)(a|¨)tt(a|¨)nen M.Ice forces and vibration behavior of bottom-founded steel lighthouses.In:Proceedings of 3rd International Symposium on Ice Problems,Hanover,NH,USA,1975:345-354.
    [15]Wright B,Timco G W.A review of ice forces and failure modes on the Molikpaq.In:Proceedings of the 12th IAHR(The International Association of Hydraulic Engineering and Research) Symposium on Ice,Trondheim,Norway,1994,Vol.2:816-825.
    [16]段梦兰,方华灿,陈如恒.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [17]杨国金.渤海抗冰结构设计中的若干问题.中国海上油气(工程),1994,6(3):5-10.
    [18]Yue Q J,Bi X J.Ice-Induced Jacket Structure Vibrations in Bohai Sea.Journal of Cold Regions Engineering,2000,14(2):81-92.
    [19]周庆.冰振下海洋平台上部管线法兰风险分析:(硕士学位论文).大连:大连理工大学.2006.
    [20]李辉辉.海洋平台冰振失效的预警标准:(硕士学位论文).大连:大连理工大学.2005.
    [21]Ashby M F,Palmer A C,Trouless M et al.Nonsimultaneous failure and ice loads on Arctic structures.In:Proceedings of Offshore Technology Conference,Houston,TX,May 5-8,1986.OTC 5127:399-404.
    [22]Bhat S U.Modeling of Size Effect in Ice Mechanics Using Fractal Concepts.Journal of Offshore Mechanics and Arctic Engineering,1990,112(4):370-376
    [23]Derradji-Aouat A,Sinha N K,Evgin E.Mathematical modeling of monotonic and cyclic behavior of fresh water columnar grained S-2 ice.Cold Regions Science and Technology,2000,31(1):59-81.
    [24]Kendall K.Complexities of compression failure.In:Proceedings of Royal Society of London,A361,1978:245-263.
    [25]Kolymbas D.Ice forces on conical offshore structures.Computer Methods in Applied Mechanics and Engineering,1987,60(2):217-231.
    [26]Palmer A C,Goodman D J,Ashby M F et al.Fracture and its role in determining ice forces on offshore structures,Annals of Glaciology,1983,4,216-221.
    [27]Palmer A C,Sanderson T J O.Fractal crushing of ice and brittle solids.In:Proceedings of the Royal Society,series A,1991,433:469-477.
    [28]Ralston T D.Plastic Limit Analysis of Sheet Ice Loads Structures.In:Proceedings of IUTAM Symposium on Physics and Mechanics of Ice.Springer-Verlag,New York,1980:289-308
    [29]Shkhinek K,Uvarova E.Dynamics of the ice sheet interaction with the sloping structure.In:Proceedings of 16th International Conference on Port and Ocean Engineeriug under Arctic Conditions(POAC' 01).Ottawa,Canada,August 12-17,2001,Vol.2:639-648.
    [30]Blenkarn K A.Measurement and analysis of ice forces on Cook Inlet structures.In:Proceedings of 2nd Offshore Technology Conference,Houston,TX,1970,OTC1261(Ⅱ):365-378.
    [31]Timco G W,Johnston M.Ice loads on the Molikpaq in the Canadien Beaufort Sea.Cold Regions Science and Technology,2003,37(1):51-68.
    [32]Timco G W,Johnston M.Ice loads on the caisson structures in the Canadian Beaufort Sea.Cold Regions Science and Technology,2004,38(2-3):185-209.
    [33]Brown T G,M(a|¨)(a|¨)tt(a|¨)nen M.Comparison of Kemi-I and Confederation Bridge cone ice load measurement results.Cold Regions Science and Technology,2008.(In Press)
    [34]Schwarz J,Jochmann P.Ice force measurement within the LOLEIF-project.In:Proceedings of 16th International Conference on Port and Ocean Engineering under Arctic Conditions,Ottawa,Canada,August 12-17,2001:669-680.
    [35]屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学,2006.
    [36]杨国金.海冰工程学.北京:石油工业出版社.2000.
    [37]Cornett A M,Timco G W.Ice loads on an elastic model of Molikpaq.Applied Ocean Research,1998,20(1-2):105-118.
    [38]Frederking R,Schwarz J.Model test of ice forces on fixed and oscillating cones.Journal of Cold Regions Engineering,1982,6(1),61-72.
    [39]Hirayama K,Schwarz J,Wu H C.Model technique for the investigation of ice forces on structures.In:Proceedings 2nd International Conference on Port and Ocean Engineering under Arctic Conditions,Reikjavik,Iceland,August 27-30,1973:332-344.
    [40]M(a|¨)(a|¨)ttanen M.Laboratory tests for dynamic ice-structure interaction.Engineering Structures,1981,3(2):111-116.
    [41]史庆增,刘波,李勇等.锥体上冰力的实验研究.中国海上油气,2005,17(2):119-124.
    [42]史庆增,黄焱,宋安等.锥体冰力的试验研究.海洋工程,2004,22(1):88-92.
    [43]Loset S,Shkhinek K,Uvarova E.An overview of the influence of structure width and ice thickness on the global ice load.In:Proceedings of 15th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC),Helsinki,1999,Vol 1:425-434.
    [44]Bjerkas M.Global design ice loads dependence of failure mode.International Journal of Offshore and Polar Engineering,2004,14(3):1-7.(Draft version)
    [45]Sanderson T J O.Ice mechanics:risks to offshore structures.Kluwer Academic Publishers,Norwell,MA,United States,1988.
    [46]Blancher D.Ice loads from first-year ice ridges and rubble fields.Canadian Journal of Civil Engineering,1998,25(2):206-219.
    [473 Blanchet D,DeFranco S J.On the understanding of the local ice pressure area curve - Deterministic approach.In:Proceedings of IUTAM Scaling Laws in Ice Mechanics and Ice Dynamics(IUTAM 2000),University of Alaska Fairbanks.June 13-16,2000,Kluver,Dordrecth,2001:31-42.
    [48]Sodhi D S.Crushing failure during ice-structure interaction.Engineering Fracture Mechanics,2001,68(17-18):1889-1921.
    [49]Sodhi D S.Nonsimultaneous crushing during edge indentation of freshwater ice sheets.Cold Regions Science and Technology,1998,27(3):179-195.
    [50]Sodhi D S,Takeuchi T,Nakazawa N et al.Medium-scale indentation tests on sea ice at various speeds.Cold Regions Science and Technology,1998,28(3):161-182.
    [51]Takeuchi T,Akagawa S,Saeki H et al.Ice load equation for level ice sheet.International Journal of Offshore and Polar Engineering,2002,12(3):171-177.
    [52]Shkhinek K,Karna T,Kapustiansky S et al.Influence of ice speed and thickness on ice pressure and load.In:Proceedings of 16th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC-01),Ottawa,Canada,August 12-17,2001,Vol 2:657-668.
    [53]Sodhi D S.Vertical penetration of floating ice sheets.International Journal of Solids and Structures,1998,35(31-32):4275-4297.
    [54]Frederking R,Sudom D.Maximum ice force on the Molikpaq during the April 12,1986event.Cold Regions Science and Technology,2006,46(3):147-166.
    [55]Jochmann P,Schwarz J.The influence of individual parameters on the effective pressure on level ice against lighthouse "Norstr(o|¨)msgund".In:Proceedings of 18th International Conference on Port and Ocean Engineering under Mctic Conditions.Clarkson University,Potsdam,NY,USA.June 26-30,2005.Vol.3.
    [56]K(a|¨)rn(a|¨) T,Qu Y.Pressure-Area relationship based on field data.In:Proceedings of 18th International Conference on Port and Ocean Engineering under Arctic Conditions.Clarkson University,Potsdam,NY,USA.June 26-30,2005,Vol.3.
    [57]Engelbrekston A.Observations of a resonance vibrating lighthouse structure in moving ice.In:Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions(POAC),Helsinki,Finland,1983,Vol.2:855-864.
    [58]M(a|¨)(a|¨)tt(a|¨)nen M,Reddy D,Arockiasamy M et al.Ice-structure interaction studied on a lighghouse in the Gulf of Bothnia using response spectrum and power spectral density function analyses.In:Proceedings of 4th International Conference on Port and Ocean Engineering under Arctic Conditions.St.John' s,Newfoundland,Canada,1977:321-334.
    [59]Daley C,Tuhkuri J,Riska K.The role of discrete failures in local ice loads.Cold Regions Science and Technology,1998,27(3):197-211.
    [60]K(a|¨)rn(a|¨) T.A flaking model of dynamic ice-structure interaction.VTT Building Technology 1997.
    [61]岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载.工程力学,2004,21(1):202-208.
    [62]Reddy D V,Swamidas A S,Cheema P S.Ice force response spectrum modal analysis of offshore towers.In:Proceedings of 3rd International Conference on Port and Ocean Engineering under Arctic Conditions.University of Alaska,11-15 August 1975:887-910.
    [63]Reddy D V,Cheema P S,Sundarajan C.Relationship between response spectrum and power spectral density analysis of ice-structure analysis.In:Proceedings of 4th International Conference on Port and Ocean Engineering under Arctic Conditions.Memorial University of Newfoundland,Canada.26-30 Septe4mber 1977,Vol.2:664-683.
    [64]史庆增.海冰的动力作用和冰力谱.海洋学报,1994,16(5):106-112.
    [65]欧进萍,段忠东.渤海导管架平台桩柱冰压力随机过程模型及其参数确定.海洋学报,1998,20(3):110-118.
    [66]K(a|¨)rn(a|¨) T,Qu Y,Kuhnlein W.A new spectral method for modeling dynamic ice actions.In:Proceedings of 23rd International Conference on Offshore Mechanics and Arctic Engineering,Vancouver,Canada,20 - 25 June,OMAE 2004 51360.ASME,2004:8-16.
    [67]Edwards R Y,Crosasdale K Y.Model experiments to determine ice forces on conical structures.Symposium of Applied Glaciology International Glaciological Socialty.1976.
    [68]Hirayama K,Obara I.Ice forces on inclined structures.In:Proceedings of 5th International Offshore Mechanics and Arctic Engineering,Tokyo,Japan,1986:515-520.
    [69]Kato K,Izumiyama K.Simulation of Ice Load on a Conical Shaped Structure:Comparison with Experimental Results.In:Proceedings of the Seventh International Offshore and Polar Conference,1997:360-367.
    [70]Crosadale K R.Ice Forces on Fixed Rigid Structures,Report for the Working Group on Ice Forces on Structures,A state-of-the-art Report,CRREL Special Report,1980:34-106.
    [71]冯玮,时忠民,刘立名.用于锥体冰荷载计算的改进模型.中国海上油气,2004,16(4):280-284.
    [72]Chao J C.Comparison of Sheet Ice Load Prediction Methods and Experimental Data for Conical Structures,OMAE-92,1992,Vol.Ⅳ:183-193.
    [73]岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报,2003,36(2):16-19.
    [74]Lau M,Jones S J,Phillips R et al.Influence of velocity on Ice-Cone interaction.In:Proceedings of the IUTAM Symposium "scaling laws in Ice Mechanics and Ice Dynamics",June 13-16,2000:127-134.
    [75]Matskevitch D G.Velocity effects on conical structure ice loads.In:Proceedings of OMAE' 02:21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE),Oslo,Norway,June 23 - 28,2002:OMAE2002-28079.
    [76]Wessels E,Kato K.Ice forces on fixed and floating conical structures.In:Proceedings of 9th International IAHR(The International Association of Hydraulic Engineering and Research) Symposium on Ice,Sapporo,Japan,1988,Vol.2:666-691.
    [77]Danys J V,Bercha F G.Investigations of ice forces on a conical offshore structure.Ocean Engineering,1976,3(5):299-308.
    [78]Montgomery C J,Lipsett A W.Dynamic test and analysis of a massive pier subjected to ice force.Canadian Journal of Civil Engineering,1980.7(3):432-441.
    [79]Izumiyama K,Kitagawa H,Koyama K et al.On the interaction between a conical structure and ice sheet.In:Proceedings of the 11th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC),St.John' s,Canada,September 24-28,1991:155-166.
    [80]Sodhi D S,Morris C E,Cox G F N.Dynamic analysis of failure modes on ice sheets encountering sloping structures.In:Proceedings of 6th Int.Conf.on Offshore Mechanics and Arctic Engineering,Houston,1987,Vol.4:281-284.
    [81]李锋,于晓,胡玉镜等.冰排在锥面上的断裂长度.海洋工程,2002,20(4):44-47.
    [82]屈衍,岳前进,Brister C.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25(2):326-329.
    [83]曲月霞,李广伟,李志军等.正倒锥结构上冰力谱分析实验研究.海洋工程,2001,19(3):38-42.
    [84]曲月霞.海冰与近海结构物作用的物理模拟研究:(博士学位论文).大连:大连理工大学.2001.
    [85]张运良.冰载荷的识别及冰激振动的实验与数值模拟:(博士学位论文).大连:大连理工大学.2001.
    [86]黄焱.冰激海洋平台振动的动力模型试验研究:(博士学位论文).天津:天津大学.2004.
    [87]钱令希.我国结构优化设计现况.力学进展,1982,12(3):229-237.
    [88]Schmit L A.Structure design by systematic synthesis.In:Proceedings of the 2nd Conference on Electronic Computation,American Society of Civil Engineering,New York,1960:105-122.
    [89]Gallatly R A,Berke L,Gibson W.The Use of Optimality Criteria in Automated Structural Design.In:Proc of 3rd Conf.on Matrix Methods in Structural Mechanics,Wright-Patterson AFB,OH,Oct.1971.
    [90]Venkayya V B.Design of Optimum Structures.Computers and Structures,1971,1(1-2):265-309.
    [91]Prager W,Taylor J E.Problems in Optimal Structural Design.Journal of Applied Mechanics,1968,35(1):102-106.
    [92]Fleury C,Sanders G.Relations between Optimality Criteria and Mathematical Programming in Structural Optimization.In:Proceedings of the Symposium on Applications of Computer Methods in Engineering,Univ.of California,Los Angeles,CA,1977:507-520.
    [93]Bendsoe M P,Sigmund O.Topology optimization:Theory,Methods and Applications,New York:Springer,2003.
    [94]Vanderplaats G N.Numerical Optimization Techniques for Engineering Design(3rd Ed).Colorado Springs,CO,USA:Vanderplaats Research and Development,Inc.,1999.
    [95]程耿东.工程结构优化设计基础.北京:水利电力出版社,1984.
    [96]钱令希.工程结构优化设计.北京:.水利电力出版社,1983.
    [97]Vanderplaats G N.Structural Design Optimization Status and Direction.Journal of Aircraft,1999,36(1):11-20.
    [98]Burns S A,Structural Engineering Institute Technical Committee on Optimal Structural Design.Recent Advances in Optimal Structural Design.ASCE Publications,2002.
    [99]Allaire G,Henrot A.On some recent advances in shape optimization.Comptes Rendus de l' Académie des Sciences - Series IIB- Mechanics,2001,329(5):383- 396.
    [100]Eschenauer H A,Olhoff N.Topology optimization of continuum structures:A review.Applied Mechanics Reviews,2001,54(4):331-390.
    [101]Vanderplaats G N.Very Large Scale Continuous and Discrete Variable Optimization.10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Albany,New York,Aug.30-1,2004:AIAA-2004-4458.
    [102]Vanderplaats G N.Industrial Applications of Optimization.10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Albany,New York,Aug.30-1,2004:AIAA-2004-4505.
    [103]钱令希,钟万勰,程耿东等.工程结构优化的序列二次规划.固体力学学报,1983,(4):469-480.
    [104]Cheng G D.On non-smoothness in optimal design of solid elastic plates.Int.J.Solid and Structures.1981,17:795-810.
    [105]林家浩.结构动力优化设计发展综述.力学进展,1983,13(4):423-431.
    [106]Chan C M.Advances in Structural Optimization of Tall Buildings in Hong Kong.In:Proceedings of Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems,Kanazawa,Japan,Oct.30 - Nov.2,2004.
    [107]程耿东,顾元宪。王健.我国机械优化研究与应用的综述和展望.机械强度,1995,17(2):68-74.
    [108]张大勇,李刚,岳前进.海洋平台优化设计的研究进展.海洋工程,2005,23(1):107-112.
    [109]中华人民共和国国家标准.工程结构可靠度设计统一标准.GB 50153-200X(征求意见稿).
    [110]Freudenthal A M.The Safety of structures,Transactions of ASCE,1947,112:125-180.
    [111]Cornell C A.A Probability-based structural code.Journal of American Concrete Institute,1969,66(12):974-985.
    [112]Hasofer A M,Lind N C.An exact and invariant first order reliability format.Jounal of Engineering Mechanacis,1974,100(EMI):111-121.
    [113]Shinozuka M.Basic analysis of structural safety.Journal of Structural Engineering,1983,109(3):721-40.
    [114]Rackwitz R,Fiessler B.Structural reliability under combined random load sequences.Computers and Structures,1978,9(5):484-494.
    [115]洪华生(ANG,A.H-S.),邓汉忠(TANG,W.H.)著孙芳垂,陈星焘,胡世平(译).工程规划与设计中的概率概念.北京:冶金工业出版社,1985.7.
    [116]洪华生(ANG,A.H-S。),邓汉忠(TANG,W.H.)著孙芳垂,陈星焘,胡世平(译).工程规划与设计中的概率概念 第Ⅱ卷.北京:冶金工业出版社,1991.6
    [117]Melchers R E.Structural reliability analysis and prediction(2nd Ed).Chichester,New York:John Wiley,1999.
    [118]Ditlevsen O,Madsen H O.Structural Reliability Methods.Nils Koppels All "e,Building 403,DK-2800 Kgs.Lyngby,Denmark,2005.
    [119]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996.
    [120]Racwitz R.Reliability analysis-a review and some perspectives.Structural Safety,2001,23(4):365-395.
    [121]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(1).建筑结构学报,2002,23(4):2-9.
    [122]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(2).建筑结构学报,2002,23(5):2-10.
    [123]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(3).建筑结构学报,2002,23(6):2-9.
    [124]Schueremans L.State of the art report:Structural reliability in design and analysis.PAT-TAP project Technological Attraction Poles:Static and dynamic design analysis procedure for structures with uncertain parameters.Technical report,K.U.Leuven,Belgium,2003.
    [125]Raizer V.Theory of reliability in structural design.Applied Mechanics Reviews,2004,57(1):1-21.
    [126]Madsen H.O,Friis Hansen F.A comparison of some algorithms for reliability-based structural optimization sensitivity analysis.In:Proceedings of 4th IFIP WG75 Conf.,Munich.Berlin,Springer,1992:443-51.
    [127]Kusshel N,Rackwitz R.Two Basic Problems in Reliability-based Structural Optimization.Mathematical Method of Operation Research,1997,46(3):309-333.
    [128]Gasser M,Schu(e|¨)ller G I.Reliability-Based Optimization of Structural Systems.Mathematical Methods of Operations Research,1997,46(3):287-307.
    [129]Frangopol D M,Maute K.Life-cycle reliability-based optimization of civil and aerospace structures.Computers and Structures,2003,81(7):397-410.
    [130]许林.基于可靠度的结构优化研究:(博士学位论文).大连:大连理工大学,2004.
    [131]易平.概率结构优化设计的高效算法研究:(博士学位论文).大连:大连理工大学,2007.
    [132]ISO 6240.Performance standards in building--Contents and presentation,1981.
    [133]ISO 6241.Performance standards in building--Principles for their preparation and factors to be considered,1984.
    [134]Aktan A E,Ellingwood B R,Kehoe B.Performance-Based Engineering of Constructed Systems.Journal of Structural Engineering,2007,133(3):311-323.
    [135]Applied Technology Council.ATC40 Seismic Evaluation and Retrofit of Concrete Buildings,1996.
    [136]Federal Emergency Management Agency.FEMA 273:NEHRP Guidelines for seismic Rehabilitation of buildings,1997.
    [137]李刚,程耿东.基于性能的结构抗震设计--理论、方法与应用,北京:科学出版社,2004.12.
    [138]王光远 等著.工程结构与系统抗震优化设计的实用方法--基于最优设防烈度的抗震结构与系统的优化设计.北京:中国建筑工业出版社,1999.
    [139]谢礼立,马玉宏.基于抗震性态的设防标准研究.地震学报,2002,24(2):200-209.
    [140]马玉宏,谢礼立,赵桂峰.抗震设防烈度的决策分析方法研究.世界地震工程,2007,23(1):86-90.
    [141]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究.土木工程学报,2005,38(1):1-10.
    [142]Inokuma A.Basic study of performance-based design in civil engineering.Journal of professional issues in engineering education and practice,2002,128(1):30-35.
    [143]陈定外译,何广乾校,结构可靠性总原则(ISO 2394:1998),中国工程建设标准化协会、建设部标准定额站,1999
    [144]Fujitani H,Teshigawara M,Gojo W et al.Framework for Performance-Based Design of Building Structures.Computer-Aided Civil and Infrastructure Engineering,2005,20(1):62-77.
    [145]Structural Engineering Association of California(SEAOC),Performance Based Seismic Engineering of Building,April,1995.
    [146]Federal Emergency Management Agency.FEMA 283:Performance-based Seismic Design of Buildings,September 1996.
    [147]Yamanouchi H et al.Performance-based engineering for structural design of buildings.Building Research Institute,Japan,2000.
    [148]Ang A H-S,Lee J C.Cost optimal design of R/C buildings.Reliability Engineering and System Safety,2001,73(3):233-238.
    [149]Aven T,Vinnem J E.On the use of risk acceptance criteria in the offshore oil and gas industry.Reliability Engineering and System Safety,2005,90(1):15-24.
    [150]Bea R G,Brandtzaeg A,Craig M J K.Life-cycle reliability characteristics of minimum structures.Journal of Offshore mechanics and Arctic Engineering,1998,120(3):129-138.
    [151]K(u|¨)bler O,Faber M H.Optimality and acceptance criteria in offshore design.Journal of Offshore Mechanics and Arctic Engineering,2004,126(3):258-264.
    [152]Li G.,Cheng G D.Optimal decision for the target value of performance based strctural system reliabity.Structural and Multidisciplinary Optimization,2001,22(4):261-267.
    [153]Pinna R,Ronalds B F,Andrich M A.Cost-effective design criteria for Australian Monopod platforms.Journal of Offshore mechanics and Arctic Engineering,2003,125(2):132-138.
    [154]Val D V,Stewart M G.Life-cycle cost analysis of reinforced concrete structures in marine environments.Structural Safety,2003,25(4):121-130.
    [155]Stahl B,Aune S,Gebara J M et al.Acceptance criteria for offshore platforms.Journal of Offshore Mechanics and Arctic Engineering,2000,122(3):153-156.
    [156]Wen Y K.Minimum lifecycle cost design under multiple hazards.Reliability Engineering and System Safety,2001,73(3):223-231.
    [157]王光远.抗灾结构的最优设防荷载与最优可靠度.土木工程学报,1997,30(05):12-19.
    [158]Onoufriou T.Overview of Advanced Structure and Reliability Techniques for Optimum Design of Fixed Offshore Platform.Journal of Constructional Steel Research,1997,44(3):181-201.
    [159]王世圣,刘立名,高德利等.海洋导管架平台结构动力优化研究.中国海上油气,2004,16(4):276-279.
    [160]石金磊.冰载作用下导管架海洋平台结构动力优化研究:(硕士学位论文).大连:大连理工大学,2007.
    [161]张大勇.基于性能的抗冰导管架结构风险设计研究:(博士学位论文).大连:大连理工大学,2008.
    [162]彭垣(译),Wang J L,Peters D B.北极地区人工岛设计及建造评述.海岸工程,1994,13(2-3):51-58.
    [163]李林普.渤海湾极浅海域油气开发工程结构形式探讨.中国海上油(工程),1990,2(3):43-47.
    [164]徐铨彪,宋玉普.多功能混凝土采油平台在我国浅海地区应用研究.中国海洋平台,2004,19(3):38-41.
    [165]张燕坤,宋玉普.适用于渤海边际油田的轻骨料混凝土平台结构选型及优化.中国海洋平台,2005,20(3):31-44.
    [166]方华灿.我国海上边际油田采油平台选型浅谈.石油矿场机械,2005,34(1):24-26.
    [167]胡洪勤.导管架平台在浅海石油开发中的应用.中国海洋平台,1996,11(4)172-174.
    [168]刘圆.抗冰海洋平台动力分析与结构选型研究:(博士学位论文).大连:大连理工大学,2006.
    [169]王泉,任贵永,杨树耕等.海上桶形基础采油平台结构分析.中国海洋平台,2000,15(6):17-20.
    [170]王庚荪,孔令伟,杨家岭等.水平载荷作用下土体与桶形基础的相互作用.工程力学,2004,21(2):107-113(94).
    [171]鲁晓兵,郑哲敏,张金来.海洋平台吸力式基础的研究与进展.力学进展,2003,33(1):27-40.
    [172]Lu X B,Wang S Y,Zhang J H et al.Experimental Study of Pore Pressure and Deformation of Suction Bucket Foundations under Horizontal Dynamic Loading.China Ocean Engineering,2005,19(4):671-680.
    [173]王义华,鲁晓兵,王淑云等.等效动冰载下桶形基础的响应.中国海洋平台,2004,19(6):12-14(11).
    [174]Matlock H,Dawkins W,Panak J.A model for the prediction of ice structure interaction.Journal of Engineering mechanics,ASCE,EM4,1969:1083-1092.
    [175]M(a|¨)(a|¨)tt(a|¨)nen M.Ice-induced Vibrations in Structures--Self-Excitation.In:Proceedings of IAHR(The International Association of Hydraulic Engineering and Research)Symposium on Ice 1988,University of Hokkaido,Sapporo,Japan,1988,Vol.2:658-665.
    [176]Mróz A,Holnicki-Szulc J,K(a|¨)rn(a|¨) T.Mitigation of ice loading on off-shore wind turbines:Feasibility study of a semi-active solution.Computers and Structures,2008,86(3-5):217-226.
    [177]K(a|¨)rn(a|¨) T,Kamesaki K.,Tsukuda H.A numerical model for dynamic ice-structure interaction.Computers and Structures,1999,72(4-5):645-658.
    [178]徐继祖,王翎羽.冰力振子模型及其数值解.天津大学学报,1988,21(2):28-34.
    [179]Jin D P,Hu H Y.Ice-lnduced Non-Linear Vibration of An Offshore Platform.Journal of Sound and Vibration,1998,214(3):431-422.
    [180]欧进萍,段忠东,王刚.海冰作用下平台结构自激振动的参数分析与响应的数值计算.工程力学,2001,18(5):8-17.
    [181]张希.冰激直立结构稳态振动:(硕士学位论文).大连:大连理工大学.2002.
    [182]Yue Q J,Qu Y,Bi X J et al.Ice Force Spectrum on Narrow Conical Structures.Cold Regions Science and Technology.2007,49(2):161-169.
    [183]段梦兰,吴永宁,高照杰.固定石油平台冰激振动的时域与频域响应.机械强度,1999,21(1):14-17.
    [184]马网扣,唐友刚,宋峥嵘.基于自激冰力的导管架平台冰激振动计算.中国海上油气(工程),2003,15(5):16-19.
    [185]刘玉标,申仲翰.冰与结构的耦合振动模型.海洋工程,2000,18(4):1-6.
    [186]张剑波,张韶光.冰载荷作用下自升式平台的动力响应分析研究.中国海洋平台,2005,20(4):20-24.
    [187]陈新权,谭家华.导管架平台在冰载荷作用下的动力响应分析研究.中国海洋平台,2005,20(4):25-28.
    [188]欧进萍,段忠东,肖仪清等.基于实测动冰力时程的海洋平台结构冰振反应分析.海洋工程,1999,17(2):71-78.
    [189]刘健,陈国明,杨晓刚等.基于ANSYS软件实现平台结构的冰激振动分析.中国海上油气,2005,17(1):65-69.
    [190]曲月霞,王永学.海冰对近海结构物作用的随机模型.中国海洋平台,2000,15(2):16-19.
    [191]张大勇,李刚,岳前进.基于人员感受的海洋平台冰振动力可靠性分析.中国海洋平台,2006,21(3):40-44(22).
    [192]岳前进,张大勇,刘圆等.渤海抗冰导管架平台失效模式分析.海洋工程,2008,26(1):18-23.
    [193]Almar-N(?)ss A.Fatigue Handbook:Offshore Steel Structures.Tapir Publishers,Flatasen,Norway,1985.
    [194]中国海洋石油总公司企业标准.海上钢结构疲劳强度分析的推荐作法,Q/HSn 3005-2002
    [195]Wirsching P H.Fatigue Reliability for Offshore Structures.Journal of Structural Engineering,1984,110(10):2340-2356.
    [196]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析.北京:人民交通出版社,1996.12.
    [197]Duan M L,Song L S,Fan X D et al.Fatigue Crack Propagation in Steel A131 Under Ice Loading of Crushing,Bending and Buckling.China Ocean Engineering,2001,15(3):315-328.
    [198]Fang H C,Duan M L,Jia X L et al.Fuzzy Fatigue Reliability Analysis of Offshore Platforms in Ice-Infested Waters.China Ocean Engineering,2003,17(3):307-314.
    [199]Fang H C,Duan M L,Wu Y N et al.An Integrated Approach to Fatigue Life Prediction of Whole System for Offshore Platforms.China Ocean Engineering,2001,15(2):177-184.
    [200]Fang H C,Duan M L,Xu F Y et al.Reliability Analysis of Ice-Induced Fatigue and Damage in Offshore Engineering Structures.China Ocean Engineering,2000,14(1):15-24.
    [201]方华灿,许发彦,陈国明.冰区海上平台管结点疲劳寿命计算的新方法.中国海洋平台,1997,12(6):259-264.
    [202]方华灿,许发彦,陈国明.随机冰载作用下海上固定平台管节点的疲劳寿命估算.石油大学学报(自然科学版),1997,21(2):50-54.
    [203]刘健,陈国明.基于Maattanen模型的冰激疲劳寿命分析.石油大学学报(自然科学版),2004,28(4):89-94.
    [204]岳前进,刘圆,屈衍等.抗冰平台的冰振疲劳分析,工程力学,2007,24(6):159-164.
    [205]Yue Q J,Liu Y,Zhang R X et al.Ice-Induced Fatigue Analysis by Spectral Approach for Offshore Jacket Platforms with Ice-Breaking Cones.China Ocean Engineering,2007,21(1):1-10.
    [206]李刚,张大勇,岳前进.冰区海洋平台的时变疲劳可靠性分析.计算力学学报,2006,23(5):513-517.
    [207]Qu Y,Yue Q J,Bi X Jet al.A random ice force model for narrow conical Structures.Cold Regions Science and Technology.2006,45(3):148-157.
    [208]季顺迎,岳前进,毕祥军.辽东湾JZ20-2海域海冰参数的概率分布.海洋工程,2002,20(3):39-44.
    [209]季顺迎,岳前进.辽东湾锥体平台结构疲劳冰荷载的蒙特卡洛模拟.海洋学报,2003,25(2):114-119
    [210]Nolte K G,Hansford J E.Closed-Form Expressions for Determining the Fatigue Damage of Structures Due to Ocean Waves.In:Proceedings of the Eighth Annual Offshore Technology Conference,Offshore Technology Conference,Dallas,Tex.1976,Vol.2:861-872.
    [211]Dover W D,Madhava Rao A G..Fatigue in offshore structures(Volume 1).A.A.Balkema/Rotterdam/Brookfield,1996
    [212]Dover W D,Madhava Rao A G..Fatigue in offshore structures(Volume 2).A.A.Balkema/Rotterdam/Brookfield,1996.
    [213]Vugts J H.Fatigue damage assessments and the influence of wave directionality.Applied Ocean Research,2005,27(3),173-185.
    [214]谭开忍,肖熙,黄小平.非常规管节点疲劳寿命分析与计算.海洋工程,2005,23(3):2340-2356.
    [215]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [216]刘圆,岳前进,屈衍等。抗冰导管架平台冰激疲劳寿命估计.海洋工程,2006,24(4):15-19.
    [217]ISO 2361,Evaluation of human exposure to whole-body vibration- Part 1:General requirements,ISO Standards,Handbook 36(1990),Mechanical Vibration and Shock,Geneve,1990.
    [218]Newland D E.An Introduction to Random Vibrations and Spectral Analysis.London:Longman,1975.
    [219]De Leon D,Ang A H-S.Development of a Cost-benefit Model for the Management of Structural Risk on Oil Facilities in Mexico.Computational Structural Engineering,an International Journal 2002;2(1):19-23.
    [220]陆文发,李林普,高明道.近海导管架平台.北京:海洋出版社,1992.
    [221]中华人民共和国标准.钢结构设计规范GBJ17-88.中国计划出版社,1989.
    [222]于骁.环境荷载激励下工程结构振动控制方法及实验研究:(博士学位论文).大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700