用户名: 密码: 验证码:
寒区湿地演变驱动因子及其水文生态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扎龙湿地地处寒温带,其独特的地理位置使流域水文过程和生态过程紧密地耦合在一起,在调蓄洪水、净化水体、保护生物多样性等方面具有重要的作用。然而,近年来,受区域气候变化及人类活动的影响,湿地生态水文情势变化显著,湿地退化严重。本文针对扎龙湿地生态环境演变的驱动因子及水文生态对主驱动因子变化的响应关系进行研究,揭示湿地生态环境的演变机理,完善我国寒区湿地的退化与修复理论。主要研究内容和成果如下:
     (1)分析研究降水、径流等气象水文要素的变化特性,以揭示寒区湿地气象水文变化的基本规律;采用时间序列周期方差分析外推法对降水和上游来水径流变化周期进行分析,提取湿地水文周期;采用叠加趋势预测模型预测湿地区域降水量与上游来水径流量的变化趋势。结果表明:扎龙湿地降水量总体上有减少趋势,并呈现以21年为周期的周期性波动特征;年均气温呈波动式上升趋势;蒸发量年际间波动较大,但无显著变化趋势;上游来水径流量呈现逐年减少的趋势,并存在周期性的波动特征,12年为一个周期。
     (2)基于扎龙湿地生态水文特征,分析了区域气候变化和人为因素对生态水文的影响,用灰色相关法分析计算了湿地面积变化与气候因子的相关关系:以月和年两种时间尺度研究了影响湿地典型景观(水面)面积变化的显著气候水文主因子及典型景观(水面)面积变化对环境因子的敏感性,从而分离出湿地生态环境演变的主驱动因子,为第四章、第五章和第六章进行主驱动因子变化及湿地水文生态对主驱动因子变化的响应研究奠定基础。结果表明:扎龙湿地具有时空分异特征和脆弱性特征,气候环境与人为因素是湿地动态变化的主要影响因素:湿地面积与气候因子之间有较好的相关关系:湿地面积与气温和降水量分别为负相关和正相关,狄色关联系数分别为-0.617和0.467;月最高气温与湿地上游来水量是影响湿地景观(水面)面积变化的显著气候与水文主因子。
     (3)用逐月蒸发量修正系数改进两参数月水量平衡模型,建立扎龙湿地上游来水(乌裕尔河)径流模型。采用水文模拟方法,定量研究气候变化和人类活动对湿地上游来水径流变化的影响。结果表明,改进的两参数月水量平衡模型能较好地模拟湿地上游来水径流,湿地上游来水径流序列显著变化的转折年份为1981年;各年代径流量呈现递减趋势,90年代径流量减少明显,约为背景值的85%;90年代期间,气候变化是乌裕尔河流域径流减少的主要原因,其影响量约占径流总减少量的60%;80年代期间,人类活动是乌裕尔河流域径流减少的主要原因,其影响量约占径流总减少量的80%。
     (4)利用湿地水循环模型模拟上游来水径流量与水面面积的变化,以水面面积为湿地典型水文状态指标,研究自然来水频率下水文状态指标对湿地上游来水径流量变化的定量响应关系;选取芦苇覆盖面积、鸟类多样性和水质为湿地的生态环境指标,基于水文与生态环境的指标指数,研究湿地生态环境对水文状态变化的响应关系。结果表明:湿地年平均水面面积与年上游来水量的变化趋势一致;不同来水频率下,水面面积对来水量变化的响应程度不同;湿地生态环境指标的指数与水面面积指数的变化趋势基本一致,但生态环境指标的变化相对于水面面积有不同程度的滞后响应,滞后先后顺序为水质、芦苇覆盖面积、鸟类多样性;生态环境指标随水面面积的变化呈现波动趋势,当水面面积处于775-880 km~2范围时,生态环境最好。
     (5)从大气-土壤的层面,研究了气候季节变化引起的湿地土壤环境变化及生态系统对土壤环境变化的响应,揭示了湿地水文生态对气候季节变化的响应关系:扎龙湿地芦苇沼泽的气温生长季节为3月29日~11月05日,约为248天,地温生长季节为5月29日~12月15日,约为200天;扎龙湿地季节性冻土广泛分布,土壤从每年的10月20日左右开始进入不稳定冻结期,第二年3月下旬达到冻结最大深度,3月5日左右开始消融到5月下旬全部消融;湿地的生态水文过程在很大程度上受季节性冻土及其水热状况的影响,季节性冻土的冻融过程有利于沼泽湿地的发育,同时对径流量和潜水位有重要影响,春末夏初增加径流量,秋冬季滞留降水,提高湿地的蓄水量。
     基于湿地气象水文要素的变化特性和生态水文特征分析,确定气候与水文因素中影响湿地生态环境演变的主驱动因子,从地表和土壤两个层面,研究湿地的水文生态对主驱动因子变化的响应关系,揭示湿地水文生态对气候变化与人类活动的响应以及湿地水文与生态系统之间相互影响、相互作用的关系,为正确修复与保护湿地提供理论依据和数据支持。
Zhalong wetland locates in cool temperate zone, its unique geographic location makes the basin's hydrological and ecological processes couple closely, plays various eco-hydrological functions, such as flood storage against drought, soil erosion control, water purification, biodiversity maintenance, etc. However, in recently years, due to the regional climate change and effect of human activity, the situation of eco-hydrology change particularly, the wetland has degraded seriously. The paper picks up the eco-environmental evolution driving factors of zhalong wetland and eco-hydrological response relation to study, reveal the eco-environmental evolution mechanism of wetland objectively, perfect humble region wetland degeneration and restoration theory of our country. The main research contents as follows:
     (1)Analyze precipitation, runoff and other climatic and hydrological factors' variation characteristics; reveal humble region wetland climate hydrology variation rule; adopt time series extrapolation to analyze the change period of precipitation and inflow runoff, abstract the wetland hydroperiod; adopt superimposition tendency forecast model to forecast the change tendency of precipitation and inflow runoff within the wetland. The precipitation presents a decrease trend and fluctuates with the period of 21 years, the annual average air temperature shows significant increasing trend, although the annual average evaporation fluctuates significantly, as a whole, it has no evident change trend, and the inflow shows a significant degressive trend and fluctuates with the period of 12 years.
     (2)Analyze the eco-hydrologic impact of regional climatic changes and human factors based on zhalong wetland eco-hydrological characteristics, calculate the correlation between wetland area and climatic factors with grey correlation method; examine the evident climate and hydrology main factors affecting wetland landscape (surface)area with two kind scales of month and year and its sensibility to environmental factor, separate wetland eco-environment evolution main driving factors. This can get ready for the next research on chapters 4,5 and 6, which aima at the main driving factors' change and wetland eco-hydrologic response to the main driving factor' variation. Zhalong wetland possess spatio-temporal difference and frangibility characteristic, climatic environment and human factor is the wetland dynamic variation's primary effect factor; it has better correlativity between wetland area and climatic factor: it has positive correlation between wetland area and air temperature, and negative correlation with precipitation, grey association coefficient is respectively -0.617,0.467; the monthy maximum air temperature and inflow are the critical factors influencing water surface area of the wetland.
     (3) Modify the monthy water balance model with two parameters by using correction coefficients of evaporation month by month, establish the inflow simulation model for Zhalong wetland, and study the change of upstream runoff due to climatic change and human activities quantitatively adopted hydrological simulation method. it is shown that the model modified can simulate the wetland inflow very well, that the critical year for inflow series change is 1981, that inflow runoff shows a significant degressive trend, especially in the 1990's, it accounts for 85 per cent of the background value, and that in the 1990's, climate change is the main factors influencing the inflow and the decrement occupies 60% of the total decrement, but in the 1980's, human activity is the main factors influencing the inflow and the decrement occupies 80% of the total decrement.
     (4)Simulate the inflow runoff and water surface area by using a water cycle system simulation model of the wetland, take water surface area as the typical hydrology state index, discuss the quantitative response of hydrology index to inflow runoff with natural inflow frequency, take reed area, avifauna variety and water quality as ecological environment indexes, discuss the response of ecological environment to hydrology state. the results show that both of the change trends of annual average water surface area and inflow runoff are consistent, that the response of water surface area to inflow runoff is different with different frequency, and that both of the change trends of ecological environment index and water surface area are almost consistent, but the change of ecological environment index lags behind the change of water surface area with different degrees, i.e., water quality, reed area and avifauna variety in order of priority. It is important to note that it is not better for ecological environment when water surface area is bigger, only when water surface area is in the range of 775-880 sq.km, ecological environment is better.
     (5) From atmosphere-earth lay, discuss the wetland soil circumstance change and its ecological response caused by climate change with seasonal variation; research wetland seasonal frozen ground's distribution characteristic, freeze-thaw rule and eco-hydrologic function; reveal the eco-hydrologic response to climatic change: it has perfect corresponding relation between the wetland soil temperature and vegetation season, in zhalong wetland, moss land's air temperature growing season is from 29, march to 5, November, about 248 days, ground temperature growing season is from 29, may to 15, December, about 200days; zhalong wetland seasonal frozen ground range widely, the soil comes into instable freezing period around 20, October every year, and reach frozen extreme depth until the last ten days of march next year. And finishes melting around 20 may next year; wetland eco-hydrologic process is influenced by seasonal frozen ground and hydrothermal condition to a great extent; the amount of frozen backwater increase by 20-40% is beneficial for plant hibernation and springtime multiply, also is the key factor to promote salinization, swamping and keep ecological equilibrium. Frozen soil prevent seeping, thia can promote wetland's development, seasonal freeze-thaw course has important impact on runoff and groundwater table, the pondage of wetland can be increased by increasing runoff in late spring and early summer, staying precipitation in autumn and winter.
引文
[1]刘存厚.湿地的定义和类型划分.生态学杂志,1995,14(4):1-10.
    [2]赵魁义,刘兴土.湿地研究的现状与展望.in:陈宜瑜,ed.中国湿地研究.长春:吉林科学技术出版社.1995:1-6.
    [3]孙广友.中国湿地科学的进展与展望.地球科学进展,2000,15(6):666-672.
    [4]Hollis G E,Thompson J R.Hydrological data for wetland management.J CIWEN,1998 12:9-17.
    [5]邓伟,胡金明.湿地水文学研究进展及科学前沿问题.湿地科学,2003,1(1):12-19.
    [6]Keddy P A.Wetland Ecology -Principles and Conservation.Cambridge:Cambridge University Press,2000.
    [7]Mitsch W J,Gosselink J G.Wetlands.New York:WILEY press,2000.
    [8]Wheeler B D.Water and plants in freshwater wetlands.in:J,Baird A,ed.Eco-hydrology.London:Routledge,1999:128-157.
    [9]宋长春.湿地生态系统对气候变化的响应.湿地科学,2001,1(2):122-127.
    [10]张为政,高琼.松嫩平原羊草草地土壤水盐运动规律的研究.植物生态学报,1994,18(2):132-139.
    [11]Lafleur P M,McCaughey J H,Joiner D W,et al.Seasonal trends in energy,water,and carbon dioxide fluxes at a Northern boreal wetland.Journal of Geophysical Research,1997,102:29009-29020.
    [12]Pook E W,Moore P H R,Hall T,et al.Rainfall interception by trees of pinus radiata and eucalyptus viminalis in a 1300 mm rainfall area of southeastern new South Wales.Hydrol Process,1991,(6):127-141.
    [13]罗新正,朱坦,孙广友.松嫩平原湿地生态环境退化机制探讨.干旱区资源与环境,2002(04):39-43.
    [14]陈克林,张小红,吕咏.气候变化与湿地.湿地科学,2003,1(1):73-77.
    [15]李取生.松嫩沙地历史演变的初步研究.科学通报,1990,35(11):854-856.
    [16]Cowardin L M and Golet F C.US Fish and Wildlife Service 1979 wetland classification:a review[A].In Finlayson C M and van der Valk A G.Classification and Inventory of the world's Wetlands[C].Dordrechht,Boston,London:Kluwer Academic Publishers,1995,139-152.
    [17]Tarnocai C.Canadian wetland registry,proceedings of a workshop on Canadian wetland directorate,ecological land classification series[C].No.12.Saskatoon:Saskatchewan,1979:9-38.
    [18]Mitsch W J,Gosselink J G.Wetlands.New York:Van Nostrand Reinhold Company,1986,2000.
    [19]Matthews G V T.The Ramsar Convention:its history and development.Ramsar Convention Bureau,Gland,Switzerland,1993.
    [20]杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望.地球科学进展,2002,17(4):508-514.
    [21]Mayer P M,Galatowitsch S M.Diatom communities as ecological indicators of recovery in restored prairie wetlands.Wetlands,1999,19(4):765-774.
    [22]Booth R K,Rich F J,Bishop,G A,et al.Evolution of a freshwater barrier-island marsh in coastal Georgia,USA.Wetlands,1999,19(3):570-577.
    [23]Gorham E.Human Influences on the Health of Northern Peatlands.Transactions of the Royal Society of Canada,1991,(2):199-208.
    [24]Poiani K A,Johnson W C.A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands.Ecological Applications,1993,3(2):279-293.
    [25]Thompson J R,Hollis G E.Hydrological modeling and the sustainable development of the Hadejia-Nguru Wetland[Nigeria Hydrol Sci J,,1995 40:97-116.
    [26]Jorge Ⅰ,Angela M,Jayantha.A Wetland Simulation Module for the MODFLOW Ground Water Model.Ground Water,1998,30:764-770.
    [27]Van der Kamp G,et al.Drying out of small prairie wetlands after conversion of their catchments from cultivation to permanent brome grass.Hydrol Sci J,1999,44(3):387-398.
    [28]van der Kamp G,Hayashi M,Gallén D.Comparing the hydrology,of grassed and cultivated catchments in the semi-add Canadian prairies.Hydrological Processes,2003,17(3):559-575.
    [29]程根伟.森林湿地水文模拟的分布式模型.http://www.imde.ac.cn/chinese/KeyanYuJishu/ChengguoXiazai.htm,2005.
    [30]刘吉平,吕宪国,杨青等.三江平原环型湿地土壤养分的空间分布规律.土壤学报,2006,3:247-255.
    [31]王文卿,刘纯慧,晁敏.从第五届国际会议看湿地保护与研究趋势.生态学杂志,1997,16(5):72-76.
    [32]Charman D J,Aravena R,Warner B G.Carbon dynamicsin forested peatland in north eastern Ontario,Canada.Journal of Ecology,1994,84:55-63.
    [33]Verhoeven J T A,Whigham D F,Logtestijn R,et al.Acomparative study of nitrogen and phosphorus cycling intidal and notidal riverine wetland Wetland,2001,21(2):210-222.
    [34]Stdbling J M,Cornwell J C.Nitrogen,phosphorus,and sulfur dynamics in a low salinity marsh system dominated by Spartina altemiflora.Wetlands,2001,21(4):629-638.
    [35]杨永兴,何太蓉,王世岩.三平原湿地生态系统P、K分布特征及季节动态研究.应用态学报,2001,12(4):522-526.
    [36]Smith S M,Garrett P B,Leeds J A,et al.Evaluation of digital photography for estimating live and dead above ground biomass in monospecific macrophyte stands.Aquatic Botany,2000,67:69-77.
    [37]Visser J M,Sasser C E,Chabreck R H,et al.Longterm vegetation change in Louisiana tidal marshes,1968-1992.Wetlands,1999,19(1):168-175.
    [38]Burkett,Jon Kusler.Climate Change:potential impacts and interactions in wetlands of the united states,Virginia.J Am Water Res Associ,2000,36:313-320.
    [39]Penland S,Ramsey K.Relative Sea-level Rise in Louisiana and the Gulf of Mexico:1908 - 1988.Journal of Coastal Research,1997,(6):323-342.
    [40]李英年,赵新全,赵亮等.祁连山海北高寒湿地气候变化及植被演替分析.冰川冻土,2003,6:243-249.
    [41]Brock,T C M,Van Vierssen W.Climatic change and hydrodrophyte-dominated communities in inland wetland ecosystems.Wetlands Ecology and Management,1992,2:37-49.
    [42]张翼,宋俊果.气候变化对东北地区植被分布的可能影响.见:张翼等编.气候变化及其影响.北京:气象出版社,1993.
    [43]Schulze R E.Modelling Hydro logical Responses to Land Use and Climate Change:A Southern A frican Perspective.AM B IO,2000,29(1):12-22.
    [44]Euliss N H Jr,Mushet D M.Water-level fluctuations in wetlands as a function of landscape condition in the prairie pothole region.Wetlands,1996,16:587-593.
    [45]Christie H W.Soil and subsoil moisture accumulation due to dryland agriculture in southern Alberta.Can J Soil Sci,1985,65:805-810.
    [46]de Jong E,Kachanoski R G.The role of grasslands in hydrology.Canadian Aquatic Resources,1987,215:213-241.
    [47]Boyd C E.Evapotranspiration/ evaporation(E/ E0) ratios for aquatic plants.J Aquatic Plant Management,1987,25:1-3.
    [48]郭跃东,何艳芬.松嫩平原湿地动态变化及其驱动力研究.湿地科学,2005,3:54-59.
    [49]熊立华,郭生练.分布式流域水文模型.北京:中国水利水电出版社,2004.
    [50]Thornthwaite C W.An approach toward a rational classification of climate.Geogr.Rev.,1948,38(1):55-94.
    [51]Thornthwaite C W,Mather J R.The water balance.Publ.Climatol.Lab.Climatol.Drexel Inst.Technol.,1955,8(1):1-104.
    [52]Alley W M.On the treatment of evapotranspiration,soil moisture accounting and aquifer recharge in monthly water balance models.Water Resources Research,1984,20(8):1137-1149.
    [53]Vandewiele G L,Xu C,Ni-Lar-Win.Methodology and comparative study of mothly water balance models in Belgium,China and Burma.Journal of Hydrology,1992,134:315-347.
    [54]刘新仁.系列化水文模型研究.河海大学学报,1997,25(3):7-14.
    [55]乐通潮,张万昌.双参数月水量平衡模型在汉江流域上游的应用.资源科学,2004,26(6):97-103.
    [56]Adelekan I O.Hydro-ecological implications of inter-annual rainfall variations in northern Nigeria:the case of the Lake Chad basin in:Howard Wheater,Celia Kirby,ed.Hydrology in a Changing Environment.New York:John Wiley & Sons Inc,1998:335-345.
    [57]Hiscock K M,Lister D H,Boar R R,et al.An integrated assessment of long-term changes in the hydrology of three lowland rivers in Eastern England.Journal of Environmental Management,2001,61:195-214.
    [58]Sammari C,Miilot C,Taupier-Letage I,etal.Hydrological characteristics in theTunisia-Sardinia-Sicily Area during spring 1995.Deep-sea Research,1999,46:1671-1703.
    [59]刘厚田.湿地生态环境.生态学杂志,1996,16(4):26-30.
    [60]Eric W S,Arnold Q,et al.The role of water depth and soil temperature on determining initial composition of prairie wetland coenoclines.Plant Ecol.,1998,138:203-216.
    [61]Yi F K(易富科).Type,utilization and protection of vegetation in Sanjiang Plain.in:Chen Y Y(陈宜瑜),ed.Study of Wetland in China.,Changchun:Jilin Science and Technology Press,1995:124-133.
    [62]吴长申.扎龙国家级自然保护区自然资源研究与管理.长春:东北林业大学出版社,1999.
    [63]国家林业局野生动植物保护司编.湿地管理与研究方法.北京:中国林业出版社,1996.
    [64]戴向前.扎龙湿地生态水文结构分析与生态需水计算:(硕士学位论文).北京:中国水利水电科学研究院,2005.
    [65]刘振乾,王建武,骆世明等.基于水生态因子的沼泽安全问值研究-以三江平原沼泽为例.应用生态学报,2002,12:1610-1614.
    [66]Sun G,Riekerk H,Nicholas B.Modeling the forest hydrology of wetland-upland ecosystems in Florida.J Am Water Res Assoc,1998,34:827-841.
    [67]徐宗学、隋彩虹.黄河流域平均气温变化趋势分析.气象,2005,31(11):7-10.
    [68]魏凤英.现代气候统计诊断与预测技术.北京:气象出版社,1999.
    [69]丁晶,邓育仁.随机水文学.成都:成都科技大学出版社。
    [70]徐海量.流域水文过程与生态环境演变的耦合关系--以塔里木河流域为例:(博士学位论文).鸟鲁木齐:新疆农业大学,2005.
    [71]周林飞.沼泽湿地生态环境及水循环评价研究:(博士学位论文).大连:大连理工大学,2007.
    [72]武汉中心气象台,湖北省气象局研究所等.方差分析周期外推法在长期预报中的应用.1982.
    [73]王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望.地球科学进展,2001,16(3):314-321.
    [74]郭跃东,何岩,邓伟等.扎龙湿地生态水文格局特征及水环境功能分析.水土保持研究,2004,(3):119-122.
    [75]李兴春,张延坤,赵丽华,李青山.扎龙湿地水资源规划-生态环境需水量专题研究报告[M].松辽流域水资源保护局水环境科学研究所,2003,6.
    [76]孙武,侯玉,张勃.生态脆弱带波动性、人口压力、脆弱度之间的关系.生态学报,2000,20(3):369-373.
    [77]Earth System Sciences Committee.Earth system science:A close view NASA advisory council national aeronautics and space administration[J],Washington.D.C.1988,10-171.
    [78]张绍良,张国良.灰色关联度计算方法比较及其存在问题分析.系统工程,1996,5:45-49.
    [79]Xiong Lihua,Guo Shenglian.A two parameter monthly water balance model and its application.Journal of Hydrology,1999(216):111-123.
    [80]孙万光,许士国,王昊,刘大庆.气候变化对乌裕尔河流域水文特性的影响.水资源与工程学报.2006,17(6):27-32
    [81]芮孝芳.水文学原理.北京,中国水利水电出版社,2004:52-55.
    [82]夏军.水文非线性系统理论与方法.武汉,武汉大学出版社,2002:336-337.
    [83]王昊 许士国,孙砳石.扎龙湿地参照蒸散发估算的经验模型研究.水科学进展,2006,16.
    [84]许林书,姜明.扎龙保护区湿地扰动因子及其影响研究.地理科学,2003,(6):389-395.
    [85]王国庆.气候变化对黄河中游水资源影响的关键问题研究.:(博士学位论文).南京:河海大学,2006.
    [86]中华人民共和国林业部.扎龙国家级自然保护区管理计划.北京:中国林业出版社,1997.
    [87]李枫,杨红军,张洪海,等.扎龙湿地丹顶鹤巢址选择研究.东北林业大学学报,1999,27(6):57-60.
    [88]王海洋,陈家宽,周进.水位梯度对湿地植物生长、繁殖和生物量分配的影响.植物生态学报.1999,23(3):269-274.
    [89]张爱勤,赵云峰.扎龙湿地植被演替趋势的研究.高师理科学刊.2004.2,24(1):55-57.
    [90]逢世良.扎龙自然保护区丹顶鹤的航空调查报告.高师理科学刊.2000.5,20(2):59-60.
    [91]柳劲松,徐兴军等.扎龙自然保护区常见水禽分布类型及群落多样性.齐齐哈尔师范大学学报.1996.8,16(3):38-41.
    [92]潘丽华,刘小峰,赵永志,杨晨.扎龙自然保护区鸟类多样性指数的测定.高师理科学刊2000,20(2):56-58.
    [93]李枫,鲁长虎,杨红军,杨守庄.扎龙芦苇沼泽繁殖鸟类群落多样性研究.东北林业大学学报1998,26(5):68-72.
    [94]张卓,史玉洁,梁秀芹,任东升,齐荣斌.扎龙自然保护区渔业资源状况及渔业环境保护.黑龙江水产.2005,37-40.
    [95]衷平,杨志峰,崔保山,等.白洋淀湿地生态环境需水量研究.环境科学学报,2005,25(8):1119-1126.
    [96]Arthington A H,Zalucki J M.Comparative Evaluation of Environmental Flow Assessment Techniques:Review of Methods.LWRRDC Occasional Paper 27/98,1998.
    [97]刘大庆.基于水循环模拟的沼泽湿地生态需水研究:(博士学位论文).大连:大连理工大学,2008.
    [98]许士国,王昊.测量芦苇沼泽蒸散发的渗流补偿方法.水科学进展,2007,18(4):496-503.
    [99]陈贵龙.扎龙湿地功能评价及生态需水量研究:(硕士学位论文).大连:大连理工大学,2006.
    [100]Sun G,Riekerk H,Nicholas B.Modeling the forest hydrology of wetland-upland ecosystems in Florida.J Am Water Res Assoc,1998,34:827-841.
    [101]姜明,吕宪国,杨青.湿地土壤及其环境功能评价体系.湿地科学,2006 4(3):169-173.
    [102]Melilio J M,Callaghan T V,Woodward F I,et al.Effects on Ecosystems.in:Houghton J T,Jenkins G J,Ephraums J J,ed.Climate Change.The IPCC scientific assessment:Cambridge Univ.Press,1990:282-310.
    [103]Hodges T.Temperature and Water Stress Effects on Phenoiogy.in:T,Hodges,ed.Predicting Crop Phenology.Boston:CRC Press,1991:7-13.
    [104]Chen X Q.Phaenologische and klimatologische Raumgliederung Westdeutschlands.Geographische Rundschau,1995,47:312-317.
    [105]Van Eimern J,und Haeckel H.Wetter-und Klimakunde.Verlag Eugen Ulmer Stuttgart,1979:139-159.
    [106]Griffiths J F.Handbook of Agricultural Meteorology.Oxford:Oxford University Press,1994.
    [107]Brinkmann W A R.Grow ing season length as an indicator of climatic variations.Climatic Change,1979,2:127-138.
    [108]日本农业气象学会编.侯宏森译.农业气象学基础.北京:北京科学出版社,1964.
    [109]Defila D.Pflanzenphaenologie der Schweiz.Diss.Zurich,1991,23:105-108.
    [110]Schnelle F.Landw irtschaftlich-phaenologischer Jahresablauf in den deutschen und europaeischen Agrargebieten.in:Hartke W,und Wilhelm F,ed.Tagungsbericht und wissenschaftliche A bhandlungen des Deutschen Geographentages.Wiesbaden,1962:276-284.
    [111]Schnelle F.Die Vegetationszeit von Waldbaeumen in deutschen Mittelgebirgen:Thre Klimaabhaengigkeit und raeum liche Differenzierung,Erlanger Geographische A rbeiten.Heft 32,Erlangen,1973:2-12.
    [112]Reader R,Radford J S,Lieth H.Modeling Important Phytophenological Events in Eastern North America.in:Lieth,H,ed.Phenology and Seasonality Modeling.Springer-Verlag,1974:329-342.
    [113]Williams.Memorandum re:Clarification and interpretation of the 1987 Manual..Washington,1992.
    [114]那平山,李寒雪,张汝民等.试论冻结滞水.水文地质工程地质,1998,(3):17-20.
    [115]那平山,李寒雪,张胜利等.季节冻结滞水富水性与植物生长的相关性.中国水土保持科学,2003,11(2):52-55.
    [116]那平山,徐树林.冻结滞水形成机制的探讨.冰川冻土,1996,18(3):273-278.
    [117]那平山,徐树林.毛乌素沙地柳湾林死亡原因的研究.中国沙漠,1989,9(4):62-73.
    [118]张宇,吕世华,孙菽芬.冻土过程在CCM3模式中的气候效应.高原气象,2004,23(2):192-199.
    [119]周余华,叶伯生,胡和平.土壤冻融条件下的陆面过程研究综述.水科学进展,2005,116(16):887-891.
    [120]http://www.climate.hl.cn/zdzqiwen.aspx.
    [121]郑冬梅,许林书,罗金明等.松嫩平原盐泽湿地冻融期水盐动态研究-吉林省长岭县十三泡地区湖滩地为例.湿地科学,2005,3(1):48-53.
    [122]张殿发,郑琦宏,董志颖.冻融条件下土壤中水盐运移机理探讨.水土保持通报,2005,25(6):14-19.
    [123]侯松岩,陈权.扎龙湿地对防洪减灾的作用.黑龙江水专学报,2003,30(2):68-69.
    [124]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700