用户名: 密码: 验证码:
剪切流影响磁重联过程的几个现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁场重联是等离子体物理研究的基本现象之一,它是许多重要空间物理现象和磁约束核聚变问题的重要理论基础。通过磁重联,磁场的几何拓扑发生了改变,并伴随磁场能量向粒子能量的转换,形成高速的等离子体束流喷射。自从磁重联理论提出以来,已经得到很多学者的不断完善。但是因为所讨论问题的复杂性,以及空间和实验室里目前的观测手段都十分有限,所以对某些很重要问题的理解还存在不少争议。由于能量原理很难处理稳态平衡剪切流存在时的不稳定性问题,因此大多数磁重联理论模型仍限于从静态平衡的初始条件出发。然而剪切流在磁场重联的过程中又是非常重要的,比如聚变装置中的稳定撕裂模和压制磁岛生长等过程。
     数值模拟作为理论与实验观测之间的桥梁,对于解释复杂的非线性物理过程是一种非常行之有效的办法。本论文从磁流体动力学(MHD)模型出发,采用数值模拟的方法对磁场重联问题展开讨论。着重模拟了环向剪切流、极向剪切流对磁重联的影响,同时霍尔(Hall)效应和导向场也作为重要的因素被考虑其中,并得出了一些有意义的结论,尤其进行了不同情况下的Hall四极场的可观测性分析。
     本论文由以下6部分组成。
     第一章,介绍了磁重联的背景。包括问题的提出、来源、学科发展史以及目前国内外的研究概况。并从空间探测与实验室托克马克(Tokamak)装置两个方面简要阐述了磁重联研究的应用前景,面临的挑战以及亟待解决的问题。
     第二章,主要介绍了本文在磁重联研究中使用的数值处理方法,着重介绍了MHD的模拟过程以及对模拟结果的解释与诊断。
     在磁层和行星际等离子体中经常可以观测到垂直于反平行磁场重联平面的剪切流。第三章,我们采用电阻MHD模型模拟了受迫磁重联电流片的非线性演化,讨论了这种垂直磁重联平面的剪切流对磁重联的影响。模拟结果发现在不考虑Hall效应时这种剪切流可以产生双极或者四极结构的垂直平面磁场分布。这种四极结构与典型的Hall-MHD重联中平面内电子回流过程产生的四极结构极其相似。这个结果将对以往的对于空间等离子体的快速磁重联现象的卫星观测判据提出新的挑战和思路。
     基于第三章的结论,为了更好的弄清楚重联过程中的这种剪切流效应,在第四章中,我们采用Hall-MHD模型研究了Hall效应与剪切流效应共同存在时的重联过程。通过模拟发现垂直平面的四极磁场分量可以由两种效应共同产生,并且能够互相叠加产生出新的磁场分布。
     在第五章中讨论了一些与第三章和第四章相关的问题。
     (1)研究了导向场的空间分布效应。在这一部分定义了两个作为比较的无量纲参数:导向场强度参数α和导向场剪切长度参数χ。通过模拟发现重联过程随着导向场的增强以及χ的增加而减慢。
     (2)首先采用和可压缩Hall-MHD模型讨论了无力场近似下撕裂模不稳定性的非线性演化,并与Bian和Vekstein近期的线性理论结果进行了比较。
     (3)研究了不同导向场分布下所能产生的四极结构分量。并讨论了卫星观测中,对于(2)和(3)情况下实际四极场的可观测性研究。
     第六章,讨论了极向剪切流驱动Alfvén共振的问题及其应用。日冕加热问题近几十年一直是太阳物理和空间物理难以解决的问题。人们设想了欧姆加热和波加热等多种加热机制,试图来解释日冕加热现象。但无论哪种加热模型中,磁场的小尺度变化效应都是很重要的。如果此时剪切流足够强,就可能激发Alfvén共振并形成薄电流片。这样欧姆加热和电流片中的波加热都可以为日冕加热提供足够的加热来源。
     最后以工作成果总结全文并对所研究领域提出前景展望。
Magnetic reconnection is a fundamental phenomenon in plasma physics. It provides a theoretical basis for many phenomena in space astrophysical and magnetic confinement fusion plasmas. Through reconnection, the magnetic field topology can be changed and high-speed plasma jets can be ejected. The theories of magnetic reconnection have been developed for many years. However, debates on many specific issues still outstand due to the complexity of the problem and the insufficient data. For example, most researches on magnetic reconnection are based on the static state equilibrium due to the difficulty in energy principle description for steady state equilibria with shear flows. Nevertheless, the effect of the shear flows on magnetic reconnection and related processes is important and sometimes crucial, such as for suppressing island growth and stabilizing the tearing mode in fusion devices.
     Numerical simulation is a powerful method to describe complicated, particularly nonlinear, physical processes and a bridge between theory and observation. Therefore, in this thesis, we apply MHD models numerically for magnetic reconnection studies. Thus, both toroidal and poloidal shear flows, as well as Hall effects and guide fields can be taken into consideration and certain important results, particularly the observability of the Hall quadrupolar field in different cases, are obtained.
     The thesis then is organized as follows.
     In Sec.1, a brief review of magnetic reconnection studies is introduced, including the origin, the basis and current achievements and progresses. We then discuss the applications and prospects, as well as challenges and outstanding issues that need to be resolved in both space physics exploration and magnetic confinement fusion.
     In Sec.2, the applied numerical method is presented, especially the MHD simulation code. Then the diagnostic methods of the results are also introduced.
     Sheared flows perpendicular to the anti-parallel reconnecting magnetic field are often observed in magnetosphere and interplanetary plasmas. In Sec. 3, we apply the reduced resistive MHD model for compressible plasmas to investigate the nonlinear evolution of the reconnection current sheet with such flows. Our study finds that the shear flows can generate bipolar or quadrupolar out-of-plane magnetic field perturbations in a two-dimensional resistive MHD reconnection without Hall effects. The quadrupolar structure has otherwise been thought a typical Hall MHD reconnection feature caused by the in-plane electron convention. The results will challenge the conventional understanding and satellite observations of the signature of reconnection evidence in space plasmas.
     To further understand the effect investigated in Sec.3 on reconnection processes, we develop a Hall-MHD Model with the shear flows. In Sec.4 we have studied the effects of toroidal shear flows on magnetic reconnection with Hall effects exist and found that the quadrupolar out-of-plane magnetic field components generated both by the Hall effects and the shear flows can be added up and new reconnection patterns are formed.
     In Sec.5, several problems relevant to our discussions in Sections 3 and 4 are discussed:
     (1) First, the effect of spatial variation of the guide field is investigated. We defineαas the intensity and x as the typical length for the spatial variation of the guide field and find that the spatial variation of the guide field slows the reconnection process as x increases.
     (2) We use the compressible Hall-MHD model to discuss the nonlinear evolution of the tearing modes in force-free field approximation, in compare with Bian & Vekstein's recent work in questioning if the quadrupolar structure during such reconnection processes is solely due to the effect.
     (3) We also study the effect of the guide field of different profiles on magnetic reconnection generated quadrupole field components. And then the observability of the quadrupole field by satellite observations in the cases of (2) and (3) is discussed.
     In Sec. 6, Alfven resonance generated by the poloidal sheared flows are studied for coronal heating application. Coronal heating has been an outstanding problem difficulty to solve for years. There are two categories of heating models: current sheet heating and wave heating. To both kinds of models however, small scale effect of the magnetic field is important. If the sheared flows are big enough, Alfvén resonance can be excited and a thin current sheet can be formed. The both the Ohmic dissipation and wave resonance on the current can provide the heating sources for the corona.
     Finally, a brief summary and conclusion are given to complete the thesis.
引文
[1]Bhattacharjee A,Ma Z W,Wang X G.Recent developments in collisionless reconnection theory:Applications to laboratory and space plasmas.Phys.Plasmas.2001,8:1829
    [2]Giovanelli R G.A theory of chromospheric flares.Nature.1946,158:81-82.
    [3]Hoyle F.Some Recent Researches in Solar Physics.Cambridge:Cambridge Univ.Press,1949.
    [4]Cowling T G.Solar electrodynamics in The sun.Chicago:Univ.Chicago Press,1953:532-591.
    [5]Dungey J W.Conditions for the occurrence of electrical dischrges in astrophysical systems.Phil.Mag.1953,44:725-738.
    [6]Dungey J W.Interplanetary field and the auroral zones.Phys.Res.Lett.1961,6:47.
    [7]Lyons L R,Williams D J.Quantitative Aspects of Magnetospheric Physics.Dordrecht:D.Reidel Publishing Company,1984.
    [8]Tandberg-Hanssen E,Emslie A G.The Physics of Solar Flares.Cambridge:Cambridge Univ.Press,1988.
    [9]李罗权,刘振兴.地球磁层中的多重x线磁场重联.见:叶永烜,吕保维主编.空间物理学进展.成都:四川科技出版社,1988,1:359.
    [10]Lee L C,Fu Z F,Akaspfu S I.A simulation study of forced reconnection processes and magnetospheric storms and substoms.J.Geophys.Res.1985,90:10896,
    [11]Wang S,Li S J,Zheng H N.Numerical studies for magnetic reconnection of magnetic islands.Chin.J.Geophys.1994,37:183.
    [12]Vasyliunas V M.Theoretical models of magnetic field line merging,1.Rev.Grophys.Space Phys.1975,13:303
    [13]Cowley,S W H.Comments on the merging of non-antiparallel field.J.Geophys.Res.1976,81:3455,
    [14]Snnerup B U(O|¨).Magnetic field reconnection in cosmic plasmas.In:Knudu M R,Holman G D,ed.Unstable Current System and Plasmas Instabilities in Astrophysics.Dordrecht:D.Reidel Pub.Co.,1985
    [15]Lee L C.The magnetopause:A tutorial review.In:Chang T,Crew G B,Jasperse J P ed.Physics of Space Plasma.Cambridge:Sci.Pub.Inc.,1991:33
    [16]王水.太阳系等离子体中的磁场重联.见:汪克林编.近代物理学展望(第二集).合肥:中国科学技术大学出版社,1993:1
    [17]Priest E R.The magnetohydrodynamics of current sheet.Rep.Prog.Phys.1985,48:955.
    [l8]Alfven H.On sunspots and the solar cycle,Ark.f.Mat.Ast.Fys.1943,29A:l-17.
    [19]Sweet P A.The Neutral Point Theory of Solar Flares.In:Lehnert B,ed.Electromagnetic Phenomena in Cosmical Physics.New York:Cambridge University Press,1958:123
    [20] Parker E N. The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. Suppl. 1963,8:177
    [21] Petschek H E. Magnetic field annihilation, In: AAS-NASA Symposium on the Physics of Solar Flares. NASA: Spec. Publ., SP-50,1964:425.
    [22] Sonnerup B U O. Magnetic field Line reconnection in highly conducting incompressible fluid. J. Plasma Phy. 1970,4:161.
    [23] Priest E R, Forbes T G. New models for fast steady state reconnection. J. Geophys. Res. 1986,91:5579.
    [24] Priest E R, Lee L. C. Nonlinear magnetic reconnection models with separatrix jets. J. Plasma Phys. 1990, 44:337-360.
    [25] Forbes T G, Priest E R. A comparison of analytical and numerical models foe steadily driven magnetic reconnection. Rev. Geophys.1987,25:1583.
    [26] Heyvaerts J, Priest E R. Thermal evolution of current sheets and flash phase of solar flares. Solar Phys. 1976, 47:223.
    [27] Miline A M, Priest E R. Internal structure of reconnection current sheet and the emerging flux model for solar flares. Solar Phys. 1981, 73:157.
    [28] Park W, Monticello D A, White R B. Reconnection rates of magnetic field including the effects of viscosity. Phys. Fluids. 1984, 27:137.
    [29] Green R M, Sweet P A. Note on the dissipation of magnetic field at neutral line. Astrophys. J. 1967,147:1153,
    [30] Petschek H E, Thorne R M. The existence of intermediate waves in neutral sheets. Astrophys. J. 1967,147:1157.
    [31] Shi Y, Lee L C. Structure of the reconnection layer at the dayside magnetopause. Planet. Space Sci. 1990,38:437,
    [32] Levy R H, Petschek H E, Siscoe G I. Aerodynamic aspects of the magnetospheric flow. AIAA J. 1964,2:2065,
    [33] Sonnerup B U O, Priest E R. Resistive MHD stagnation point flows at a current sheet. J. Plasma Phys. 1975,14:283.
    [34] Gratton F T, Heyn M F, Biernat H K, et al. MHD stagnation point flows in the presence of resistivity and viscosity. J. Geophys. Res. 1988,93:7318,
    [35] Phan T D, Sonnerup B U O. MHD stagnation-point flows at a current sheet including viscous and resistive effects: general two-dimensional solutions, J. Plasma Phys. 1990, 44: 525.
    [36] Jardine M, Allen H R, Grundy R E, et al. A family of two-dimensional nonlinear solutions for magnetic field annihilation. J. Geophys. Res. 1992,97:4199.
    [37] Stevenson J C. Numerical studies of magnetic field annihilation. J. Plasma Phys. 1972, 7:293.
    [38]Yan M,Lee L C,Priest E R.Fast magnetic reconnection with small separatrix angles.J.Geophys.Res.1992,97:8277.
    [39]Yah M,Lee L C,Priest E R.Magnetic reconnection with large separatrix angles.J.Geophys.Res.1993,98:7533.
    [40]Richtmyer R D,Morton K W,Difference Methods for Initial Value Problems.WileSons:Interscience Publishers,1967.
    [41]Roache P J.Computational Fluid Dynamics.Socorro:Hermosa Publishers,1972.
    [42]Potter D.Computational Physics.New York:Wiley Pub.Co.,1973.
    [43]忻孝康,刘儒勋,蒋伯诚,计算流体力学,长沙:国防科技大学出版社,1988.
    [44]Hockney R W,Eastwood J W.Computer Simulation Using Particles.New York:McGraw-Hill Book Company.1981.
    [45]Birdsall C K,Jangdon Bruce A.Plasma Physics via Computer Simulation.New York:Mcgraw-Hill Book Company,1985.
    [46]Tajima T.Computaional Plasma Physics with Applications of Fusion and Astrophysics.Chicago:Addison-Wesley Publishing Company.Inc,1989.
    [47]Dawson J M.Tbe future of space plasma simulation.Space Science Review.1985,42:187.
    [48]Lin Y,Swift D W J.A two-dimensional hybrid simulation of the magnetotail reconnection layer.Geophys.Res.1996,101:19859-19870.
    [49]Saku Tsuneta.Structure and Dynamics of Magnetic Reconnection in a Solar Flare.Astrophysical Journal.1996,446:1055.
    [50]Dungey J W.Interractions of Solar Plasma with the Geomagnetic Field.Planet.Space Sci.1963,10:233-237.
    [51]Prager S.Magnetic Confinement Fusion Science-Status and Challenges.Madison:University of Wisconsin,2005
    [52]Rosenbluth M N,Rutherford P H.Stability of tokamak plasma.In:Pt A,Teller E,ed.Magnetic confinement.New York:Academic Press,1981.身胥兵译.北京:原子能出版社,1987.
    [53]Furth H P,Rutherford M N.Tearing modes in the cylindrical tokamaks.Phys.Fluids.1973,16:1054.
    [54]Glasser A H,Furth H P,Rutherford P H,Stability of resistive kink modes in the tokamak.Phys.Rev.Lett.1977,38:234.
    [55]徐文斌,石秉仁.环流器等离子体撕裂模稳定电流剖面.见:李芳编.核聚变与等离子体物理.1991,11(4):201。
    [56]马腾才,宫野.电流分布对破裂不稳定性的影响.核聚变.1981,2(1):1.
    [57]高庆弟,于亭焱.导体壳对电阻磁流体不稳定性的影响.核聚变与等离子体物理.1990, 10(3):129.
    [58] Lahaye R J. Neoclassical tearing modes and their control. Phys. Plasmas. 2006, 13: 055501.
    [59] Bickerton R J, Connor J W, Taylor J B. Diffusion driven plasma current and bootstrap tokamak. Nature. 1971, 229:110.
    
    [60] 邹利民、胡友秋, 太阳大气中自发重联的数值模拟(I),空间科学学报, 1997, 17:4.
    [61] Jin S P, Yang H A, Wang X G. Hall effect and fine structures in magnetic reconnection with high plasma . Phys. Plasmas. 2005, 12:042902.
    [62] Ma Z W, Wang X G, Bhattachajee A. Forced magnetic reconnection and persistence of current sheets in static and rotating plasmas due to a sinusoidal boundary perturbation. Phys. Plsamas. 1996, 3(6):2427.
    [63] Xie H, Lin Y. Two-dimensional hybrid simulation of the dayside reconnection layer and associated ion transport. JOURNAL OF GEOPHYSICAL RESEARCH. 2000,105:25171-25183.
    [64] Bian N H, Vekstein G, Is the "out-of-plane" magnetic perturbation always a quadrupole in the Hall-mediated magnetic reconnection?. Phys. Plasmas. 2007,14:120702.
    [65] Stenzel R L, Gekelman W. Magnetic field line reconnection experiments. I-Field topologies. II-Plasma parameters. J. Geophys. Res. 1981,86:649-666.
    [66] Mandt M E, Denton R E, Drake J F. Transition to Whistler Mediated Magnetic Reconnection. Geophys. Res. Lett. 1994, 21(1):73-76.
    [67] Shay M A, Drake J F, Rogers B N, et al. The scaling of collisionless, magnetic reconnection for large systems. Geophys. Res. Lett. 1999, 26(14):2163-2166.
    [68] Birn J, Drake J F, Shay M A, et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 2001,106(A3):3715-3720.
    [69] Wang X, Bhattacharjee A, Ma Z W. Collisionless reconnection: Effects of Hall current and electron pressure gradient. J. Geophys. Res. 2000, 105(A12):27633-27648.
    [70] Vaivads A, Khotyaintsev Y, AndreM et al., Structure of the Magnetic Reconnection Diffusion Region from Four-Spacecraft Observations Phys. Rev. Lett. 93 (2004) 105001.
    [71] Stenzel R L, Griskey M C, Urrutia J M, et al. Three-dimensional electron magneto- hydrodynamic reconnection. I. Fields, currents, and flows. Phys. Plasmas. 2003, 10:2780.
    [72] Yamada M, Ren Y, Ji H, et al. Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas 2006,13:052119.
    [73] Lanzerotti L T, Kennel C F, Parker E N et al. In: Solar System Plasma Physics III. New York: North-Holland. 1979:45-108.
    [74] Terasawa T. Hall current effect on tearing mode instability. Geophys. Res. Lett. 1983, 10: 475-478.
    [75] Hoshino M. Electrostatic effect for the collisionless tearing mode. J. Geophys. Res. 1987,92 (A7) : 7368-7380.
    [76] Hewett D W, Frances G E, Max C E. New Regimes of Magnetic Reconnection in Collisionless. Plasmas Phys. Rev. Lett. 1988,61:893-896.
    [77] Uzdensky D A, Kulsrud R M. Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection. Phys. Plasmas. 2006,13:062305.
    [78] Deng X H, Matsumoto H. Rapid magnetic reconnection in the Earth' s magnetosphere mediated by whistler waves. Nature. 2001, 410(6828):557-560.
    [79] (?)ieroset M, Phan T D, Fujimoto M et al. In situ detection of collisionless reconnection in the Earth's magnetotail. Nature, 2001,412(6845):414-417.
    [80] Nagai T, Shinohara I, Fujimoto M et al. Geotail observations of the Hall current system: Evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. 2001, 106(A11): 25929-25950.
    [81] Mozer F S, Bale S D, Phan T D. Evidence of Diffusion Regions at a Subsolar Magnetopause Crossing. Phys. Rev. Lett. 2002, 89:015002.
    [82] Frey H U, Phan T D, Fuselier S A, et al. Continuous magnetic reconnection at Earth' s magnetopause. Nature. 2003,426:533.
    [83] Phan T D, Paschmann G, Twitty C et al. Evidence for magnetic reconnection initiated in the magnetosheath, Geophys. Res. Lett. 2007,34: L14104.
    [84] Gosling J T, Eriksson S, McComas D J, et al. Direct Evidence for Prolonged Magnetic Reconnection at a Continuous X-Line Within the Heliospheric Current Sheet. J. Geophys. Res. 2007,112:A08106.
    [85] Otto A, Fairfield D H. Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparision with Geotail observations. J. Geophys. Res. 2000,105:21190.
    [86] La Belle-Hamer A L, Fu Z F, Lee L C. Mechanism for patchy reconnection at the dayside magnetopause. Geophys. Res. Lett. 1988,15:152-155.
    [87] Shen C, Liu Z X. Tearing mode with strong flow shear in the viscosity-dominated limit. Phys. Plasmas. 1996, 3:4301.
    [88] Chen Q, Otto A, Lee L C. Tearing instability, Kelvin-Helmholtz instability, and magnetic reconnection. J. Geophys. Res. 1997, 102(Al):151-161.
    [89] Knoll D A, Chacon L. Magnetic Reconnection in the Two-Dimensional Kelvin-Helmholtz Instability. Phys. Rev. Lett. 2002, 88:215003.
    [90] Sun X, Lin Y, Wang X. Structure of reconnection layer with a shear flow perpendicular to the antiparallel magnetic field component. Phys. Plasmas. 2005, 12:012305.
    [91] Wang J, Dunlop M W, Pu Z Y, et al. TC1 and Cluster observation of an FTE on 4 January 2005: A close conjunction. Geophys. Res. Lett. 2007,34:L03106.
    
    [92] Leprovost N, Kim E. Dynamo Quenching Due to Shear Flow. Phys. Rev. Lett. 2008, 100:144502
    
    [93] Malik M, Dey J. Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow. Phys. Rev. Lett. 2008, 77:036322
    
    [94] Ofman L, Morrison P J, Steinolfson R S. Nonlinear evolution of resistive tearing mode instability with shear flow and viscosity. Phys. Fluids B. 1993,5:376.
    [95] Chu M S, Chan V S, Chance M S et al. Modelling of feed back and rotation stabilization of the resistive wall mode in tokamaks. Nucl. Fusion. 2003,43:196-201.
    [96] Fitzpatrick R. Interaction of tearing modes with external structures in cylindrical geometry (plasma). Nucl. Fusion. 1993, 33:1049-1084.
    [97] Wang X, Bhattacharjee A. Forced reconnection and model locking in rotating cylindrical plasmas. Phys. Plasmas 1997,4:748-754.
    [98] Chandra D, Sen A, Kaw P et al. Effect of sheared flows on classical and neoclassical tearing modes. Nucl. Fusion. 200545: 524-530.
    
    [99] Wang X, Bhattacharjee A, Ma Z W, et al. Structure and Dynamics of Current Sheets at Alfven Resonances in a Differentially Rotating Plasma. Phys. Plasmas. 1998,5:2291.
    [100] Wygant J R, Cattell C A, Lysak R et al. Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J. Geophys. Res. 2005,110:A09206.
    [101] Ren Yang, Yamada Masaaki, Gerhardt Stefan et al. Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma. Phys. Rev. Lett. 2005, 95: 055003.
    [102] Dmitri A, Uzdensky, Russell M. Physical origin of the quadrupole out-of-plane magnetic field in Hal1-magnetohydrodynamic reconnection. Phys. Plasmas. 2006,13:062305.
    [103] Sonnerup B U O. In: Lanzerotti L T, Kennel C F, Parker E. N.ed. Solar System Plasma Physics III ,New York: North-Holland, 1979:45-108.
    [104] Biskamp D, Schwarz E, Drake J F. Two-fluid theory of colllisionless magnetic reconnection. Phys. Plasmas. 1997, 4(4):1002-1009
    [105] Wang X, Bhattacharjee A, Ma Z W. Scaling of Collisionless Forced Reconnection. Phys.Rev.Lett. 2001, 87:265003
    [106] Bray R J, Cram L E, Durrant C J et al. Plasma Loops in the Solar Corona. Cambridge: Cambridge Univ. Press,1991.
    
    [107] Vaiana G S, Rosner R. Recent Advances in Coronal Physics. Ann. Rev. Astr. Ap. 1978,16: 393-428
    [108] Parker E N. Topological dissipation and small-scale fields in turbulent gases. Astrophys.J. 1972,174:499.
    [109] Heyvaerts J, Priest E R. A self-consistent turbulent model for solar coronal heating. Astrophys. J. 1992,390:297-308
    [110] Browning P K, Priest E R. Heating of coronal arcades by magnetic tearing turbulence. Astron Astrophys. 1985, 159:129-141.
    [111] Parker, E. N . The dissipation of inhomogeneous magnetic fields and the problem of coronae I, Dislocation and flattening of flux tubes. Astrophys.J. 1981, 244:631-637.
    [112] Parker E N. Magnetic Neutral Sheets in Evolving Fields - Part Two - Formation of the Solar Corona. Astrophys. J. 1983,264:642.
    [113] Sturrock P A, Uchida Y. Dislocation and flattening of flux tubes. Astrophys. J. 1981, 246: 331.
    [114] Van Ballegooijen A A. Cascade of magnetic energy as a mechanism of coronal heating Astrophys. J. 1986, 311:1001-1004.
    [115] Gomez D O, Ferro Fontan C. Coronal heating by selective decay of MHD turbulence. Solar Phys. 1988,116 (1) :33-44.
    [116] Mikic Z, Schnack D D, van Hoven G. Creation of current filaments in the solar corona Astrophys.J. 1989,338:1148-1157.
    [117] Bhattacharjee A, Wang X. Current sheet formation and rapid reconnection in the solar corona. Astrophys. J. 1991, 372:321.
    [118] Wang X, Bhattacharjee A. Forced reconnection, current sheets, and coronal heating. Astrophys. J. 1992, 401:371-377.
    [119] Wang X, Bhattacharjee A. Current sheets and reconnection driven by footpoint motion in two-dimensional coronal loops with X-type neutral lines. Astrophys. J. 1994, 420:415-421.
    [120] Longcope D W, Sudan R N. Evolution and statistics of current sheets in coronal magnetic loops Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 437, no. 1, p. 491-504 1994, Astrophys. J. 437:491.
    [121] Priest E R, Parnell C E, Martin S F. A converging flux model of an X-ray bright point and an associated canceling magnetic feature. Astrophys. J. 1994, 427:459-474.
    [122] Ma Z W, Ng C S, Wang X G et al. Dynamics of current sheet formation and reconnection in two-dimensional coronal loops. Phys. Plasmas. 1995, 2 (8) :3184-3193.
    [123] Galsgaard K, Nordlund A . Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 1996, 101(A6): 13,445-13,460
    [124] Hendrix D L, van Hoven G, Mikic Z et al. The Viability of Ohmic Dissipation as a Coronal Heating Source. Astrophys. J. 1996, 470:1192.
    [125] Gomez D O, Dmitruk P A, Milano L J. Recent theoretical results on coronal heating. Sol.Phys. 2000, 195 (2) : 299-318.
    [129] Buchner J, Nikutowski, Otto A. Coronal Heating. In: Walsh R W, Ireland J, Dansey D et al, ed. Proc. SOHO 15 Workshop(ESASP-575): 232004.
    [127] Gudiksen B, Nordlund A. An Ab Initio Approach to the Solar Coronal Heating Problem. Astrophys. J. 2005, 618:1020-1030.
    [128] Priest E R, Longcope D W, Heyvaerts J. Coronal Heating at Separators and Separatrices. Astrophys.J. 2005, 624:1057-1071.
    [129] Ng C S, Bhattacharjee A. A Constrained Tectonics Model for Coronal Heating. Astrophys.J. 2008, 675:899-905.
    [130] Tomczyk S, McIntosh S W, Keil S L et al. Alfven Waves in the Solar Corona. Science. 2007, 317:1192-1196.
    
    [131] Klimchuk J A. On Solving the Coronal Heating Problem. Sol. Phys. 2006, 234:41-47
    [132] Ulrich R K. Observations of Magnetohydrodynamic Oscillations in the Solar Atmosphere with Properties of Alfven Waves. Astrophys. J. 1996, 465:436.
    [133] Heyvaerts J, Priest E R.. Coronal heating by phase-mixed Alfven waves. Astron Astrophys. 1983,117:220-234.
    [134] Poedts S, Goossens M. The continuous spectrum of MHD waves in 2D solar loops and arcades. Solar Phys. 1987,109:265-286.
    [135] Hasegawa, A. Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 1976, 81:5083-5090.
    [136] Hasegawa A, Chen L. Kinetic Process of Plasma Heating Due to Alfven Wave Excitation. Phys. Rev. Lett. 1975.
    [137] Hasegawa A, Chen. Kinetic processes in plasma heating by resonant mode conversion of Alfven wave. Phys. Fluids. 1976,19(12): 1924.
    [138] Lysak R L, CarlsonCW. The effect of microscopic turbulence on magnetosphere-ionosphere coupling . Geophy. Res. Lett. 1981, 8:269-272.
    [139] Goertz C K. Kinetic Alfven Wave on aurora eld lines. Planet. Space Sci. 1984, 32:1387
    [140] Lysak R L, Dum C T, Dynamics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. 1983, 88:365.
    [141] Wahlund J E. On ion acoustic turbulence and the nonlinear evolution of kinetic Alfven Wave in aurora. Geophys. Res. Lett. 1994, 21:1831-1834.
    [142] Louarn P, Wahlund J E, Chust T et al. Observations of kinetic Alfven waves by the Freja satellite. Geophys. Res. Lett., 1994, 21:1847.
    [143] Johnson R, Cheng C Z. Stochastic Ion Heating at the Magnetopause due to Kinetic Alfven Waves. Geophys. Res. Lett. 2001,28(23):4421-4424.
    [144] Voitenko Y, Goossens M. Cross-Field Heating of Coronal Ions by Low-Frequency Kinetic Alfven Waves. Astrophysical Journal Letters, 2004, 605:L149 - L152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700