用户名: 密码: 验证码:
基于渤海地震环境的海洋平台抗震设防标准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台是海洋油气资源开发的基础设施,属于可能产生严重次生灾害的工程,同时,我国近海海域的地震活动性较高,海洋平台的抗震问题受到广泛关注。但受海域研究程度的限制,我国尚未制定海洋平台的抗震设防规范。目前,一般是参照《建筑抗震设计规范》和美国石油协会制定的RP2A-WSD规范,依据地震安全性评价的技术规定,进行专门的地震动参数研究。但实际工作中发现,这些规范直接应用于海洋平台设计存在很多问题,如与平台设计原则不一致、概率水准比较保守等。
     渤海海域地震活动强度大、频度高,在我国海域中具有一定的代表性,而且这一地区地震活动特征和平台设计地震动参数的研究较深入,因此,本论文基于渤海地震环境研究海洋平台的抗震设防标准,确定设防原则和目标、设计基准期、设防水准、设防参数等。主要研究内容和技术途径可概括为:首先分析国内外工程抗震设防标准的研究现状及发展趋势、海洋平台的结构特征及其工程地震问题、渤海地震环境等,在此基础上,结合我国国情,确定海洋平台抗震设防标准的确定原则和方法;然后参照相关行业的经验,根据海洋平台的结构特征与地震破坏状态,确定设防目标;收集整理已有的平台设计地震动参数的研究成果,采用类比方法,标定抗震设防水准;分析渤海海域地震危险性特征,给出基于渤海地震环境的海洋平台的抗震设防参数;最后,通过工程实例的反应谱分析,论证平台结构的地震安全性。
     主要成果体现在:(1)从地震活动和地震危险性、社会经济状况、国内外抗震设计规范等方面,指出我国海洋平台抗震设防水准过于保守。(2)针对海洋平台的柔性和延性性质突出的特点,提出海洋平台抗震分析涉及的工程地震问题,如抗震设防标准、长周期地震动、地震动参数、设定地震等。(3)从历史地震记录、地震活动的时空特征等方面,研究了渤海海域地震环境。通过对比分析,指出南加州地区地震危险性远高于渤海地区,为本文结果与API规范的对比奠定了基础。(4)确定了海洋平台的两级设防目标,分别为正常使用极限地震和变形极限地震;基于已有平台的设计地震动参数,采用类比分析方法,确定正常使用极限和变形极限地震的重现期分别取200年和1000~3000年。(5)基于渤海地震危险性特征,给出海洋平台不同水准下的设防地震动参数;通过实例分析,证明结果的可靠性。创新性体现在:在我国首次确定海洋平台两级抗震设防目标及相应的设防水准,给出了海洋平台在不同地震危险性分区内、不同水准下的设防地震动参数。
     本研究成果为海洋平台的抗震设计提出了相应的设防标准和设防参数,为制定海洋平台行业抗震设计规范提供了基础资料和工作方法。同时,本研究填补了我国海洋工程抗震设防研究的空白,是对我国建设工程抗震设防研究的完善和提升。
Offshore platform is the main facility for exploitation of ocean resources,and it is a kind of structure that could lead to severe subsequent disasters if destroyed. Moreover, the seismic activity is much intensive in seas of China. No specific seismic fortification design code has been drafted for offshore platforms in China because of insufficient knowledge on the seismic characteristics of the coastal waters. The related codes, such as and the RP2A-WSD constituted by the American Petroleum Institute, are taken as reference for the determination of seismic design parameters of offshore platforms. But the direct citation of these codes leads to many problems, the consistency of design rule and the applicability exceeding probabilities are challenged.
     Compared with the Yellow Sea, East China Sea and South China Sea, the seismic intensity and frequency of Bohai are much stronger, and accordingly much more investigations have been done in this area. The present study on seismic fortification of offshore platform is based on the seismic environment of Bohai, such as the design rule and objective, the design reference period, probability of exceedance and design parameters. The main contents and technical route are as follows. Firstly, the research status and development on seismic fortification of related industries home and abroad, the structural characteristics of offshore platform and related earthquake engineering problems, the seismic environment of Bohai are analyzed, simultaneously, considering the economic level, the design rule and technical idea. Then, the seismic fortification objectives are determined based on the related experiences and the structural characteristics and seismic damage states of offshore platforms. The research results of seismic design parameters of offshore platforms are collected and analyzed, and the seismic fortification levels of offshore platforms are calibrated using analogy method. The seismic risk characteristics of Bohai are delineated and the seismic design parameters of offshore platforms are presented based on the seismic environment of Bohai. Finally, the structural safety is demonstrated by a numerical model of a platform built in Bohai. The main results are as follows:
     (1) The comprehensive analysis of seismicity, economic status and related seismic codes home and abroad prove that the exceeding probabilities of seismic design currently used during the design of offshore platforms in China are too conservative.
     (2) In view of the special flexibility and ductility of offshore platforms, the related seismic problems are presented, such as seismic fortification objective, long-period of ground motion, ground motion parameters and scenario earthquake, et al.
     (3) The seismic environments of Bohai are investigated by the analysis of historical earthquakes, spatio-temporal distribution of earthquakes. The result shows that Bozhong, that is the central area of Bohai, is the crowded area of strong earthquakes, 4 earthquakes of magnitude above 7 took place in this area. By the comparison of intensity of seismicity and seismic risk with Southern California, the seismic risk in Bohai is much lower, this provides a basis for the comparison of seismic design level between this study and API code to demonstrate the rationality of the recommended exceeding probabilities.
     (4) The two-stage seismic design objectives are determined, that is the serviceability limited state and deformation limited state. According to the existing seismic design parameters, the return periods of the corresponding earthquakes are determined as 200a and 1000 to 3000a by the analog analysis method.
     (5) The seismic risk characteristic of Bohai is delineated, and the seismic design parameters of different exceeding probabilities are presented based on the seismic risk zonation. A numerical analysis of a platform proves the rationality and reliability under the recommended seismic design level.
     The innovation of this study is that the two-stage seismic fortification objectives and seismic design parameter are firstly presented, and the seismic design parameters of different exceeding probabilities based on seismic risk delineation are determined.
     The research results provide the seismic design level and parameter for the design of offshore platforms, and provide basic data and method for the determination of seismic code for offshore platforms. Simultaneously this study fills up the blank of seismic design on offshore platforms in China, and it is an improvement for the seismic design codes of different structures in China.
引文
1. American Petroleum Institute, RP2A-WSD: Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design. Houston: American Petroleum Institute,2002.
    2. Ayhan Irfanoglu. Structural design under seismic risk using multiple performance objectives. PHD thesis, California Institute of Technology Pasadena, California, 2000.
    3. Bea, R. G., Seismic design and requalification methodologies for offshore platforms. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D,1992,.
    4. Blockley, D. and D. Elms. Special Issue on the Strategies and Value of Risk Based Structural Safety Analysis. Structural Safety ,1999,11(4), 301-384.
    5. Bor-Feng Peng, Ben Chang, Bee-Lay Leow, et. al. Nonlinear dynamic soil-pile-structure-interaction analysis of offshore platform for ductility level earthquake under soil liquefaction conditions. 14th World Conference on Earthquake Engineering, Beijing,2008.
    6. Building Seismic Safety Council, NEHRP Recommended Provisions for Seismic Regulations for New Buildings(1997 edition), Washington D C: Building Seismic Safety Council, FEMA 222A/223A: 32-36, 1998.
    7. Building Seismic Safety Council, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures(2003 edition), Washington D C: Building Seismic Safety Council, FEMA 450/451: 19-38, 2004.
    8. Cornell, C. A. Engineering seismic risk analysis, Bull. Seism. Soc. Am. 1968,58, 1583–1606.
    9. Crouse C. B. Estimation of ground motion for design or reassessment of offshore platforms. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D,1992.
    10. Dolan, D. K. Case studies on seismic reassessment analysis. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D,1992.
    11. EERI. Theme issue: Loss estimation. ed. R. D. Borcherdt. Earthquake Spectra., 1997,13(4).
    12. European Committee for Standardization, Euro code 8, Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, DRAFT No 6.Ref.No: pr EN 1998-1: 200X,2003.
    13. Ferritto, J., Stephen Dickenson, Nigel Priestlye, et. al. Seismic criteria for Californiamarine oil terminals. Naval Facilities Engineering Center, Shore Facilities Department, Structures Division, 1999.
    14. Francis D. K, Ching, Building Codes Illustrated: A Guide to Understanding the International Building Code. Washington, America,2003.
    15. Frankel A., M. Petersen, C. Mueller, et al. Documentation for the 2002 Update of the National Seismic Hazard Maps[R]. Open-file Report 02-420. Washington DC: U.S.Geological Survey, 2002, 2~31.
    16. Frankel, A., C. Mueller, T. Barnhard, et al, National seismic-hazard maps: documentation June 1996. Open-file Report 96-532, Washington D C: U.S Geological Survey, 1996.
    17. Hauksson, E., and L.M. Jones. Interseismic background seismicity of the southern San Andreas Fault, California, Proceedings of the 3rd Conference on Tectonic Problems of the San Andreas Fault System, Stanford, Calif., September,2000,6-8, 31~39.
    18. International Conference of Building Officials (ICBO), Uniform Building Code. Whittier. Calif, 1997.
    19. Los Angeles Tall Buildings Structural Design Council, An alternative procedure for seismic analysis and design of tall buildings located in the Los Angeles region, 2005.
    20. O’Neill, M. W.Issues in the assessment of pile behavior during seismic events. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D. 1992.
    21. Reiter, L. Earthquake Hazard Analysis: Issues and Insights. Columbia University Press, New York,1990 ..
    22. Seismology Committee of Structural Engineers Association of California, SEAOC blue book, Recommended lateral force requirements and commentary. Sacramento, California: SEAOC, 1996.
    23. Standards Council of New Zealand, NZS 4203, General structural design and design loading for buildings. Wellington, New Zealand, 1992.
    24. Steven G. Wesnousky. Earthquake, Quaternary faults and seismic hazard in California. J. Geophys. Res. 1986, Vol. 91, No. B12, 12587~12631.
    25. Structural Engineers Association of Northern California, Recommended administrative bulletin on the seismic design & review of tall buildings using non-prescriptive procedures, 2007.
    26. Tiampo, K.F., J. B. Rundle et. al. Eigenpatterns in Southern California seismicity. J. Geophys. Res. 2002,Vol. 107, No. B12, 2354.
    27. Tobin, L. T. Policy issues in reviewing offshore structures. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D,1992.
    28. Vision 2000 Committee. Performance-based engineering of building. Miranda E.Seismology Committee of the Structure Engineer Association of California Oakland: Wiley Inc,1995.
    29. Visser, R. C. Operation issues in seismic design and reassessment. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D,1992.
    30. Wen, Y. K. Reliability and performance based design for seismic loads. In Asian-Pacific Symposiu, on Structural Reliability and Its Applications, Taipei, Taiwai, China,2002.
    31. Werner, S. D. ed.“Seismic Guideline for Ports”ASCE TCLEE Monograph 12, Reston VA., March 1998.
    32. Wisch, D. The API requalification project. In‘Seismic Design and reassessment of offshore structures’edited by Iwan, W. D,1992.
    33. Yuejun LU, Yanju PENG, Rongyu TANG, 2008. Research on the seismic design level of offshore platform in China. 14th World Conference on Earthquake Engineering, Beijing.
    34.车亚玲,冯章炳.基于性能的抗震设计理论研究.四川建筑,2006,26(1):107~109.
    35.陈聃.海洋平台的工程地震要求和设计地震.胡聿贤,时振梁主编:重要工程中的地震问题.北京:地震出版社,1987.
    36.陈国光,徐杰,高战武.渤海湾盆地区大震的构造特征.华北地震科学,2003,21(2):7~15.
    37.陈国光,徐杰,马宗晋等.渤海盆地现代构造应力场与地震活动.地震学报,2004,25(4):396~403.
    38.陈国兴.中国建筑抗震设计规范的演变与展望.防灾减灾工程学报,2003,23(1):102~113.
    39.陈厚群.大坝的抗震设防水准及相应性能目标.工程抗震和加固改造,2005,27(增刊):1~6.
    40.陈家庚,鄢家全,高孟潭等.论行业抗震设防标准的确定原则和依据.中国地震,1998,14(2):173~183.
    41.陈培善,李保昆,白彤霞.中国强地震动速度衰减研究.地球物理学报,1999,42(3):358~370.
    42.陈培善,李保昆,白彤霞.中国强地震动位移衰减关系的研究.地球物理学报,1999,42(4):495~507.
    43.陈素文,李国强.磁浮轨道结构的抗震设防标准.工程抗震与加固改造,2007,29(2)75~79.
    44.程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报,2000,21(1):5~11.
    45.大崎顺彦著.建筑物抗震设计法.毛春茂、陈忠译.北京:冶金工业出版社,1990.
    46.邓起东,闵伟,晁洪太等.渤海地区新生代构造与地震活动,卢演俦等主编,新构造与气候环境变化.北京:地震出版社,218~233,2001.
    47.刁守中、蒋海昆.渤海及邻区地震活动特征和构造涵义.地震学刊,1990,3:7~17.
    48.窦培林,袁洪涛.自升式海洋平台结构可靠性分析.舰船科学技术,2006,28(4):29~39.
    49.段艳丽,张金平,刘学虎.半潜式平台的波浪载荷计算.石油矿场机械,2006,35(2):41~44.
    50.范力,赵斌,吕西林.欧洲规范8与中国抗震设计规范关于抗震设防目标和地震作用的比较.结构工程师,2006,22(6):59~63.
    51.范立础,王君杰.桥梁抗震设计规范的现状与发展趋势.地震工程与工程振动,2001,21(2):70~77.
    52.高孟潭,贾素娟.极值理论在工程地震中的应用.地震学报,1988,10(3):317~326.
    53.高孟潭,张晓梅,胥广银.关于地震动参数区划图几个重要参数的讨论.中国地震局科技发展司主编:中国地震区划学术讨论会文集.北京:地震出版社,1998.
    54.高小旺,李荷,王菁.供水系统等生命线工程抗震设防标准的研究.工程力学,1998,增:16~21.
    55.高小旺,李荷,肖伟等.工程抗震设防标准若干问题的探讨.土木工程学报,1997,30(6):52~59.
    56.高小旺,李荷等.不同重要性建筑抗震设防标准的探讨.建筑科学,1999,15(2):11~16.
    57.顾功叙,林挺煌,时振梁等.中国地震目录(公元前1831年-公元1969年).北京:科学技术出版社,1983.
    58.郭子雄,吕西林.国际上主要抗震规范的设计反应谱比较.工程力学,1999,增刊:538~544.
    59.国家地震局地球物理研究所.复旦大学中国历史地理研究所,中国历史地震图集(明时期).北京:中国地图出版社,1986.
    60.国家地震局地球物理研究所.复旦大学中国历史地理研究所,中国历史地震图集(清时期).北京:中国地图出版社,1990.
    61.国家地震局震害防御司.中国历史强震目录(公元前23世纪—公元1911年).北京:地震出版社,1995.
    62.海洋石油工程设计指南编委会.海洋石油工程平台结构设计.北京:石油工业出版社,2007.
    63.韩小雷,郑宜,季静等.美国基于性能的高层建筑结构抗震设计规范.地震工程与工程振动,2008,28(1):64~70.
    64.韩晓双.导管架式海洋平台地震响应研究. [学位论文].大连:大连理工大学,2006.
    65.何生厚,洪学福.浅海固定式平台设计与研究.北京:中国石化出版社,2003.
    66.洪峰,谢礼立.工程结构抗震设防标准的决策分析.地震工程与工程振动,1999,19(2):9~14.
    67.胡聿贤.地震工程学.北京:地震出版社,2006.
    68.胡聿贤主编.地震安全性评价技术教程.北京:地震出版社,1999.
    69.胡聿贤主编.《中国地震动参数区划图》宣贯教材.北京:中国标准出版社,2001.
    70.胡政.渤海南部晚第四纪地层和活动构造.中国活动断层研究,北京:地震出版社,1994.
    71.环文林,汪素云,常向东等.渤海地震活动特征.地震研究, 1989,12(1):1~9.
    72.环文林、张晓东.中国地震区、带划分研究,中国地震局科技发展司、中国抗震设防区划图编委会主编:中国地震区划学术讨论会文集.北京:地震出版社,1998,129~139.
    73.黄玮琼,李文香,曹学峰.中国大陆地震资料完整性研究之一-以华北地区为例.地震学报,1994,16(3):272~280.
    74.晃洪太等.郯庐断裂带下辽河—莱州海湾段与潍坊—嘉山段地震构造和地震活动特征对比.华北地震科学,1999,17(2):36~42.
    75.金伟良.海洋工程的若干力学问题.科技通报,1997,13(2):86~92.
    76.金伟良、郑忠双、李海波.地震荷载作用下海洋平台结构物动力可靠度分析.浙江大学学报(工学版),2002,36(3):233~238.
    77.李国强.基于概率可靠度进行结构抗震设计的若干理论问题.建筑结构学报,2000,21(2):12~16.
    78.李鸿晶,宗德玲.关于工程结构抗震设防标准的几个问题的讨论.防灾减灾工程学报,2003,23(2):100~105.
    79.李家灵,晁洪太,崔昭文等.郯庐活动断层的分段及其大震危险性分析.地震地质,1994,16(2):122~126.
    80.李龙安,何友娣,屈爱平.公路桥梁抗震设计的设防标准研究.桥梁建设,2006,增2:135~139.
    81.李茜,杨树耕.采用ANSYS程序的自升式平台结构有限元动力分析.中国海洋平台,2003,18(4)41~46.
    82.李善邦,武宦英,郭增建等.中国地震目录.北京:科学出版社,1960.
    83.李亚琦.中国地震危险性特征区划.[硕士论文]黑龙江:中国地震局工程力学研究所1999.
    84.廖振鹏,郑天愉。工程地震学在中国的发展.地球物理学报,1997,40(supp):177~191.
    85.林淼童.从各国规范比较看结构抗震设计思想的演变.工程建设与设计,,2005(10):11~13.
    86.刘光鼎,陈洁.中国海域残留盆地油气勘探潜力分析.地球物理学进展,2005,20(4):881~888.
    87.刘洁平,李小东,张令心.浅谈欧洲规范Eurocode 8一结构抗震设计.世界地震工程,2006,22(3):53~59.
    88.陆文超,张俊海.国内外抗震设防标准的分析.建筑与结构设计,2007,(11):27~30.
    89.吕大刚,王光远.考虑重要性时抗震结构最优设防水准的决策方法.哈尔滨建筑大学学报,2000,33(5):1~6.
    90.吕悦军.渤海海域地震区划研究.[博士学位论文]北京:中国地质大学(北京),2008.
    91.吕悦军,彭艳菊,沙海军.渤海及邻区地震活动环境.中国地震局地壳应力研究所编:地壳构造与地壳应力文集, 2002,(15),38~44.
    92.吕悦军,彭艳菊,唐荣余.海洋石油平台的工程地震问题.地球物理学进展,2003,18(4):662~665.
    93.吕悦军,彭艳菊,唐荣余.关于海洋平台抗震设防水准的考虑.震灾防御技术,2006,1(1):39~46.
    94.吕悦军,彭艳菊,唐荣余等.我国海洋平台抗震标准若干问题探讨.地球物理学进展,2008,23(2):635~640.
    95.吕悦军,唐荣余,彭艳菊等.渤南油田工程地震研究.北京:地震出版社,2003.
    96.罗奇峰.概率一致设定地震及其估计方法.地震工程和工程震动,1996,16(3):22~28.
    97.马玉宏,谢礼立.不同重要性结构的抗震设防水准.哈尔滨建筑大学学报,2002,35(5):1~4.
    98.马玉宏,谢礼立,赵桂峰.地震环境下不同重要性建筑的抗震设防水准.自然灾害学报,2004,(5):5~11.
    99.马志良,罗德涛.近海移动式平台.北京:海洋出版社,1993.
    100.欧进萍,段忠东,肖仪清.海洋平台结构安全评定—理论、方法与应用.北京:科学出版社,2003.
    101.潘华,金严,胡聿贤.地震带与地震统计区关系探究,2003,25(3):308~313.
    102.彭艳菊,吕悦军,唐荣余.美国API RP2A-WSD规范对我国海洋石油平台抗震设防的启示.地球物理学进展,2004a, 19(3):635~640.
    103.彭艳菊,吕悦军,唐荣余等.渤海某油田设计地震动参数及抗震设防标准研究.地震工程与工程振动,2007,27(4):8~14.
    104.彭艳菊,吕悦军等.探讨渤海及周边地区海洋平台抗震设防水准.地震学报,2006,27(6):647~655.
    105.彭艳菊,唐荣余,吕悦军等.不同抗震标准下的海洋石油平台设计地震动参数研究.世界地震工程,2004b,20(4):119~126.
    106.彭艳菊,孟小红,吕悦军等.我国近海地震活动特征及其与地球物理场的关系.地球物理学进展,2008,23(5):1377~1388.
    107.任贵永.海洋活动式平台.天津:天津大学出版社,1989.
    108.任廷柱,欧进萍,窦仲赘等.论高速磁浮线路抗震设防标准与设计准则.地震工程与工程振动,2003,23(4):43~49.
    109.沈建文,余湛,石树中.地震安全性评价中时程的包线与设定地震.震灾防御技术,2007,2(2):20l~206.
    110.时振梁,李群,武宦英等.中国历史上一次可能的慢地震.地震学报,1985,7(3): 342~347.
    111.孙东昌,潘斌编著.海洋自升式平台设计与研究.上海:上海交通大学出版,2008.
    112.陶正如,陶夏新.美国NEHRP规范中地震作用的比较研究.工程抗震和加固改造,2005,27(supp):17~20.
    113.汪素云,时振梁,环文林.中国近海地震活动特征.海洋学报,1990,12(2):194~199.
    114.汪素云,俞言祥,吕红山.利用中国数字地震台网宽频带记录研究长周期地震动反应谱特征.地震学报,1998,20(5):481~488.
    115.王光远,于玲.抗地震结构三级设防的可靠性分析.哈尔滨建筑大学学报,2002,35(2):1~6.
    116.王光远,张鹏.具有中介状态的工程系统的可靠性分析.土木工程学报,2001,34(3):13~17.
    117.王华林,王永光,刘希强等.渤海及周围地区断裂构造与强震活动研究.地震研究,2000,23(1):35~43.
    118.王健.渤海海域历史地震和海啸.地震学报,2007,29(5):549~557.
    119.王忠畅.固定式平台抗震分析若干问题探讨.中国海上油气,2005,17(6):421~423.
    120.韦锋,李刚强,白绍良.各国设计规范对基准设防地震和结构超强的考虑.重庆大学学报(自然科学版),2007,30(6):102~108.
    121.魏光兴,刁守中,周翠英等.郯庐带地震活动性研究.北京:地震出版社,1993.
    122.魏巍.导管架式海洋平台地震破坏状态分析研究.[学位论文].青岛:中国海洋大学学位论文,2004.
    123.邬福肇,曹康泰,陈章立.中华人民共和国防震减灾法释义.北京:法律出版社,1998.
    124.谢礼立,马玉宏.基于抗震性态的设防标准研究.地震学报,2002,24(2):200~209.
    125.谢礼立,马玉宏.现代抗震设计理论的发展过程.国际地震动态,2003,(10):1~8.
    126.谢礼立,张晓志,周雍年.论工程抗震设防标准.地震工程与工程振动,1996,l6(1):1~18.
    127.谢毓寿,蔡美彪,王会安等.中国地震历史资料汇编(第一卷).北京:科学技术出版社,1983.
    128.谢毓寿,程德利,丁学仁. 1900-1980年中国M≥4.7地震的均一震级目录.北京:地震出版社,1989.
    129.徐杰,高战武,宋长青等.营口—潍坊断裂带新生代活动特征.地震地质,1999,21(4):289~300.
    130.徐杰,高战武,孙建宝等. 1969年渤海7.4级地震区地质构造和发震构造分析.中国地震,2001,17(2):121~133.
    131.徐杰,马宗晋,陈国光等.中国大陆东部新构造期北西向断裂带的初步探讨.地学前缘,2003,10(2):193~198.
    132.鄢家全,陈家庚,高孟潭等.抗震设防地震的概率标定.国际地震动态,2000,(9):1~7.
    133.叶爱君,范立础.大型桥梁工程的抗震设防标准探讨.地震工程与工程振动,2006,26(2):8~12.
    134.俞言祥,汪素云,吕红山.利用513中强地震仪记录图计算长周期地震动反应谱.地震学报,1997,19(6):268~274.
    135.张国民,马宗晋,蒋铭.华北强震的研究.中国地震,1988,4(3):66~70.
    136.张令心,王中秀,江近仁.结构抗震设防标准及其决策分析.地震工程与工程振动,2002,22(2):28~32.
    137.张敏政.工程结构性态抗震设计和控制研究项目成果介绍.国际地震动态,2006,333:42~58.
    138.张卫东,李茂林,张秀梅等.极值理论在地震危险性分析中的应用与研究.东北地震研究,2005,21(1):24~30.
    139.章淮鲁.工程地震中有关地震活动性研究的数理统计方法.见:国家地震局震害防御司,工程地震研究.北京:地震出版社,12~27,1991.
    140.中国船级社.海上固定平台入级与建造规范及1994修改通报.北京:人民交通出版社1992.
    141.中国船级社.海上移动平台入级与建造规范.北京:人民交通出版社,2005.
    142.中国地震局工程力学研究所等主编.建筑工程抗震性态设计通则.北京:中国计划出版社,2004.
    143.中国地震局震害防御司.中国近代地震目录(公元1912~1990年).北京:中国科学技术出版社,1999.
    144.中国人民共和国国家标准.GB50223-2008建筑工程抗震设防分类标准.北京:中国建筑工业出版社,2008.
    145.中华人民共和国电力行业标准.DL5073-1997水工建筑物抗震设计规范.北京:中国电力出版社,1997.
    146.中华人民共和国国家标准.GB50191-93构筑物抗震设计规范.北京:中国计划出版社,1993.
    147.中华人民共和国国家标准.GB50260-96电力设施抗震设计规范.北京:中国计划出版社,1996.
    148.中华人民共和国国家标准.GB17503-1998海上平台场址工程地质勘察规范.北京:中国标准出版社,1998.
    149.中华人民共和国国家标准.GB50267-97核电厂抗震设计规范.北京:中国计划出版社,1998.
    150.中华人民共和国国家标准.GB18306-2001中国地震动参数区划图.北京:中国标准出版社,2001.
    151.中华人民共和国国家标准.GB50011-2001建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    152.中华人民共和国国家标准.GB50068-2001建筑结构可靠度设计统一标准.北京:建筑工业出版社,2001.
    153.中华人民共和国国家标准.GB17741-2005工程场地地震安全性评价.北京:中国标准出版社,2005.
    154.中华人民共和国国家标准.GB 50111-2006铁路工程抗震设计规范.北京:中国计划出版社,2006.
    155.中华人民共和国交通部部标准.JTJ004-89公路工程抗震设计规范.北京:人民交通出版社,1989.
    156.中华人民共和国石油天然气行业标准.SY/T 0450-2004输油(气)钢质管道抗震设计规范,2004.
    157.中华人民共和国行业标准.JTJ 225-98水运工程抗震设计规范.北京:人民交通出版社,1998.
    158.中央地震工作小组办公室.中国地震目录.北京:科学出版社,1971.
    159.钟菊芳,胡晓,易立新等.重大工程设定地震方法研究进展.水力发电,2005,31(4):22~24.
    160.周立伟.海洋开发的先锋—海洋石油平台.舰船知识,1996,10:23~24.
    161.朱兴刚.美国统一建筑规范中的抗震设计.建筑技术,2003,7.
    162.庄一舟,金伟良,李海波等.海洋导管架平台抗震可靠性分析方法.海洋学报,1999,21(5):129~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700