用户名: 密码: 验证码:
光子晶体光纤中40Gbit/s光孤子传输系统的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于光子晶体光纤新颖、灵活的特性突破了传统光纤光学的局限,大大拓展了光子晶体光纤的应用范围,并为克服传统光纤发展中的一些技术障碍提供了可能的解决途径。如利用光子晶体光纤可变的色散特性和强非线性效应,易实现孤子传输;又如充分发挥光子晶体光纤的弯曲损耗小、可传送大功率能量等优势,更适用于深海通信。如何实现长距离大容量的信息传输正是目前深海通信、深海探测等领域急需解决问题。本论文设计并数值模拟了光子晶体光纤中40Gbit/s孤子传输系统,为实现超长距离、超大容量新型通信系统提供理论支撑,以满足未来深海探测、深海通信系统的升级、换代的需求。
     论文综述了海洋的各种通信方式,包括无线声波通信、电通信、光孤子通信,特别是光子晶体光纤在孤子通信中的应用研究进展。指出未来适用于深海探测、深海通信的最佳方式之一就是采用新型光子晶体光纤为传输媒介、以光孤子为载体的光纤孤子通信系统。利用分步傅立叶方法数值计算了广义非线性薛定谔方程,从孤子脉冲传输和啁啾演变两个方面分析了40Gbit/s孤子系统的传输性能,及其各种效应对系统的影响;利用分步傅立叶方法数值计算了广义耦合非线性薛定谔方程,计算了飞秒孤子俘获现象,分析了光子晶体光纤中偏振复用孤子系统传输的可能性。本论文创新性工作如下:
     1)基于光与光纤介质相互作用机理,创建了啁啾研究方法。在光子晶体光纤中,从啁啾入手,推导了孤子形成的条件;针对飞秒孤子传输,推导了三阶色散产生的啁啾;并数值计算了群速度色散、自相位调制、三阶色散、自陡峭、脉冲内拉曼散射等效应产生的总啁啾;通过啁啾演变揭示了孤子传输时各种效应的作用及其相互作用的机理。并且,推导了偏振复用孤子系统中交叉相位调制效应产生的啁啾,分析了偏振模色散和交叉相位调制效应的相互作用所致啁啾演变的特性,进而解释偏振复用孤子的传输特性。
     2)利用分布傅立叶变化法,采用Matlab语言,编写了光子晶体光纤中单脉冲传输、系统中128bit脉冲序列的最大传输距离和眼图、在线同步调制和滑频滤波器补偿系统的程序。
     3)对光子晶体光纤中飞秒孤子传输的特性进行研究,获得了设计光子晶体光纤中孤子通信系统的有价值的数值解法。计算了理想孤子的传输的条件;数值分析了在传输中高阶色散效应、自陡峭效应、脉冲内拉曼散射效应、初始啁啾对孤子传输的影响:模拟了各种效应同时作用孤子的真实传输状态。并且,通过对光子晶体光纤中孤子脉冲传输的数值计算,发现了光子晶体光纤能够压缩脉冲,而且可获得压缩比较高、底座较小的窄脉冲。
     4)数值计算模拟了光子晶体光纤中40Gbit/s孤子传输系统,利用误码率和眼图对系统传输性能进行了评价。重点分析了系统传输最大距离和眼图在随偏振模色散的作用、群速度色散作用和脉冲占空比的变化;根据各种效应所致啁啾,为了优化系统性能,提出了两种系统的补偿方法,即利用同步调制和滑频滤波的方法对系统进行补偿,补偿效果非常明显。
     5)根据耦合的广义非线性薛定谔方程,利用分步傅里叶方法,研究了高阶非线性和高阶色散对孤子俘获的作用效果及其域值的影响。发现由于PCF具有较高的模式双折射度,飞秒量级的初始孤子脉冲可实现孤子俘获,分析了光子晶体光纤中实现偏振复用孤子系统的可能性。
The photonic crystal fiber (PCF), as a recent version of fibers with many novel characteristics, has overcome the optical limitations of the traditional fiber and led to the widening of its applications. It also provides a possible solution to some technical obstacles in the development of traditional fiber. For example, the soliton transmission could be achieved easily, using the changeable dispersion and large nonlinear effects of the photonic crystal fiber. And with the small bending loss and the capability of the high-power transmission, the PCF could be helpful for some special application area, like deep sea communications. How to achieve the long-distance and large-capacity communications with great speed has been one of the key problems in the deep-sea communications and information transmission of deep-sea exploration. In the thesis, numerical simulation of the 40 Gbit/s soliton transmission system in the PCF was investigated, with the hope of giving some possible theoretical solutions for development of ultra-long-distance communication and large-capacity communication system, hence to satisfy the urgently demands for the upgrading of the communication system in the deep-sea exploration and deep-sea communications.
     The thesis begins with a detailed review of the relevant developments for the ocean communications, including underwater acoustic communication, underwater communication cable and optical soliton communication, with the focus on the status, advantages and development prospects of the optical soliton communication in the PCF. It has been suggested that the system with newly developed PCF as the transmission medium and the optical soliton as the carrier could be one of the best ways for future deep-sea communications. In the thesis, the nonlinear Schr(o|¨)dinger equation has been used for the analysis of 40Gbit/s soliton communication system using the split-step Fourier method. The system performance is numerical simulated based on the soliton transmission and chirps with the influence resulted from various effects. The coupled nonlinear Schr(o|¨)dinger equations for the femtosecond soliton self-trapping is numerical calculated by the split-step Fourier method. The possibility of the polarization multiplexing soliton communications system in PCF has also been analyzed. The author's main contributions are concluded as following.
     1) Based on the interaction mechinese between light and the fiber, the method of the chirp research has been well established. With this method, the conditions for soliton forming in the PCF have been derived. It is found that three-order chromatic dispersion produces chirp in the femtosecond soliton transmission. The resultant total chip has been numerically calculated with the consideration of the joint effects from the group velocity dispersion (GVD), the self-phase modulation(SPM), the third-order dispersion(TOD), the self steepening (SS) and the intrapulse stimulated Raman scattering (ISRS). From the evolution of the chirp, we explain the physical mechanism of those effects and how each one acts on the soliton transmiting. We also derive the chirp produced by the cross-phases modulation effect and analyze the characteristic of the chirp evolution. As a result of this analysis, the property of the polarized multiplexing soliton transmission is opened out.
     2) Based on split-step Fourier method, a set of programs have been made for the numerical simulations of single pulse transmission in the PCF, the maximum transmission distance and system eye pattern of the 128bit pulse array, the on-line synchronal modulation and the sliding frequency filter compensations system.
     3) The transmission characteristics of the single soliton in the PCF have been studied. The obtained results have offered a valuable simulation for the design of the soliton transmission system in the PCF. In this thesis, the numerical calculations have been made for the transmission conditions of the ideal soliton, and the analysis of the effect resulted from the TOD, SS, ISRS and the initial chirp in the soliton transmission. The soliton actual transmission has been simulated with various effects active at the same time. With the numerical calculation of the pulse transmission in the PCF, it has been shown that the pulses could be compressed, and a narrow pulse with the high compression ratio and the small substrate base could be achieved in PCF.
     4) The 40Gbit/s soliton transmissions system in the PCF has been numerical simulated. The property of the system has been evaluated using bit error ratio and eye pattern. The special attention has been paid to the varying of maximum transmission distance and the eye pattern with PMD, GVD and duty cycle in the system. Based on the analysis of the chirps produced by various effects, we propose the two compensation methods to optimize the property of the system. They are on-line synchronal modulation and the sliding frequency filter, it has shown that both of them worked very well.
     5) Based on the coupling nonlinear Schr(o|¨)dinger equation, the soliton self-trapping and its generation threshold have been investigated using the split-step Fourier method, at the presence of the high-order nonlinear and the high-order dispersion. It has been found that the initial femtosecond soliton pulse could be trapped due to the higher mode birefringence of the PCF. The possibility of forming a polarized multiplexing soliton system in PCF has also been discussed.
引文
[1]J.A.Catipovic.Performance limitation in underwater acoustictelemetry.IEEE J.Oceanic.Eng.,1990,15(3):205:216.
    [2]Daniel B.Kilfoyle and Arthur B.Baggeroer.The State of the Art in Underwater Acoustic Telemetry.IEEE J,Oceanic.Eng.,2000,25(1):4-24.
    [3]Arthur B.Baggeror.Acoustic Telemetry-an Overview.IEEE J.Oceanic.Eng.,1984,9(4):229-235.
    [4]Bill Schweber.Underwater modem meets the challenge of a difficult channel-but slowly.EDN,Jan.4,2001,39-40.
    [5]Lapierre G.,Chevallier L,Gallaud E,et al.,Design of a communication protocol for underwater acoustic modems and networks.Ocean,MTS/IEEE Conference and Exhibition,2001,4,196-203
    [6]Adams A.E.,Hinton O.R.,Sharif B.S.,et al.,Experiments in sub-sea acoustic communication networks.Ocean,2001.MTS/IEEE Conference and Exhibition,2001,4,232-237
    [7]Milica Stojanovic.Recent Advances in High-Speed Underwater Acoustic Communications.[J].IEEE J.Oceanic Eng.,1996,vol.21(2):125-136.
    [8]张玉良,高速数字水声通信系统的研究,声学与电子工程,2002,(4):6-12
    [9]艾宇慧,m序列扩谱水声通信研究,哈尔滨工程大学学报,2004,(2):15-18.
    [10]高路,高速水声通信系统仿真研究,声学学报,2003,(28):33-37.
    [11]张散,浅海信道水声数字通信系统的性能分析,西北工业大学学报,2000(4):612-615.
    [12]许克平等,基于水声的水下无线通信研究,厦门大学学报,2001,40(3):311-319.
    [13]程恩等,种水下图像传输系统.厦门大学学报,1996,35(3):369-37.
    [14]齐树清,电力线通信技术应用新进展,电力系统自动化,2002,(4):25-29.
    [15]Teoh C.H.,Singh M.,Siah Y.K.,Ahmad A.R.,Building low-cost intelligent building components with contrail area network bus,Proceeding of IEEE Region 10 International Conference of Electronic Technology,2001,(1):466-468.
    [16]http://www.soa.gov.cn
    [17]http://www.altera.com
    [18]http://www.fujitsu.com
    [19]Dissanayake M.,Newman P.,Durrant-Whyte HF.,et.al.An Experimental and Theoretical Investigation into Simultaneous Localisation and Map Building.6~(th) International Symposium on Experimental Robotics.1999,171-180.
    [20]H.Momma,M.Watanabe,K.Hashimoto,et al.,Loss of the Full Ocean Depth ROV Kaiko -Part 1:ROV Kaiko-A Review,14th ISOPE,2004,191-193.
    [21]Kikuo H.,Masayuki W.,Shozo T.,Missing of the ROV Kaiko Vehicle-Problem on the Secondary cable,IEEE Oceans'04,technoocean'04,807-811.
    [22]Hyakutome,D.,Deep Cruising AUV URASHIMA's Now and Furore,Japan Marine Engneering Journal,2002,37(9):23-28.
    [23]冯士筰,李凤歧,李少菁.海洋科学导论.[M].高等教育出版社,1999.
    [24]Masayoshi Y.,Applition of fiber optics for deep-sea exploration systems.IEEE.Journal of Oceanic Engineering,1990,15(3):238-243.
    [25]TR Ischitta P R,Marra W C.Applying WDM technology to undersea cable network s,IEEE Communications Magazine,1998,(2):62-66.
    [26]M.D.Ageev,A.PH.Scherbatyuk,Yu.V.Vaulin,TSL-underwater robot with data-command link by fiber-optical cable.Proceedings of SPIE.2001,4513,0277-178-0277-183.
    [27]KOGA T.System design and equipment for ultra-long distance non-repeatered submarine cable systems.[J].N EC Res & Develop,1999,40(1):37-43.
    [28]Stafford E.K.Undersea non-repeatered technologies challenges and products.A T&T Technical Journal,1995,74(1):47-59.
    [29]Dasilvav L.Remotely pumped erbium-doped fiber amplifiers for repeater less submarine systems.IEEE.Photonics Technology Letters,1995,7(9):1018-1023.
    [30]彭承柱,海底光缆通信系统综述,邮电设计技术,1995,5:1-8.
    [31]Kao C K,& Hockham,GA,Dielectric-fibre surface waveguides for optical frequencies.Proc.IEE.1966,1151-1158.
    [32]张煦,记光纤通信发明家.高锟博士,光通信研究,1995,75:3-6.
    [33]E.P.Kapron,D.B.Keck,and R..D.Maurer,Appl.Phys.Lett.1970,17,423.
    [34]Joseph C.Palais,Fiber optics communications(4th edition),Prentice Hall.Inc,1998.
    [35]Govind P.Agrawal著,贾东方,余震虹等译,非线性光纤光学原理及应用(第三版),电子工业出版社,2002.
    [36]Gerd Keiser著,李玉权,崔敏等译,光纤通信(第三版),电子工业出版社,2002.
    [37]张煦,光纤通信的三十年历程和跨世纪展望,光通信技术,1995,19(3):175-182.
    [38]李玲,黄永清,光纤通信原理,国防工业出版社,1999.
    [39]吴德明,光纤通信原理与技术,科学出版社,2004.
    [40]J.C.Knight,T.A.Birks,P.St.J.Russell,et al.,All silica single-mode optical fiber with photonic crystal cladding,Opt.Lett.,1996,21(19):1547-1549.
    [41]T.A.Birks,J.C.Knight,P.St.J.Russell,et al,Endlessly single-mode photonic crystal fiber,Opt.Lett,1997,22(13):961-963.
    [42]Rst.J.Russell,J.C.Knight,T.A.Birks,et al.,Recent progess in photonic crystal fiber,OFC2000,2000,3:98-100.
    [43]J.Broeng,D.Mogilevstev,S.E.Barkou,et.al.,photonic crystal fibers:a newdas of optical waveguides,Optical Fiber Technology,1999,5:305-330.
    [44]J.Broeng,S.E.Barkou,et al.,Analysis of air-guiding photonic crystal bandgap fibers,2000,25:96-98.
    [45]T.M.Monro,D.J.Richardson,Holey optical fibres:fundamental properties and device applications,Comptes Rendus Physique,2003,4:175-186.
    [46]S.Foteinopoulou,A.Rosenberg,et al.,In-and out-of-Plane propagation of electromagnetic waves inlow index contrast two dimensional photonic crystals.J.APP1.phys.,2001,89(2):824-830.
    [47]邓大鹏,光纤通信原理,人民邮电出版社,2004.
    [48]马军山主编,光纤通信原理与技术,人民邮电出版社,2004.
    [49]N.Zabusky,M.D.Kluskal,Interaction of soliton in a collisonless plasmaand there currence of initial states.Phys.Rev.Lett.,1965,15(3),240-245.
    [50]VE.Z.kllarov,A.B.Shabat,Exact theory of two-dimensional seLf-focusing and onedimensional seLf-modulation,phys.Rev.1972,34(1):62-69.
    [51]V.E.Zakarov,Kinetic equations of soliton and solitary waves SOV.Phys.J.E.T.P,1971,33:538-543
    [52]M.J.Ablotz,D.J.KauP,A.C.Newell,H.Segur,Theinverse scattering transform-Fourieranalysis for nonlinear problems,Stud.Appl.Math.,1974,53,249-315.
    [53]M.J.AblowitZ,D.J.KauP,A.C.Newell,H.Segur,Method of Solution for the Sine-Gordon Equation,Phys.Rev.Lett.,1973,30,1262-1264.
    [54]D.J.KauP,A.C.Newel,Anexaet solution for aderivative nonlinear Schrodinger equation,J.Math.Phys.,1978,19,789-801.
    [55]谷超豪等,孤立子理论与应用,浙江科技出版社,1990.
    [56]颜家壬,黄国翔,黄念宁,矩形波导中两层流体界面上的非传播孤立波,物理学报, 1988,37,874-879.
    [57]Amaud Debussche,Jacques Printems,Numerical simulation of the Stochastic Korteweg-deVries equation,Physica D,1999,134:200
    [58]黄国翔,颜家壬,戴显熹,矩形谐振器中非传播重力一表面张力孤波的理论研究,物理学报,1990,39:1235
    [59]Xinlong Wang and Rongjue Wei,Oscillatory patterns composed of The parametrically excited surface-wave solitons,Phys.Rev.E,1998,57:2405.
    [60]J.P.Gordon,H.A.Haus,Random walk coherently amplified soliton in optical fiber transmission.Opt.Lett.,1986,11,665-667.
    [61]A.Hasegawa,ETappert,Transmission of station nonlinear optical pulses in dispersive dieleetrie fibre:Normaldis Persion,AppI.Phys.Lett,1973,23,142-144.
    [62]L.F.Mollenauer,R.H.Stolen,J.P.Gordon,Experimental observation of picosecond Pulse narrowing and soliton sinoptiealers,Phys.Rev.Lett.,1980,45(13),1095-1098.
    [63]A.Hasega,Y.Kodama,Amplification and reshaping of optical soliton in a glass fiber(1),Opt.Lett.1982,7(6):285-287.
    [64]A.Hasega,Y.Kodama,Amplification and reshaping of optical soliton in agtass fiber(2),Opt.Lett.1982,7(7):339-341.
    [65]L.F.Mollenauer,K.Smith,Demonstration of soliton transmission over more than 4000km in fiber with1055 periodically compensated by Raman gain,Opt.Lett.,1988,13,675-677.
    [66]L.F.Mollenauer,K.Smith,J.RGordon,C.R.Menk,Resistance of solitons to the effetes of polarization dispersion in optical fibers,Opt.Lett.,1989,14,1219-1221.
    [67]M.Nakazawa,YKimura,K.Suzuki,Efficient Er~(3+) doped optical fiber amplifier Pumped by 48mm In gas plaser diode,APPI.Phys.Lett.,1989,54,295-297.
    [68]L.F.Mollenauer,S.G.Evangelides,J.P.Gordon,Wavelength division multiplexing with soliton sinultralong distance transmission using lumped amplifiers,J.LightwaveTeehnol.,1991,9,362-367.
    [69]M.Nakazawa,E.Yamada,H.Kubota,K.Suzuki,10Gbit/s soliton data transmission over one millionkilometres,Eleetron.Lett.,1991,27,1270-1272.
    [70]M.Nakazawa,K.Suzuki,E.Yamada,H.Kubota,Observation of nonlinear interaction in 20Gbit/s soliton transmission over 500 kill using erbiumdoped fibre amplifiers,Eleetron.Lett.,1991,27(18):1662-1663.
    [71]E.Yamada,K.suzuki,M.Nakazawa,10Gbit/s Ussingle pass soliton transmission over 1000km,Eleetron.Lett.,1991,27,1289-1290.
    [72]E.Yablonovitch and T.J.Gmitter,Photonic band structure:The face-centered-cubic case,Phys.Rev.Lett.1989,63,1950-1953.
    [73]J.C.Knight,J.Broeng,et al.,Photonic band gap guidance in optical fibers,Science,1998,282,1476-1478.
    [74]R.F.Cregan,B.J.Mangan,et al.,Single-mode photonic band gap guidance of light in air,Science,1999,285,1537-1539.
    [75]K.Saitoh,M.Koshiba,and T.Hasegawa,et al.,Chromatie dispersion control in photonic crystal fibers:application to ultra-flattened dispersion,Opt.Express,2003,11,843-852.
    [76]K.Tajima,J.Zhou,and K.Nakajima,et al.,Ultralow loss and long length photonic crystal fiber,J.Lightwave.Technol.,2004,22(1):7-10.
    [77]S.B.Libori,J.Broeng,and E.Knudsen etc.,High-birefringent photonic crystal fiber,in Proc.OFC,Anaheim,California,USA,2001,Paper TuM2.9.
    [78]B.A.Ortigosa,J.C.Knight,and W.J.Wadsworth etc.,Highly birefringent photonic crystal fibers,Opt.Lett.,2000,25(18):1325-1327.
    [70]Tzong-Lin Wu and Chia-Hsin Chao,A novel ultraflattened dispersion photonic crystal fiber,IEEE Photon.Technol.Lett.,2005,17(1):67-69.
    [80]娄淑琴,任国斌,王智等,高双折射光子晶体光纤的偏振特性研究,中国激光,2004,31(12):1503-1507.
    [81]王子涵,栗岩峰,胡明列,800nm附近具有平坦色散的光子晶体光纤的计算与设计,量子电子学报,2005,22(5):771-776.
    [82]陈鹤鸣,张力,彭伟,115-135μm具有平坦色散的PBG光子晶体光纤的设计,南京邮电大学学报,2006,26(1):66-70.
    [83]N.Nishizawa,Y.Ito,and T.Goto,0.78-0.90μm wavelength-tunable femtosecond soliton pulses generation using photonic crystal fiber,IEEE Photon.Technol.Lett.,2002,14(7):986-988.
    [84]E.E.Serebryannikov,M.L.Hu,and Y.F.Li,et al.,Enhanced soliton self-frequency shift of ultrashort light pulses,JETP Lett.,2005,81(10):487-490.
    [85]夏金安,陈丹平,杨旅云等,在光子晶体光纤中实现波长调谐飞秒孤子脉冲输出,激光与光电子学进展,2005,42,(2):8-110.
    [86]D.Royston Neill and Javid Atai,Gap solitons in a hollow optical fiber in the normal dispersion regime,Physics Letters A,2007,367(16):73-82.
    [87]W.J.Wadsworth,J.C.Knight,and A.Ortigosa-Blanch,et al.,Soliton effects in photonic crystal fibers at 850nm,Electron.Lett.,2000,36(1):53-55.
    [88]X.Liu,C.Xu,and W.H.Knox,et al.,Soliton self-frequency shift in a short tapered air-silica microstructure fiber,Opt.Lett.,2001,vol.26,no.6,pp.358-360.
    [89]Kenji Kurokawa,Katsusuke Tajima,and Kyozo Tsujikawa,et al.,Penalty-free dispersionmanaged soliton transmission over a 100-km low-loss PCF,J.Lightwave Technol.,2006,24(1):32-37.
    [90]H.Hasegawa,Y.Oikawa and M.Nakazawa,10Gbit/s 2km Photonic crystal Fibre transmission with 850nm directly modulated single mode VCSEL,IEEE Electron.Lett.,2007,43(2):119-121.
    [91]Y.Xu,X.Ren,Z.Wang,X.Zhang and Y.Huang,Flatly broadened Supercontinuum generation at 10Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion,IEEE Electron.Lett.,2007,43(2):87-88.
    [92]C.H.KWok,S.H.Lee,K.K.Chow,etal,Photonie crystal fibre based All-optical modulation format conversions between NRZ and RZ with hybrid Clock recovery from a PRZ signal,Opt.electronics,2007,1(1):47-53.
    [93]C.H.KWok,S.H.Lee,K.K.Chow,et al.,Generation of magawatt optical solitons in hollow-core photonie band-gap fiber,Science,2003,301,1702-1704.
    [94]Mousumi Ballav and A.Roy Chowdhury,Raman perturbation and surface core soliton in hollow photonie crystal fiber,Physics Letters A,2008,372(14):2391-2399.
    [95]Javid Atai,Boris A.Malomed and Ilya M.Merhasin,Stability and collisions of gap solitons in a model of a hollow optical fiber,Optics Communications,2006,265(1):342-348.
    [96]W.Wadsworth,N.Joly,J.C.Knight,et.al.,Super continuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonie crystal fibres[J],Opt Express,2004,12(2):299-309.
    [97]F.Duron,N.Sanne,GLucas-Leclin,et.al.,Self compression and Raman soliton generation in a photonic crystal fiber of 100fs pulses produced by a diode-pumped Yb-doped oscillator,Opt.Lett.,2003,42(33):6769-6770.
    [98]B.Temelkuran,S.D.Hart,and G.Benoit,et.al.,Wavelength scalable hollow optical fibres with large photonic band gapes for CO_2 laser transmission,Nature,2002,420:650-653.
    [99]Yi Ni,Lei Zhang,Liang An,Jiangde Peng,and Chongcheng Fan,Dual-Core Photonic Crystal Fiber for Dispersion Compensation,IEEE Photo.Tech.Lett.2004,16(6):1516-1518.
    [100]N.Nishizawa and T.Goto,Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0 um using photonic crystal fibers and an ultrashort fiber laser J.Appl.Phys,2003,42(2):449-452.
    [101]高艳东,刘兆伦,鞠晓丹等,光子晶体光纤与光通信相关的奇异色散特性,光通信研究,2005,127:40-50.
    [102]R.E Slusher,G.Lenz,J.Hodelin,et.al.,Larger a mangain and nonlinear phase shifts in high-purity As_2Se_3 chalcogenide fibers,J.Soc.Am.B,2004,21(6):1146-1155.
    [103]D.VSkyrbain,F.Luan,J.C.Knigh,et.al.,Soliton self-frequency shift cancellation in photonic crystal fibers,Science,2003,301(5640):1705-1708.
    [104]K.S.Abedin,F.Kubota,Widely tunable femtosecond soliton pulse generation at a 10GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber,Opt.Lett.,2003,28(19):1760-1762.
    [105]C.Peucheret,B.Zsigri,P.A.Andersen,et.al.,40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in a highly nonlinear photonic crystal fibre.Electronics Letters 2003,39(12):919-921.
    [106]J.Herrmann,U.Griebner,N.Zhavoronkov,Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers.Physical Review Letters,2002,88(17):173901-1-4.
    [107]A.V.Husakou,.Herrmann,Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers-art.Phys.Rev.Lett.2001 8720:901.
    [108]王肇颖,贾东方,葛春风等,10GHz再生锁模光纤激光器获得光纤超连续谱的研究,光电子·激光,2006,17(1):9-13.
    [109]Penzkofer.A,Kaiser W.Generation of picosecond light continua by parametric four-photon interactions in liquids and solids.Opt.Quantum Electron,1977,9(4):315-394.
    [110]Mori K,Morioka T and Saruwatari M,Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5m compact laser source,IEEE Tran.Instru.Measure,1995,44(3):712-715.
    [111]谢旭东,王清月,王专等,超宽光谱掺钛蓝宝石飞秒激光器时域频域特性的实验研究,2005,54(7):3159-3163.
    [112]Fumio,Yuichi,Kazum et al,Generation of wideband and flat supercontinuum over a 280-nm spectral range from a dispersionflattened optical fiber with normal group-velocity dispersion.IEICE Trans.Electron.,1999,E82-C:1531-1533.
    [113]Ju Han Lee,Kazuhiro Katoh and Kazuro Kikuchi,Experimental investigation of continuous-wave supercontinuum ring laser composed of clad-pumped Er/Yb codoped fiber and highly-nonlinear optical fiber,Optics Communications 2006,266:681-685.
    [114]Mori.K,Takara.H,Kawanishi.S,Saruwatad.M,Flatly broadened supercontinuum generation in a dispersion decreasing fiber with convex dispersion profile,Electron Lett,1997,33(21):1806-1807.
    [115]D.G.Ouzounov,K.D.Moll,M.A.Foster,et.al.,Delivery of nanojoule femtosecond pulses through lagre-coremicro sturcutred fibers,Opt.Lett.,2002,27(17):1513-1515.
    [116]N.A.Mortensen,MD.Nielsen,J.Folkenbegr,et.al.,Improved lagre-mode-area endlessly single-mode photonic crystal fibers,Opt.Lett.,2003,28(6):393-395.
    [117]J.LimPert,A.Liem,M.Reich,et.al.,Low-nonlineariyt single-transverse-mode ytterbium-doped photonie crystal fiber amplifier,Opt.Exp.,2004,12(7):1313-1319
    [118]杨广强,张霞,任晓敏,等,利用光子晶体光纤实现10Gb/s光传输系统宽带色散补偿, 光电子·激光,2005,16(9):1058-1061.
    [119]Renversea.G,Kuhlmer.B,MCPHEDRANR.Dispersion management with microstructured optical fibers:ultra flattened chromatic dispersion with low losses[J],Opt.Lett,2003,28(12):989-991.
    [120]李曙光,刘晓东,侯蓝田,接近于零色散的色散平坦光子晶体光纤的数值模拟与分析[J].中国激光,2004,6(31):713-717.
    [121]A.Ferrando,E.Silvestre,J.J.Miret,et.al.,Nearly zero ultralattened dispersion in photonic crysal fibers[J].Opt.Lett,2000,25:790-792.
    [122]P.Petropoulos,H.Ebendorff-Heidepriem,V.Finazzi,et.al.,Highly nonlinear and anomalously dispersive lead silicate glass holey fibers[J].Opt.Exp.,2003,11(26):3668-3673.
    [123]沈旷轶,宁提纲,基于光子晶体光纤的色散补偿和色散平坦技术,光子技术,2006,2,78-87.
    [124]Albert Ferrando,Endque Silvestre,Pedro Andres,et.al.,Designing the properties of dispersion-flattened photonic crystal fibers[J],Opt.Express,2001,9(13):687-697.
    [125]S.Lak6,J.Seres,PAPai,et.al,Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,Appl.Phy.B,2003,76(6-7):267-275.
    [126]H.Lim,F.W.Wise,Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,Opt.Exp.,2004,12(10):2231-2235.
    [127]G.McConnell,E.Riis,Ultra-short pulse compression using photonic crystal fibre,Appl.Phy.B,2004,78(5):557-563.
    [128]CJ.S.deMatos,J.R.Taylor,Multi-kilowatt,all-fiber integrated chirped-pulse amplification system yielding 40 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,Opt.Exp.,2004,12(3):405-409.
    [129]S.O.Konorov,A.M.Zheltikov,Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation,Opt.Exp.,2003,11(19):2440-2445.
    [130]S.O.Konorov,E.E.Serebyrannikov,A.M.Zheltikov,et.al.,Mode-controlled colors from microstructure fibers,Opt.Exp.,2004,12(5):730-735.
    [131]D.A.Akimov,E.E.Serebyrannikov,A.M.Zheltikov,et.al.,Efficient anti-Stokes generation through phase-matched f our-wave mixing in higher-order modes of a microsturcutre fiber,Opt.Lett.,2003,28(20):1948-1950.
    [132]M.Hu,C-y.wang,Y.Li,et.al.,Mtlltiplex frequency conversion of unamplified 30fs Ti:sapphire laser pulses by an array of waveguiding wires in a random Microstructure fiber,Opt.Exp.,2004,1225:6129-6234.
    [133]J.E.SharPing,J.Chen,X.Li,et.al.,Quanutm-correlated twin photons from microstructure fiber,Opt.Exp.,2004,12(14):3057-3094.
    [134]I.V.Meinikova,J.WHuas,P.G.Kazansky,Vecksler-Macmillan phase stability for neutral atoms accelerated by alaser beam,Opt Comm.,2003,220(1-3):143-150
    [135]M.A.van Eijkelenbogr,Imaging with microsturcutred polymer fibre,Opt.Exp.,2004,12(2):342-346.
    [136]Jian Zhou,Katsusuke Tajima,Kazuhide Nakajima,et.al.,Progress on low loss photonic crystal fibers,Optical Fiber Technology,2005,11(2):101-110.
    [137]K,.Tajima,J.Zhou,Ultra low loss and long length photonic crystal fiber[J].IEICE Trans.Electron,2005,E88C(5):870-875.
    [138]P.J.Roberts,F.Couny,H.Sabert et al,Ultimate low loss of hollow-core photonic crystal fibres[J].Opt.Express,2005,13(1):236-244.
    [139]李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式与色散特性[J].物理学报,2003,53(11):2811-2817.
    [140]任国斌,王智,娄淑琴等,光子晶体光纤的模式截止特性,电子学报,2004,32(8):1318-1321.
    [141]E.Yablonovitch,Inhibited spontaneous emission in solid-state physics and electronics,Phys.Rev.Lett.,1987,58(20):2059-2061.
    [142]S.John,Strong localization of photons in certain disordered dielectric super lattices,Phys.Rev.Lett.,1987,58(23):2486-2489.
    [143]S.Jr.A.Cerqueira,F.Luan,and C.M.B.Cordeiro,et.al.,Hybrid photoniccrystal fiber,Opt.Express,2006,14(2):926-931.
    [144]T.M.Monro,P.J.Bennett,and N.G.R.Broderick,et.al.,Holey fibers with random cladding distributions,Opt.Lett.,2000,25(4):206-208.
    [145]Knight.J.C,Birks.T.A,Cregan.R.F,,et.al.,Large mode area photonic crystal fiber[J],Elec.Lett,1998,34(13):1347-1348.
    [146]Sinha.P.K,Varshney.S.K,Dispersion properties of photonic crystal fibers[J],Microwave,Opt.Technol.Lett,2003,37(2):129-132.
    [147]W.H.Reeves,D.V.Skryabin,F.Biancalana,et.al.,Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres[J].Nature,2003,424:511-515.
    [148]Guo Shuqin,Le Zichun and Quan Bisheng,Realization of Ultra-broadband Dispersion-flattened in Dual-cladding Photonic Crystal Fiber,Proc.of SPIE Vol.6025-1-6025-4.
    [149]Tuomo Ritari,Tapio Niemi,Hanne Ludvigsen,et.al.,Polarization-mode dispersion of large mode-area photonic crystal fibers,Optics Communications,2003,226:233-239.
    [150]娄淑琴,任国斌,延凤平等,类矩形芯光子晶体光纤的色散与偏振特性,2005,54(3):1229-1234.
    [151]娄淑琴,简伟,任国斌等,一种新结构的高双折射光子晶体光纤,光电子·激光,2005,16(11):1265-1269.
    [152]Chunshu Zhang,Guiyun Kai,Zhi Wang,et.al.,Tunable highly birefringent photonic bandgap fibers,Optic.Express,2005,30(20):2703-2705.
    [153]Mingyang Chen,Rongjin Yu,Design of defect-core in highly birefringent photonic crystal fibers with anisotropic claddings,Optics Communications,2006,258:164-169.
    [154]陈波,彭艳杰,杨广强等,光子晶体光纤宏弯曲损耗特性的理论分析,光纤材料,2006,7:60-62.
    [155]叶培大,吴彝尊,光波导技术基本理论,北京,人民邮电出版社,1981.
    [156]V.E.Zakharov,A.B.Shabat,Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media.Sov.Phys.Jetp.,1972,
    34(1):62-69.
    [157]C.S.Gardner,J.M.Greene,M.D.kruskal,et.al.,Method for solving the Korlewegde Vries equation,Phys.Rev.Lett.,1967,19(19):1095-1097.
    [158]Mohlenauer L.F.,Stolen R.H.,Islam M.N.,Experimental demonstration of soliton propagation in long fibers:Losscompensated by Raman gain.Opt.Lett.1985,10(5):229-231.
    [159]Nakagawa K.,Nishi S.,Aida K.,et.al.,Trank and distribution network application of Er-brium-doped fiber amplifier.,J.Lightwave Technol,1991,9(2):198-208.
    [160]Saleh A A M.,Modeling of gain in erbium-doped fiber amplifiers.,IEEE Photon.Technol.Lett.1990,2(10):714-716.
    [161]Rottwitt K.,Bjarklev A.,Povlsen T P H,et.al.,Fundamental design of a distributed erbium-doped fiber amplifier for long distance transmission.IEEE J.Lightwave Technol, 1992,10(11):1544-1552.
    [162]Rottwitt K.,Povlsen T P H,Bjarklev A.,Long distence transmission through distributed Erbium doped fibers.IEEE J.Lightwave Technol,1993,11(12):2105-2115.
    [163]杨祥林,温扬敬著,光纤孤子通信理论基础,北京,国防工业出版社,2000.
    [164]Nakazawa.M,Suzuki.K,Kubota H,et.al.,Dynamic optical soliton communication.IEEE Quantum Electronics,1990,26(12):2095-2102.
    [165]X.Tang and P.Ye,Comparison of dynamic soliton communication and path-averaged soliton communication.Fiber.Integ.Opt.1993,13:261-270.
    [166]M.Nakazawa,H.Kubota,Optical soliton communication in a positively and negatively dispersion-allocated optical fibre transmission line.Electron.Lett.1995,31:216-217.
    [167]J.H.B.Nijhof,N.J.Doran,W.Forysiak,et al,Stable soliton-like propagation in dispersion managed systems with net anomalous,zero,and normal dispersion.Electron.Lett.1997,33:1726-1727.
    [168]杨伯君,张涛,于丽,色散补偿光孤子传输的理论与实验研究,半导体光电,2000,21(6):389-391.
    [169]S.K.Turitsyn,E.G.Shapiro,Dispersion-managed solitons in optical amplifier transmission systems with zero average dispersion.Opt.Lett.1998,23:682-684.
    [170]D.S.Govan,W.Forysiak,N.J.Doran,Long-distance 40Gbit/s soliton transmission over standard fiber by use of dispersion management.Optics Letters,1998,23(20):1523-1525.
    [171]林宁,杨伯君,张晓光等,脉冲初始啁啾对色散管理孤子传输性能的影响,光电子.激光,2001,12(2):185-203.
    [172]F.Luan,J.C.Knight,et,al.,Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,Optics Express,2004,12:835-840.
    [173]W.Gobel,A.Nimmerjahn,F.Helmchem,et.al.,Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,Opt.Lett.,2004,29(11):1285-1287.
    [174]K.L.Duan,J.M.Wang,J.F.Li,et.al.,Experimental study of phase-locking of two photonie crystal fiber lasers,Optics Communications,2008,281:2557-2560.
    [175]G.Bonati,H.Voelckel,T.Gabler,et al.,1.53 kW from a single Yb-doped photonic crystal fiber laser.Photonics West,San Jose,Late Breaking Developments,2005,5709-2a.
    [176]R.Chefif,M.Zghal,L.Tartara,and V.Degiorgio,Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,Opt.Express,2008,16:2147-2152.
    [177]A.S.Y.Hsieh,S.G.Murdoch,S.Coen,et al.,Influence of Raman susceptibility on optical parametric amplification in optical fibers,Opt.Lett.,2007,32,521-523.
    [178]S.Wabnitz,Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths,J.Lightwave Technol.2006,24,1732-1739.
    [179]M.Y.Chen,R.J.Yu.,Analysis of photonic Bandgaps in modified honeycomb sturcutres.IEEE.Photonic Technol.Lett.,2004,16:819-821.
    [180]C.A.De Francisco,B.V.Borges,M.A.Romero.Asemivectorial iterative finite-dieffrence method to model photonic crystal fibers.,IEEE MTT-S IMOC,2001:407-409.
    [181]E.P.Kosmidou,T.D.Tsiboukis.An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials.Opt.and Quant.Elecrton.,2003,35:931-946.
    [182]A.Cucinotta,S.Selleri,L.Vincetti,et.al.,Perturbation analysis of dispersion propertiesin photonie cyrstal fibers through the finite element method.IEEE J.Lightwave Tech..,2002,20(7):1433-1442.
    [183]M.Koshiba,Y.Tsuji.,Cuvrilinear hybrid edgen/odal elements with triangular Shape of guided-wave problems.,IEEE J.Lightwave Tech,2000,18:737-743.
    [184]F.Brechet,J.Marcou,D.Pagnoux,et.al.,Complete analysis of the characteristics of propagation into photonio cyrstal fibers,by the finite element method.,Opt.Fib.Tech.,2000,6:181-191.
    [185]M.Koshiba,K.Saitoh.,Ntlmerical verification of degeneracy in hexagonal photonic cyrstal fibers.,IEEE.Photonic Technol.Lett.,2001,13:1313-1315.
    [186]K.Saitoh,M.Koshiba,Full-Vectorial imaginary-distance beam propagation method based on a finite element scheme:application to photonic cyrstal fibers.IEEE J.of Qunutm Electronics,2002,38:927-933.
    [187]M.Koshiba.,Full-vector analysis of photonic crystal fibers using the finite element method.IEICE TRANS.Elec.,2002,E85-C:881-888.
    [188]Ni Guan,S Hbau,K Takenaga,et.al.,Boundayr element method for analysis of holey optical fibers.,2003,IEEE J.Lightwave Tech..,21(8):1787-1789.
    [189]http://www.crytal-fiber.com.
    [190]Hilligsoe K M,Andersen T V,Paulsen H W,et al.Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths.,[J].Optics Express,2004,12(6):1045-1054.
    [191]I.G.Cormack,D.T.Reid,Observation of soliton self-frequency shift in photonic crystal fiber,Elec.Lett.2002,38:167-169.
    [192]阎培光,阮双琛,杜晨林等,飞秒脉冲作用下光子晶体光纤超连续谱的产生,光子学报,2003,32(11):12990-1301
    [193]贾亚青,闫培光,吕可诚,张铁群,朱晓农,高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析,物理学报,2006,55(4):1809-1814.
    [194]P.Petropoulos,Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,Optics Express,2003,11(28):3568-3573.
    [195]Yamamoto,T;Kubota,H;Kawanishi,S;et.al,Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber;Optics Express,2003,11(13):1537-1540.
    [196]王勇,殷洪玺,吴德明等,实现IP Over WDM的新型光波长路由器设计,光电子激光,2001,12(5):510-512.
    [197]G.Shikawa,M.Sekiya,H.Onaka,et.al.,10Gbit/s repeaterless transmission using standard single-mode fiber with prechirping and dispersion compensation techniques.IEICE Transactions on Electronics,1995,43-49.
    [198]M.Knox,W.Forysiak,N.J.Doran.10Gbit/s soliton communication systems over standard fiber at 1550nm and the use of dispersion compensation.J.Lightwve Technol.,1997,13(10):1995-1962.
    [199]M.J.Makong,The designed of a european optical network.J.Lightwve Technol.,1995,13(5):817-828
    [200]S.B.Alleston,P.Harper,I.S.Penketh,et.al.,40Gbit/s single channel dispersion managed pulse propagation in standard fiber over 509km.Electron.Lett.,1999,35(1):57-59.
    [201]林宁,杨伯君,张晓光等,脉冲初始啁啾对色散管理孤子传输性能的影响,光电子激光,2001,12(2):185-187.
    [202]Peter Y.P.Chen,Boris A.Malomed and Pak L.Chu,Soliton stability against polarization-mode-dispersion in dispersion-managed systems,Optics Communications,2008,281:2301-2308.
    [203]张书敏,吕福云,董法杰.色散缓变光纤中飞秒高阶孤子脉冲的增强压缩.光子学 报,2004,33(11):1360-1363.
    [204]W.H.Reeves,J.C.Knight,et,al.,Demonstration of ultra-flattened dispersion in photonic crystal fibers,Optics Letters,2002,10:609-613.
    [205]S.G.Li,X.D.Liu,et al.,Numerieal study on dispersion compensating property in photonic crystal fibers,Acta Physiea Sinica,2004,53:1880-1886.
    [206]S.G.Li,X.D.Liu,et al.,Vector analysis of dispersion for the-fundamental cladding mode in photonic crystal fibers,Acta Physica Sinica,2004,53:1873-1879.
    [207]A.Ferrando,E.Silvesre,et,al.,Nearly zero ultraflattened dispersion in photonic crystal fibers,Optics Letters,2000,25:790-192.
    [208]Nakazawa M,Sazuki K and KimuraY.Transform-limited pulse generation in the gigahertz region from a gain-swithed distributed-feedback laser diode using spectral windowing.Opt.Lett,1990,15(12):715-717.
    [209]Dacey R P,Simth K and McGuire A.High-speed mode-locked tunable integrated erbium fiber laser.Electron.Lett,1992,28(5):482-484.
    [210]Tamura K,Doerr C R,Haus H A.Soliton fiber ring laser stablization and tuning with a broad intracavity filter,IEEE Pohton.Lett,1994,6(6):607-699.
    [211]曹顺湘,王发强,陈明华等.主被动锁模光纤环行激光器。中国激光(A),1996,23(12):1072-1076.
    [212]曹顺湘,王发强,陈明华等.主被动锁模光纤环行孤子激光器的脉宽计算及稳定性分析。光学学报,1997,17(6):667-670.
    [213]Liu H F,ogawa Y and Oshiba S.Generation of an extremly short single mode pluse(2ps) by fiber compression of a gain-swicthed plude from a 1.3μm distributed-feedback laser diode.Appl.Phys.Lett,1991,59(11):1284-1286.
    [214]K.Sasaki,S.K.Varshney,K,Wada,Optimization of pump spectra for Gain-flattened photonic crystal fiber Raman amplifiers operating in C-band,Opt.Express,2007,15(5):2654-2668.
    [215]Mollenauer L F,Evaagelides S G and Haus H A.Long-distance soliton propagation using lumped amplifier and dispersion shifted fiber.J.Lightwave Technol,1991,9(2):194-197.
    [216]Mohlenauer L F,stolen R H and Islam M N.Exprimental demonstration of soliton propagation in long fibers:Loss compensated by Raman gain.Opt.lett.,1995,10(5):229-231.
    [217]Rottwitt R,Povlsen J H and Bjarklev A.Long distance transmission through distributed Erbium Doped fibers.IEEE J.Lightwave Technol,1993,11(12):2105-2115.
    [218]Nakagawa K,Nishi S,Aida K,Yoneda E.Trank and Distribution network application of Erbrium-doped fiber amplifier.J.Lightwave Technol,1991,9(2):198-208.
    [219]Rottwitt K,Bjarklev A,Povlsen T P H,Lumholt O and Rasmussen T.Fundamental Design of a distributed Erbium-doped fiber amplifier for long distance transmission.IEEE J.Lightwave Technol,1992,10(11):1544-1552.
    [220]Saleh A A M.Modeling of gain and noise in erbium-doped fiber amplifier.IEEE Photon.Technol.Lett,1990,2(10):714-716.
    [221]Nakazawa M,Kimara Y and Suzuki K.Ultralong dispersion shifted distributed EDFA and its application to soliton transmission.IEEE J.Quatum Electron,1990,QE-26(12):2103-2108.
    [222]D.J.Riehardson,R.P.Chmaberlin,L.Dong,et al.Hihg qualiyt Soliotn loss-compensating in 38km dispersion decreasing fibre.Electron.Lett.,1995,31(19):1681-1682.
    [223]D.J.Rehdarson,L.Dong,R.P.Chmaberlin.periodically amplifier system based on loss compensating dispersion decreasing fiber.Eleerton.Lett.,1996,32(4):373-374.
    [224]L.F.Mollenauer,J.P.Gordon.Birefringence mediatied timing jitter in soliton transmission, Opt.Lett.,1994,19(6)375-377.
    [225]D.Macruse,C.P,.Menyuk,P.K.A.Wai.,Application of the Manakov-PMD equation to studies of singal propagation in optical fibers with randomly varying birefringence.IEEE J.Lihgtwave Tech.,1997,15(9):1735-1745.
    [226]B.Bakhshi,J.Hansrud,P.A.Andrekson,et al.Experiment observation of soliton robustness to polarization dispersion pulse broadening.Eleerton.Lett.,1999,35(1):65-66.
    [227]D.Anderson,M.liska,P.Anderson.Nonlinearly enhanced chirp pulse compression in single-mode fibers.Opt.Lett.,1988,13(10):134-140.
    [228]C.D.Poole,J.Nagel.Polarization effects in lightwave systems.Optical Fiber Telecommunications,Voume ⅢA,1997,chapter 6.
    [229]F.Matera,M.Settembre,M.Tamburrini et al.,Impact of polarization mode dispersion in field demonstration of 40Gbit/s soliton transmission over 500km.Electron Lett.,1999,35:407-408.
    [230]Ibragimov E.,Shtengel G,Suh,S.,Statistial error lation between first and seeond-odrer PMD,J.Lihgwtvae Teehnol.,2002,20(4),586-590.
    [231]A.Galtoarssa,P.Griggio,L.Palmieri,A.Pizzinat,Fisrt-and second-order PMD statistical properties of constantly spun randomly birefringent Fibesr J.Lihgwtave Technol.,2004,22(4):1127-1136.
    [232]M.Borodistky,M.Bordsky,N.Frigo,et al.,Technique for in-siut.Measurements of polarization mode dispersion,OFC'2003,TuK1 224-225.
    [233]M.Boroditsky,M.Bordsky,N.J.Frigo,et al.,In-Service measurements of polarization-mode dispersion and Correlation to bit-error rate,Photon.Technol.Lett.,2003,15(4),572-574.
    [234]E.Iannone,EMatera,A.Galtarossa,et al.,Effect of polarization dispersion on the performance of IM-DD communication systems.IEEE Photon Technol.Lett.,1993,5:1247-1249.
    [235]J.zhou,M.J.Omahony.Optical transmission system penalties due to fiber polarization mode dispersion.IEEE Photon.Technol.Lett.,1994,6:1265-1267.
    [236]龚岩栋,关雅莉,简水生。光纤偏振模色散的测量。光学学报,1997(17):731-736.
    [237]P.K.Wai,C.R.Menyuk,H.H.Chen.Stability of soliton in randomly varying birefringent fibers.Optics Lett.1991,16:1231-1233.
    [238]Peter Y.P.Chen,Boris A.Malomed and Pak L.Chu,Soliton stability against polarization-mode-dispersion in dispersion-managed systems.Optics Communications,2008,281:2301-2308.
    [239]M.Matsumoto,Y.Akagi,A.Hasegawa.Propagation of solitons in fibers with randomly varying birefringence:effects of soliton transmission control.J.Lightwave Technol.,1997,15:584-589.
    [240]T.Ono,S.Yamazaki,H.Shimizu,and H.Emura,Polarization control method for suppressing polarization dispersion in optical transmission systems.J.Lightwave Technol.,1994(12):891-898.
    [241]A.Sahara,H.Kubota and M.Nakazawa.Ultra-high speed soliton transmission in presence of polarisation mode dispersion using in-line synchronous modulation.Elec.Lett.1999(35):76-78.
    [242]王目光,李唐军,简水生,光纤偏振模色散对信号偏振度的影响,物理学报,2003,52(11):2818-2824.
    [243]T.Takahashi,T.Imai,and M..Aiki,Automatic compenstion technique for timewise fluctnating polarization mode disersion mode dispersion in in-line amplifier systems.Electron Lett.1994,30(4):348-349.
    [244]E.Ciaranella,PMD-induced impairments in polarization interleaved WDM Systems,Photon.Technol.Lett.,2003,15(2),227-229.
    [245]L.Zhnag,Y.Z.Xu,Q.G.Hu,et al.,Effect of chromatic dispersion and initial chirp on the DOP feedback signal in PMD compensation.IEEE Photo.Tech.Lett.2005,17,342-344.
    [246]B.W.Hakki,Polarization mode dispersion compensation by phase diversity detection.IEEE photon.Technol.Lett.1997,9(1):121-123.
    [247]R.Noe,D.Sandel,S.Hinz et.al.Integrated optical LiNbO_3 distributed polarization mode dispersion compensator at 20Gbit/s transmission system.Electron.Lett.1999,35(7):652-653.
    [248]张晓光、杨伯君、于丽等,高速光纤通信系统偏振模色散自适应补偿关键技术,电信科学.2005,12:13
    [249]A.Eleftherianos,D.Syvridis,T.Sphicopoulos,et.al.,Influence of polarisation mode dispersion on the transmission of parallel and orthogonlly polarised solitons at 40Gb/s.Opt.Commun.,1998,154(1):14-18.
    [250]B.Wedding,C.N.Haslach,Enhanced PMD mitigation by polarizations crambling and forward error correction,OFC2001,WAA1-1.
    [251]Magnus Karisson,Polarization mode dispersion mitigation-performan of various approaches,OFC2002,MI1.
    [252]K.GHougaard,J.Broeng,A.Bjarkev,Low pump power photonic crystal fibre amplifiers,IEEE Electron.Lett.2003,39(7):599-600.
    [253]H.H.Lee,J.M.oh,D.Lee,et al,A variable-gain optical amplifier for metro WDM networks with mixed span losses:a gain-clamped semiconductor optical amplifier combined with a Raman fiber amplifier,IEEE Photon.Teehnol.Leet,2005,17(6):1301-1303.
    [254]H.R.Osenfeldt,C.Knothe,R.Ulrieh,et al.,Automatic PMD compensation at 40Gb/s and 80Gb/s using a 3-dimensional DOP evaluation for feedback,0FC2001,PD27-1.
    [255]Rodislav Driben,Boris A.Malomed,Soliton stability against polarization-modedispersion in the split-step system,Optics Communications,2007,271:228-235
    [256]Yan,L.;Yao,X.S.;Hauer,Practical solutions to polarization-mode-dispersion emulation and compensation,J.Lightwave Technology,2006,24:3992-4005.
    [257]Tuomo Ritari,Tapio Niemi,Hanne Ludvigsen,et al.,Polarization-mode dispersion of large mode-area photonie crystal fibers,Optics Communications,2003,226:233-239.
    [258]R.Kotynski,M.Antkowiak,H.Thienpont and K.Panajotov,Modeling of polarization behaviour of LC filled photonic crystal fibers,IEEE/LEOS Benelux Chapter,2004,315-319.
    [259]杨广强,张霞,林健飞等,高双折射光子晶体光纤偏振模色散测量,光子学报,2005,34(8):1133-1136.
    [260]葛祥友,李平,王效杰等,新型高双折射及色散平坦光子晶体光纤研究,应用光学,2006,27(4):332-335.
    [261]X.Zhang,M.Karlsson,P.A.Andrekson,et al.,Polarization-division multiplexed solitons in optical fibers with polarization-mode dispersion.IEEE Photon.Technol.Lett.1998 10:1742-1744.
    [262]Xiang Liu,Chris Xu,Xing Wei,Performance Analysis of Time-Polarization Multiplexed 40-Gb/s RZ-DPSK DWDM Transmission,IEEE Photonics Technology Letters,200416(1):302-304.
    [263]Evangelides S G,Mollenauer L F,Gordon J P,et al.Polarization multiplexing with soliton.IEEE J.Lightwave Technol.,1992 10(1):28-35.
    [264]D.Sandel,F.Wrist,V.Mirvoda,R.Noe,PMD compensation in a 2×40Gbit/s,212km,CS-RZ polarization multiplexed transmission experiment.ECOC 2001,1367-1372.
    [265]Zhang X,Karlsson M,Andrekson P A,et al.Soliton stability in optical fiber swith polarization mode dispersion.J.IEEE Photo Technol Lett.,1998,10(3):376-378.
    [266]黄洪涛,聂再清.线双折射光纤与正交极化孤子碰撞的研究.J.中国激光,1999A26(2)163-170.
    [267]Menyuk C R.Stability of soliton in birefringent optical firbers.Ⅰ.Equal propagation amp litudes[J].Opt.Lett.,1987,12(8):614-616.
    [268]Menyuk C R.Stability of soliton in birefringent op tical firbers.Ⅱ.Arbitrary amp litudes [J].J.Opt.Soc.Am.B,1988,5(2):392-402.
    [269]M.Matsumoto,Y.Akagi,and A.Hasegawa.Propagation of soliton in fiber with randomly varying birefringence:Effects of soliton transmission control.J.Light.Tech.1997,15(4):584-589.
    [270]Cezary Kaczmarek.Soliton stability in a highly birefringent optical fiber different shapes of the initial pulse.Proceeding of SPIE,2005,5576:413-418.
    [271]T.Schreiber,H.Schultz,F.Roser,et al.,Design and high power operation of a stress-induced single polarization-single-transverse mode LMA Yb-doped photonic crystal fiber,Proc.of SPIE Vol.6102(C):1-9.
    [272]M.S.Alam,K.Saitoh and M.Koshiba,High group birefringence in air-core photonic bandgap fibers,Opt Lett.,2005,30(8):824-826.
    [273]G.Statkiewicz,T.Martynkien and W.Urbanczyk,Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,Opt.Commun.,2004,241 339-348.
    [274]Shuguang Li,Yanfeng Li,Yuanyuan Zhao,et al.,Correlation between the birefringence and the structural parameter in photonie crystal fiber.Optics & Laser Technology,2008,40:663-667.
    [275]Jingyuan Wang,Chun Jiang,Weisheng Hu and Mingyi Gao,High birefringence photonic bandgap fiber with elliptical air holes,Optical Fiber Technology,Volume 12,Issue 3,July 2006,265-267.
    [276]Norihiko Nishizawa,Yosuke Ukai,Toshio Goto,Ultrafast all optical switching using pulse trapping in birefringent fibers,Opt.Express.2005,13(20):8128-8135.
    [277]Zhang Xiang Yang and Wang Xiang Chao,Effect of Third-order Dispersion on the Soliton Propagation in Birefrigent Optical Fiber,Acta.Optica.Sinica.2004,24(1):16-20.
    [278]Wang Jing and Miao Hong Li,Influence of the Third-order Dispersion on stability of solitons in Birefringent Optical Fiber,Journal of Optoelectronics' Laser.2001,12(2):188-192.
    [279]D.C.Zografopoulos,E.E.Kriezis and T.D.Tsiboukis,Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,Opt.Express.2006,14(2):914-925.
    [280]M.Szpulak,T.Martynkien,et,al.,Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,Applied Optics,2004,43:4739-4744.
    [281]A.Peyrilloux,T.Chartier,et,al.,Theoretical and exprimental study of the birefringence of a photonic crystal fiber,,Jouraal of Lightwave Technology, 2003,21:536-539.
    
    [282] T.Ritari,H.Ludvigsen,et,al.,Exprimental study of polarization properties of highly birefringent photonic crystal fibers,Optics Express, 2004,12:5931-5939.
    
    [283] I.K.Hwang,Y.J.Lee,et,al.,Birefringence induced by irregular structure in photonic crystal fibers, Optics Letters, 2003,11:2799-2806.
    
    [284] B. Kibler, C. Billet and J. M. Dudley, Effect of structural instability phase matching in photonic crystal fiber, Opt. Lett. 2004.29(16): 1903-1906.
    
    [285] K.S.Abedin,T.Miyazaki,et,al., Wavelength-conversion of pseudorandom pulses at 10Gb/s by using soliton self-frequency shift in a photonic crystal fiber, ,IEEE Photonics Technology, 2004, 16,1119-1121.
    
    [286] C. A. Eleftherianos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, Influence of polarisation mode dispersion on the transmission of parallel and orthogonally polarised solitons at 40 Gb/s. Optics Comm., 1998,154,14-18.
    
    [287] S.O.Konorov,A.B.Fedotov,et,al., Enhandced four-wavemixing in a hollow-core photonic-crystal fiber, Optics Letters, 2003,28,1448-1450.
    
    [288] V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum, Opt. Express. 2006,14,9854-9863.
    
    [289] G. Genty, M. Lehtonen, and H. Ludvigsen, Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses, Opt. Express, 2004,12,4614-4624.
    
    [290] J.E.Sharping, M.Fiorentino,et,al., All-optical switching based on cross-phase modulation in microstructure fiber, IEEE Photonics Technology, 2002,14,77-79.
    
    [291] X. Fu, L. Qian, S. Wen and D. Fan, Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre., J. Opt. A: Pure Appl. Opt.2004, 6 1012-1016.
    
    [292] K. L. Corwinl, N. R. Newbury, J. M. Dudley, et al., Fundamental noise limitations to supercontinuum generation in microstructure Fiber. Phys. Rev. Lett. 2003, 90.113904-113907.
    
    [293] Schafer, T; Moore, R.O, Jones,C.K.R.T, Pulse propagation in media with deterministic and random dispersion variations, Optics Communications, 2002,214,353-362.
    
    [294] Y. Jiang, Y. Leng, X. Chen,et al., Active phase control and frequency chirp effects on supercontinuum generation in high birefringence photonic crystal fiber, Optics Communications, 2008,281,2449-2453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700