用户名: 密码: 验证码:
用于全光纤调Q激光器的波导声光调制器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速波导声光调制器,由于具有开关速度快、体积小、插入损耗小、驱动功率低、机械稳定度高、设计灵活方便、便于集成等优点,成为全光纤调Q激光器中最佳的开关器件之一,而且这种调制器还可用在高速光通信领域中。
     本文对高速波导声光调制器进行了系统的研究,并且进行了掺镱全光纤激光器的实验研究。论文主要的工作重点和创新性为以下几个方面:
     1、建立了一套波导声光调制器设计理论,对声光调制器各设计参数、波导声光互作用的重叠积分、声波导、光波导、总体结构以及光纤与波导耦合等方面进行了研究。设计了一种新型高速波导声光调制器,其开关速度能进入70ns以内,超过目前国际上这一领域的水平。
     2、首次利用声表面波衍射模型来分析波导声光器件的带宽和衍射效率间的关系,得出了异于其他模型分析的结论。人们普遍认为:波导声光器件不可能同时获得大的带宽和高的衍射效率(利用耦合模理论模型),但是我们的理论模型发现在一定的条件下波导声光器件可同时获得大的带宽和高的衍射效率。
     3、提出了一种分析光波导的改进型光线近似法。基于光线近似法,结合有效折射率法,发展出改进型光线近似法,用来分析设计三维的单模光波导。与其他方法相比,该方法简单,不需要大量复杂的运算。
     4、提出了一种新的分析设计锥形波导的方法。该方法可以用来分析设计不同形状函数的锥形波导。与其他方法相比,该方法简单而又实用。
     5、首次发现,小的波导模场椭圆度并不总意味低的光纤与波导的耦合损耗。通过分析光纤与波导耦合损耗的根源,研究波导模场的椭圆度和不对称度对光纤与波导模场失配耦合损耗的影响,发现小的波导模场不对称度就意味着低的耦合损耗,但与普遍看法不一样的是小的波导模场椭圆度并不总是带来低的耦合损耗。
     6、掺镱全光纤激光器的实验研究。分别进行了连续掺镱全光纤激光器、声光调Q掺镱全光纤激光器、主被动混合调Q掺镱全光纤激光器以及自调Q掺镱全光纤激光器的实验研究。
High-speed guided-wave acousto-optic modulator will be one of the best switching devices of the Q-switched all-fiber laser for their high speed, compact size, low insertion loss, excellent design flexibility, high mechanical stability, low driver power requirement and good integration. At the same time, it can be used in the high -speed optical communications.
     The paper is mainly focused on the research about the high-speed guided-wave acousto-optic modulator. And, the paper does the experimental research about the Yb~(3+)- doped double-clad fiber laser.
     The main emphasis and innovation of the paper are as follows:
     1. The design theory of the waveguide acousto-optic modulator is presented. The research is investigated about the design parameters of the acousto-optic devices, the overlap integral, the acoustic waveguide, the optical waveguide, the whole structure design and the coupling between the fiber and the waveguide. A novel high-speed guided-wave acousto-optic modulator is designed and fabricated. The switching speed is within 70ns, which takes the lead in the world.
     2. The first analysis is presented, based on the diffraction of surface acoustic waves, of the relationship between the Bragg bandwidth and the diffraction efficiency in guided acousto-optic interactions. It has been found that the Bragg band width is not always inversely proportional to the acoustic aperture. It is possible to simultaneously get high diffraction efficiencies and large bandwidths for guided acousto-optic devices.
     3. A novel method is proposed to analyze optical waveguide, which we call the improved ray approximation method. The method is developed based on the ray- approximation method and the effective index method to design the single-mode 3-D optical waveguide. The method is simple and effective compared with other methods.
     4. A new method is provided to the taper waveguide. The method can be used to analyze and design the taper waveguide with the different form functions. The method is simple and practical compared with other methods.
     5. A detailed analysis is presented, about the coupling loss dependence on the waveguide mode eccentricity and symmetry between single-mode fibers and waveguides. A new conclusion is obtained that more symmetric waveguide mode leads to lower coupling loss, but less eccentric waveguide mode does not always mean low coupling loss, which depends on the waveguide mode depth.
     6. The experimental research of the Yb~(3+)-doped double-clad fiber lasers. We do the experimental research about the CW Yb~(3+)-doped double-clad fiber lasers, Q- switched Yb~(3+)-doped double-clad fiber lasers, the active and passive Q-switched Yb~(3+) -doped double-clad fiber lasers and self-Q-switched Yb~(3+)-doped double-clad fiber lasers, respectively.
引文
[1]C.J.Koester, E.Snitzer. Amplification in a fiber laser. Appl. Opt.,1963,3:1182-1186
    [2]K. C. Kao,G. A. Hockham., Dielectric-fibre surface wave-guides for optical frequencies, IEE Proc. J.,1986,133:191-198
    [3]S. B. Poole, D. N. Payne, M. E. Ferman., Fabrication of low-loss optical fibres containing rare-earth ions, Electron. Lett.,1985,21:737-738
    [4]I. P. Alcock, A. C. Tropper, A. I. Ferguson, et al., Q-switched operation of a neodymium-doped monomode fibre laser. Electron. Lett.,1986,22: 84-85
    [5]见 IPG 公司网站 http://www.ipgphotonics.com
    [6]西原浩等[日],梁瑞林 译,集成光路,北京:科学出版社,2002
    [7]H. Po, J. D. Cao, B. M. Laliberte, et al., High power neodymium-doped single transverse mode fibre laser., Electron. Lett.,1993,17:1500
    [8]Mydlinki, Chabdonnet, Diod-pumped Q-switched fiber laser,Optical Engineering, 1993,32(9):2036-2041
    [9]Alain. Chandonnet, Gillese. Larose, High power Q-switched erbium fiber laser using an fiber intensity modulation, Optical Engineering,1993, 32(9):2031-2035
    [10]G. P. Lee and T. P. Newson, Diode pumped high power simultaneously Q- switched and self-mode-locked erbium doped fiber laser, Electronics Letters,1996,32(4):332-333
    [11]Z. J. Chen, A. B. Grudinin, J. P. Minelly, Enhanced Q switching in double-clad fiber lasers, Opt. Letter,1998,23(6):454-456
    [12]C. C. Renaud, etc., Compact high-energy Q-switched cladding pumped fiber laser with a tuning range over 40nm,IEEE Photonics Technology Letter,1999,11(8):976- 979
    [13]R.Paschotta, etc., Passiverly Q-switched 0.1mJ fiber laser system at 1.53μm, Optics Letters,1999,24(6):388-390
    [14]H. L. Offerhaus, J. A. Alvarez-Chavez and J. Nilsson, etc., Multi-mJ, Multi-Watt Q-switched fiber laser, CLEO’99 Baltimore,1999,CPD10:23-28
    [15]C. C. Renaud, J. A. Akvarez-Chavez,J. K. Sahu, J. Nilsson, D. J. Richardson and W.A.Clarkson,7.7mJ pulses from a large core By-doped cladding pumped Q-switched fiber laser,CLEO2001,CtuQ5,219
    [16]Laroche M.,Chardon A. M., Nilsson J., Shepherd D. P., Clarkson W. A., Giard S., Moncorge R., Compact diode-pumped passively Q-switched tunable Er-Yb double clad fiber laser. Opt. letters,2002,27(22):1980-1982.
    [17]I. P. Alcock,A. C. Tropper, A. I. Ferguson etc.,Q-switched operation of a neodymium-doped monomode fiber laser, Electronics Letters,1986,22(2): 84-85
    [18]周炳昆,高以智等,激光原理,国防工业出版社(第四版)
    [19]R. Paschotta, R. Haring and E .Gini, Passively Q-switched 0.1mJ fiber laser system at 1.53μm, Optics Letters,1999,24(6):388-390.
    [20]杜卫冲,谭华耀,刘颂豪,一种新型的光纤光栅调 Q 掺 Er 光纤激光器,光学学报,1997,17(8):1077-1079
    [21]吕福云,樊亚仙,刘玉洁等,全光纤调 Q 激光器的实验研究,南开大学学报,1999,32(1):74-76
    [22]S. V. Chemikov,Y. Zhu,J. R. Taylor,V. P. Gapontsev, Supercontinuum self-Q- switched ytterbium fiber laser, Opt. letters,1997,22(5):298-300.
    [23]G. P. Agrawal, Nonlinear fiber optics, Academic Press: an Deigo,2001
    [24]D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado Pinar, A. Díez, J.L. Cruz and M.V. Andrés, High repetition rate acoustic-induced Q-switched all-fiber laser, Opt. Commun.,2005,244:315-319
    [25] L. Luo and P.L. Chu, Passive Q-switched erbium-doped fibre laser with saturable absorber, Opt. Commun.,1999,161:257-263
    [26]H. H. Kee, G. P. Lees and T. P. Newson, Narrow linewidth CW and Q-switch erbium-doped fiber loop laser, Electron. Lett.,1998,34 (13):1318-1319
    [27] P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, High efficiency 1.53 μm all- fibre pulsed source based on a Q-switched erbium doped fibre ring laser, Electron. Lett.,1997,33:1317-1318
    [28]C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, A. B. Grudinin, and P. W. Turner, Compact, high energy Q-switched cladding pumped fiber laser with a tuning range over 40 nm, IEEE Photonics Technology Letters, 1999,11(8): 976-978
    [29]Product catalogs of Polaroid,Inc.,IRE-Polus,SDL,1998
    [30]FULBERT. L., ACCOMO R., MOLVA E., BESESTY P. and MOUTTET, Micro -chip laser rang finder, Proc. Conf. Lasers and. Electro Optics. Anaheim,1996, 97-98
    [31]P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, High efficiency 1.53μm all- fibre pulsed source based on a Q-switched erbium doped fibre ring laser, Electron. Lett.,1997,33:1317-1318
    [32]D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado Pinar, A. Díez, J. L. Cruz and M.V. Andrés, High repetition rate acoustic-induced Q-switched all-fiber laser, Opt. Commun.,2005,244:315-319
    [33] Ding-Wei Huang Went-Fung Liu,Yang C.C.,Q-switched all-fiber laser with an acoustically modulated fiber attenuator,IEEE Photonics Technology Letters,2000,12 (9):1153-1155
    [34]T. Yean, K. Law, and A. Goldenberg, MEMS optical switches, IEEE. Commun. Mag.,2001,39:158–163
    [35]Hirochika Nakajima ,Development on Guided-Wave Switch Arrays, IEICE Trans. Electron. E82-C(2),1999,297-304
    [36]Cao Zhonghui, Bao Junfeng, Yuan Ye, et al., A non-silicon-based 1×4 MEMS optic switch, Acta Optica Sinica (光学学报),2003,23(9): 1041- 1044
    [37]N. Goto,Y. Miyazaki, Improvement of switching speed in acoustooptic switches for multiple optical. wavelength using gigahertz surface acoustic. waves, Jpn. J. Appl. Phys., 1998,37, Part 1(5B): 2947-2955
    [38]F. Wehrmann,C. Harizi, H. Herrmann, U. Rust, W. Sohler, and S. Westonhofer, Integrated optical, acoustically tunable 2x2 switches (add-drop multiplexers) in LiNbO3 ,IEEE J. Sel. Top. Quantum Electron.,1996, 2:263-269
    [39]Tian F, Herrmann H., Interchannel interference in multiwavelength operation of integrated acousto-optical filters and switches, J. Lightwave Technol.,1995,13(6): 1146-1154
    [40]Torp H.,Johansen T., Haugen J.S., Nonlinear wave propagation–a fast 3D simulation method based on quasi-linear approximation of the second harmonic field, IEEE Ultrasonics Symposium,2002,605-608
    [41]F. Wehrmann et al, IEEE Journal of Selected Topics in Quan. Electron.,1996, 20(2):263-269
    [42]N. Grote and H. Venghaus,Eds., Fiber Optic Communication Devices. New York: Springer-Verlag, 2001, 296-307
    [43]N. Goto,Y. Miyazaki and K. Takahashi, Dynamic Characteristics Analysis of Wavelength-Division-Multiplexing Guided-Wave Separation Switch Using Acousto optic Effect, Jpn. J. Appl. Phys., 2003,42-Part 1(5B): 3041-3047
    [44]A. Kar-Roy and C.S. Tsai, A 8X8 Symmetric Nonblocking Integrated Acousto- optic Space Switch Module in LiNb03, IEEE Photonics Technol. Lett.,1992,4:731- 734
    [45] D. A. Smith et al., Reduction of crosstalk in. an acousto-optic switch by means of dilation, Opt. Lett.,1994,19:99-101
    [46]D. A. Smith,et al, Multiwavelength performance of an apodized acousto-optic switch, Journal of Lightwave Technology,1996,14(9): 2044-2052
    [47]肖立峰、刘迎等,集成光学声光光开关的研究, 中国激光,2005,32(8):1073-1076
    [48]N. Uchida and N. Niizeki, Acoustooptic deflection materials and techniques, Proc. IEEE,1973,61(8):1073-1092
    [49]E.G. Lean et al, Thin film acoustooptic devices, Proc. IEEE, 1976, 64: 779-788
    [50]R.V. Schmidt, IEEE Trans. Sonics and Ultrasoncis,1976,23:22
    [51]C.S.Tsai, Guided-wave acousto-optic interaction, devices and application(Berlin: Springer-Verlag) ,1990
    [1]M.Bron and E.Wolf, Principles of optics,4-th ed.,14.5,Pergamon Press,Oxford, 1970
    [2]徐介平,声光器件的原理、设计和应用,北京:科学出版社,1982
    [3]E. G. Lean,J. M. White and C. D. W. Wilkinson, Thin Film Acousto-Optic Devices, Proc. IEEE,1976,64:779-781
    [4]R. V. Schmidt, Acoustooptic Interactions between guided optical waves and acoustic surface waves, IEEE Trans. Sonics and Ultrasonics,1976,23:22-24
    [5]N. Uchida and N. Niizeki, Acousto-optic deflection materials and techniques, Proc. IEEE,1973,61(8):1073
    [6]西原浩等[日],梁瑞林 译,集成光路,北京:科学出版社,2002
    [7]D. A. Pinnow, Guide lines for the selection of acoustooptic materials,IEEE J. Quantum Electron.,1970,6(4):223
    [8]Loar Rayleigh, One wave propagated the plane surface of an elastic body, Proc. Math. Soc, London, 1995,17: 4-7
    [9]R. M. White, F. W. Voltmer, Direct piezoelectric coupling to surface elastic waves, Appl. phys. Lett ,1965, 7:314
    [10]D. P. Morgan, Surface-wave devices for signal processing, Elsevier Science, 1985
    [11]Theodor Tamir, Integrated optics:theory and technology,2-th,Berlin: Springer- Verlag,1984
    [12]D. Marcuse, Theory of dielectric optical waveguides, New York and London: Academic Press,1974
    [13]E. G. H. Lean, Acousto-Optical Interactions, Introduction to integrated optics, New York: Plenum Press,1974
    [14]应崇福,超声学,科学出版社, 1990
    [15]许昌昆,孟秀林 等,译,声表面波器件及其应用,日本电子材料工业会,1984
    [16]D. T. Bell, Robert C. M. Li, Surface-Acoustic-Wave Resonators, Proceeding of the IEEE, 1976, 64(5)
    [17]王佐卿,周素华,汪承灏,在YZ-LiNbO3金属化表面上弧形叉指换能器激励的声表面波聚焦,声学学报,1986, 11(3):184-188
    [18] C. S. Tsai, M. A. Alhaider,L. T. Nguyen and B. Kim, Wide-band guided-wave acousto-optic Bragg diffraction and devices using multiple tilted surface acoustic waves, Proc. IEEE,1976,64(3):318-322
    [1]Tsai C. S., Guided-wave Acousto-optic Interaction, Devices and Application, Springer- Verlag,Berlin,1990
    [2]S. Kakio, M. Kitamura, Nakagawa.,etc, Waveguide-type acoustooptic frequency shifter driven by surface acoustic wave and its application to frequency-shifted feedback fiber laser, IEEE Ultrason. Symp., 2003,1808-1811
    [3]Hu HZ,Lin HY,Yang JS,et.al, An integrated quasi-collinear coupled acoustooptical mode converter, Opt. Commun., 2002,208(1-3):79-83
    [4]Fan GF,Ning JP,et al, Overlap integral in integrated acousto-optic devices, Optical Engineering, 2006,45(6):064601
    [5]Fan GF,Ning JP,et al,Overlap integral in abnormal guided acousto-optic interaction, J. of Electromagn. Waves and Appl., 2006,20(10): 1351– 1356
    [6]C. C. Tseng, R. M.White, Propagation of piezoelectric and elastic surface waves on the basal plane of hexagonal piezoelectriccrystals, J.Appl.Phys.,1967,38:4274-4280
    [7]Ronald N., Spaight and George G. Koerber, Piezoelectric surface waves on LiNbO3, IEEE Trans. on Sonics and Ultrason.,1971, 18(4):237-238
    [8]C. H. Von. Helmolt and C. Schaffer., Efficiency of guided wave acousto-optic interaction for selected cuts in LiNbO3, J. Opt. Commun., 1987,8:49-56
    [9]ERIC G. H. LEAN, et al, Thin-film acoustooptic device, Proc. IEEE.,1976,64(5): 779-788
    [10]R. V. Schmidt, Acoustooptic interactions between guided optical waves and acoustic surface waves, IEEE Trans. on Sonics and Ultrason., 1976, 23:22-23
    [11]G. Kovacs, M. Anhorn, et.al., Improved material constants for LiNbO3 and LiTaO3, Proc. IEEE Ultrason.Symp.,1990,435-438
    [12]Fan GF,Ning JP,et al,Theoretical analysis and design of non-collinear guided– wave acousto-optic devices, J. of Electromagn. Waves and Appl., 2006, 20(13): 1837 –1844
    [13] Fan GF,Ning JP,et al,The optimum optical penetration depth for high diffraction efficiency in guided acousto-optic devices,J. of materials science- materials in electronics, 2006,17(4):273-276
    [14]W. R. Jones, W. R. Smith and D. Perry, Hughes Aircraft Report FR 71-14-102, 1971.
    [15]Kogelnik H., Sosnowski T. P. and Weber H. P.,A ray-optical analysis of thin-film polarization converters, IEEE J. Quant. Electron.,1973, 9:795-800
    [16]Y. Nakagaa, M. Yawata and S. Kakio, Enhancement of Photoelasticity Assisted by Surface Acoustic Wave and Its Application to the Optical Modulator, Electron. and Commu. in Japan,2001,Part2, 84:46-54
    [17]Dennis Gregoris, Design parameters of Ti:LiNbO3 waveguides for optimum acousto-optic interaction efficiency , J. of Lightw. Techn.,1990, 8:168-172.
    [18]Fan GF,Ning JP,et al,The design of ZnO/LiNbO3 thin-plating surface acoustical waveguide in acousto-optic tunable filters,Optics & Laser Technology,2007,39(2): 421-423
    [19]A. A. Oliner, Acoustic surface waves, Berlin: Springer,1978.
    [20]H. F.Tiesten, Elastic surface waves guided by thin films. J. Applied Physics,1969, 40:710-789
    [21]C. C. Tseng, R. M.White, Propagation of piezoelectric and elastic surface waves on the basal plane of hexagonal piezoelectric crystals,J.Appl.Phys,1967,38:4274-4280
    [22]G. W. Farnell, Acoustic Surface waves.Springer-Verlag,1978
    [23]I. V. Kityk, M. Makowska-Janusik, M. D. Fontana, et al.,Band structure treatment of the influence of nonstoichiometric defects on optical properties in LiNbO3,Journal of Applied Physics,2001,90:5542-5549.
    [24]I. V. Kityk,J Ebothe,A EI Hichou,M Addou, et al.,Giant pockels effect in ZnO-F films deposited on bare glasses. Journal of Physics: Condensed Matter (UK),2002,14: 5407-5417
    [25]Fan GF,Ning JP,et al, Relationship between Bragg bandwidth and acoustic aperture of guided acousto-optic interaction, Applied Phys. Lett.,2006,88(19):191102
    [26]C. S. Tsai, Integrated acoustooptic circuits and applications, IEEE Trans. on Ultrason. Ferroelectr. Freq. Control,1992, 39:529-554
    [27]C. S. Tsai, Wide-band guided-wave acoustooptic Bragg diffraction and devices using multiple tilted surface acoustic waves, Proc. IEEE,1976,64: 318-328.
    [28]Eric G. H. Lean, James M. White and Christopher D. W. Wlkinson, Thin Film Acousto-Optic Devices, Proc. IEEE,1976,64:779
    [29]F. Palma and L. Schirone, Acousto-optic interaction efficiency in Ti:LiNbO3 waveguide collinear Bragg diffraction cell, J. Appl. Phys., 1986,60:3720-3723
    [30]Hongzhang Hu, Shide Ling, Principle of Applied Optics, Beijing: Mechanical Industry Publishing House,1993:201
    [31]西原浩等[日],梁瑞林 译,集成光路,北京:科学出版社,2002
    [32]A. Méndez, A. García-Cabaňes, M. Carrascosa, et. al., Dark developing of photorefefractive proton-exchanged LiNbO3 waveguides, Optical Material, 2001,18: 111-114
    [33]Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, et. al., Characterization of phase soft proton-exchanged LiNbO3 optical waveguides, J. Opt. Soc. Am. A., 2001, 18: 186-1191
    [34]S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, Wavelength Dispersion of Ti Induced Refractive Index Change in LiNbO3 as a Function of Diffusion Parameters, J. Lightwave Technology, 1987, 5(5): 700-708
    [35]陆樟献,980nm 泵浦的 Er:LiNbO3 波导激光器的研究:[硕士学位论文],天津大学,2000
    [36]Rubén Nevado, Ginés Lifante, Characterization of index profiles of Zn-diffused LiNbO3 waveguides, J. Opt. Soc. Am. A, 1999, 16:2574-2580
    [37]P. G. Suchoski, M. M. Abouelleil, T. K. Findarkly and F. J. Leonberger,Low-loss proton-exchanged LiNbO3 waveguides with no electrooptic degradation, intsgrat. guide-wave Opt. Tech. Dig. Ser.1988,5:88-91
    [38]E. B. Pun, K. K. Loi, C. F. Mak, and P. S. Chung, High-index proton-exchanged MgO:LiNbO3 optical waveguides using adipic acid, J. Apl.Phys., 1993,73(6):3114
    [39]F. S. Ickernell, S. J. Joseph and P. S. Chung, Surface wave studies of annealed proton exchanged Lithium Niobate, Proc. 6th IEEE Intern. Symp. On Aplication of Ferroeloctrics,1986,8-1
    [40]E. Strake, G. P. Bake, and I. Montrosset, Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method, J. Lightwave Tech.,1988, 6(6):1126
    [41]Uwe. hempelmann, Gerd Mrozynski, Volke Reimann, and Wolfgang Sohler, Integrated Optical Proton Exchanged TM-Pass Polarizer in LiNbO3 Modeling and Experimental Performance, J. Lightwave tech.,1995, 13(8):1750
    [42]B. Dong and W. Oliner, Arbitrarily Shaped Inhomogeneous Optical Fiber or Integrated Optical Waveguide, J. Appl. Phys., 1975,46:2125
    [43]L. McCaughan and E. J. Murphy, Influence of temperature and initial titanium dimensions on fiber-Ti:LiNbO3 waveguide insertion loss, IEEE J. Quantum Electron, 1983,QE-19:131-136
    [44]Robert G Hunsperger,Integrated Optics:Theory and Technology,Springer–Verlag, New York,2002.
    [45]Kenji Kawano and Tsutomu Kitoh,Introduction to Optical Waveguide Analysis, Wiley, New York, 2001.
    [46]Fan GF,Ning JP,et al, An Improved Ray Approximation Method to Design the Single-Mode 3-D Optical Waveguide,2007,Optics Communications,271: 421-423
    [47]G. B. Hocker and W. K. Burns, Modes in diffused optical waveguides of arbitrary index profile, IEEE J. Quantum Electron,1975,11(6): 270-276.
    [48]C. L. Xu,W. P. Huang,J Chrostowski, S. K. Chaudhuri, A full-vectorial beam propagation method for anisotropic waveguides, J. of Lightw. Techn.,1994,12(11): 1926-1931.
    [49]MAR Franco,A Passaro, JR Cardoso, JM Machado, Finite element analysis of anisotropic optical waveguide with arbitrary index profile, IEEE Trans. on Magnetics, 1999,35(3):1546-1549.
    [50]S. H. Law,T. N. Phan and L Poladian, Fibre geometry and pigtailing, 51st Electronic Components and Technology Conference,2001,1447-1450.
    [51]Shoji K,et al, An Integrated Acoustooptic Frequency Shifter Driven by Surface Acoustic Wave for 1.55μm Optical Wavelength, Jpn. J. Appl. Phys.,2003,42: 3063- 3066
    [52]Ye W M, et al., Calculation of Guided Modes and Leaky Modes in Photonic Crystal Slabs, Chin. Phys. Lett.,2004,21:1545
    [53]Masaki K,et al, High-speed InGaAlAs-InAlAs MQW directional coupler waveguide switch modules integrated with a spotsize converter having a lateral taper, thin-film core, and ridge, J. Lightwave Technol.,2000, 18(3):360-369
    [54] Laurent V,et al, 2-D taper for low-loss coupling between polarization -insensitive microwaveguides and single-mode optical fibers, J. Lightwave Technol.,2003,21: 2429-2433
    [55]G. Suchoski, V. Ramaswamy, Design of single-mode step-tapered waveguide sections, IEEE. J. Quantum Electron, 1987, 23(2):205-211
    [56]G. Suchoski,V. Ramaswamy, Exact numerical technique for the analysis of step discontinuities and tapers in optical dielectric waveguides,J. Opt. Soc. Am., 1986,3(2):194-203
    [57]N. Tzoar and R. Pascone, Radiation loss in tapered waveguides, J. Opt. Soc. Am., 1981, 71:1107-1114
    [58]A. Yariv,Coupled mode theory for guided wave optics,IEEE J. Quantum Electron., 1973,9:919-933
    [59] W. K. Burns,Mode coupling in optical waveguide horns,IEEE J. Quantum Electron.,1977,13:828-835
    [60] D. Marcuse,Radiation losses of step-tapered waveguides,Appl. Opt.,1981,19: 3676-3681
    [61]V. Ramaswamy,P. G. Suchoski, Jr.,Power loss at a step discontinuity in an asymmetrical dielectric slab waveguide, J. Opt. Soc. Am.,1984, A 1:754-759 .
    [62]R. Baets and P. E. Lagasse, Calculation of radiation loss in integrated-optic tapers and Y-junction, Appl. Opt.,1982, 21:1972-1978
    [63]Fan GF,Ning JP,et al, A new method to analyze two-side tapered waveguide, Chinese Phys. Lett.,2005,22(9):2394-2395
    [1]马惠莲,扬建义,李谨等,光波导-单模光纤的直接损耗,光通讯研究,2000,99(3):43-47
    [2]刘雪峰,黄得修,一种高效率单模光纤耦合结构的实验研究,91 光电子器件与集成技术年会论文集,北京:清华大学出版社,1992。
    [3]胡台光,Ti:LiNbO3 波导与光纤耦合综述,光通讯研究,1990,55(3):51-56
    [4]G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, and K. L. Hall, Antireflection coatings on lithium niobate waveguide devices using electron beam evaporated yttrium oxide, Electron Lett., 1985,21:363-364,.
    [5]W. J. Minford,S. K. Korotky,and R. C. Alfemess,Low-loss Ti:LiNbO3, waveguide bends at λ = 1.3 μm, IEEE J. Quantum Electron., 1982, QE-18: 1802-1806
    [6]J. Albert, G. L. Yip,Insertion loss reduction between single-mode fibers and diffused channel waveguides,Appl. Opt.,988,27(23): 4837-4843
    [7]谢海宴,不依赖于偏振的集成光学 X 型 Ti:LiNbO3 波导耦合器的研制:[硕士学位论文],天津大学,2003
    [8]E. J. Murphy, Fiber attachment for guided wave devices, J. Lightwave Techn., 1988,6(6):862-871
    [9]R. C. Alferness, High efficiency single-mode fiber to Ti:LiNbO3 waveguide coupling, IEEE J. Quantum Electronics,1982,18(10):1807-1808
    [10]Fan GF,Ning JP,et al,A novel opinion about the coupling loss between single- mode fibers and waveguides, J. of optoelectronics and advanced materials, 2006,8(5):1912-1914
    [11]Y Cai,T Mizumoto, E Ikegami and Y Naito, An effective method for coupling single-mode fiber to thin-film waveguide, Journal of Lightwave Technology,1991, 9(5):577-583
    [12]Meg L. Tuma and Glenn Beheim, Calculated coupling efficiency between an elliptical-core optical fiber and a silicon oxynitride rib waveguide, Micro-Optics/ Micromechanics and Laser Scanning and Shaping, SPIE,1995, 2383:199-210
    [13]D. J. Vezzetti and M. Munowitz, Design of strip-loaded optical waveguides for low-loss coupling to optical fibers, J. Lightwave Tech., 1992,10(5):581-586
    [14] Jizuo Zou, Dissertation, University of Texas at Austin,2004,77
    [15]D. Marcuse,Light Transmission Optics,Van Nostrand Rein-hold, New York,1982
    [16]L.McCaughan and E. J. Murphy, influence of temperature and initial titanium dimensions on fiber-Ti:LiNbO3 waveguide insertion loss at λ=1.3μm,IEEE J. Quantum Electron.,1983,19: 131-135
    [17]M. N. Armenise, Fabrication techniques of lithium niobate waveguides, IEE Proc., 1988,135(2):85-91
    [18]C. S. Lau,P. K. Wei,C. W. Su,W. S. Wang, Fabrication of magnesium-oxide –induced lithium outdiffusion waveguides, IEEE Photonics Technology Letters,1992, 4(8): 872-875
    [19]Jizuo Zou, Dissertation, University of Texas at Austin,2004,43
    [20]L.O. Lierstuen, A.S. Sudbo, Coupling losses between standard single-mode fibers and rectangular waveguides for integrated optics, Appl. Opt.,1995,34(6): 1024- 1028
    [21]R. Srivastava,Z. Huo and R.V. Ramaswamy, Effect of annealing on diffused channel waveguides, Appl. Opt.,1990,29(3):330-331
    [22]Hida Y., Highly compact silica-based PLC-type 1x32 splitters using 127μm- spacing output and 0.4%-waveguide,Electronic Letters,1998, 34(1): 75-76
    [23]C. H. Bulmer, S. K. Sheen, R. P. Moeler and W. K. Buras, High-efficiency flip chip coupling between single-mode fiber and LiNbO3 channel waveguides,Applied Physics Letters,1980,37:351-353
    [1]Pashotal R, Nillson J.et.al.,Ytterbium-doped fiber amplifier,IEEE. J. Quantum . Electron,1997, 33(7):1050
    [2]潘玉赛,高功率镱离子双包层光纤激光器的研究:[博士学位论文],中国科学院长春机密机械与物理研究所,2003
    [3]A. S. Kurkov,A.Yu Laptev,E. M. Dianov et al.,Yb3+-doped double-clad fibers and lasers.SPIE,2000,4083:118-126.
    [4]Anping Liu,Kenichi Ueda.,The absorption characteristics of circular, offset and rectangular double-clad fibers,Optics Communications,1996, 132:511-518.
    [5]陈柏,陈兰荣,范薇等,掺 Yb3+光纤环形腔与直腔激光器的比较研究,中国激光,2001,A28(2): 116-118
    [6]Ammar Hideur,Thierry Chattier and Francois Sanchez, Yb-doped double- clad fiber laser in a unidirectional ring cavity, Proc. SPIE,2001, 4216:15-21
    [7]光纤通信用光电子器件和组件,黄章勇编著,北邮出版社,2001 年 7 月
    [8]张华勇,掺镱双包层光纤激光器的理论与实验研究:[硕士学位论文],天津大学,2007
    [9]Luis Zenteno,High-Power Double-Clad Fiber Lasers,IEEE J. of Lightwave. Technology,1993,11(9):1435-1446
    [10]J. D. Minely,E. R. Taylor,K. P. Jedrzejewski, et al.,Laser-diode-pumped Nd- doped fiber laser with output power>1 W, Cleo'92,paper CWE6:246
    [11]L. A. Zenteno, Amplified spontaneous emission from a Nd-doped double-clad fiber pumped by a GaAs laser diode: Application to optical gyroscopes, Revista de la Academia Mexicans de Opfics,1992,2(l):3
    [12]R. Oron and A. A. Hardy,Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers, J. Opt. Soc. Am. B,1999,16:695–701
    [13]Yong Wang and Chang-Qing Xu, Modeling and optimization of Q-switched double-clad fiber lasers, Appl. Opt. 2006,45:2058–2071
    [14]Y. Huo, R. T. Brown,G. G. King, and P. K. Cheo, Kinetic modeling of Q- switched high-power ytterbium-doped fiber lasers, Appl. Opt. 2004,43: 1404–1411
    [15]A. Hardy and R. Oron, Signal amplification in strongly pumped fiber amplifiers, IEEE J. Quantum Elect.,1997,33:307–313
    [16]樊亚仙,包层泵浦调 Q 光纤激光器:[博士学位论文],南开大学,2003
    [17]聂秋华,光纤激光器和放大器技术,电子工业出版社,1997
    [18]F.T. 阿雷克,激光器 《激光手册》第二册,科学出版社,1974

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700