用户名: 密码: 验证码:
自主虚拟人关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主虚拟人技术在虚拟空间中对人类的形态、运动、行为和认知方式进行模拟,其目的是使虚拟人能够在没有外界干预的条件下,根据外在与内在的条件进行自主的行为选择与控制。随着虚拟人角色越来越多地出现在虚拟训练、工业设计、娱乐等各种应用中,人们对虚拟人的智能化和自主程度提出了更高的要求,使得自主虚拟人成为了虚拟人研究中的热点问题之一。针对目前自主虚拟人控制技术中存在的问题,本文对运动控制、感知、路径规划和行为控制等关键性技术进行了研究。
     本文首先对虚拟人四肢的运动控制技术进行了研究。将神经科学中的可操作性矩阵应用于控制过程,并与动态插值方法及逆向运动学优化求解方法相结合,用于生成符合人体运动规律的动作数据。在多障碍环境中,该控制方法可以实时生成无碰撞的四肢动作。
     其次,基于对人类感官的生理特性和感知特征的分析,本文建立了虚拟人感知模型。该模型具有视觉、听觉、触觉、记忆等功能,在对人类感知局限性进行模拟的同时,也实现了感知结果对感知过程的反馈影响。
     此外,根据虚拟人路径规划的特点,本文将全局规划算法与局部规划算法相结合,建立了基于混合感知信息的虚拟人路径规划模型。该模型既能够依据虚拟人记忆中的已知环境信息,规划出全局优化的运动路线,也能够通过运动方向与速度的调整,实时躲避动态或未知的障碍。
     本文对虚拟人行为系统进行了建模,实现了虚拟人的自主行为选择,以及从抽象行为到运动与动作数据流的推理。然后提出了一种混合的行为控制结构,并按照该结构将感知、规划、运动和行为等系统模型相结合,建立了完整的自主虚拟人行为控制模型。
     最后,本文将上述行为控制模型应用于工业设计领域,开发了基于虚拟人技术的人机工程测试系统。该系统能够实现对工业产品与作业空间的可达域和可视域测试,并给出测试过程的虚拟人动画。该系统的开发过程也验证了行为控制模型具有一定的灵活性与可扩展性,为自主虚拟人在虚拟现实、动画制作和工业应用中的行为控制提供了参考。
The technology of autonomous virtual human simulates the figure, motion, behavior and cognitive style of human beings in virtual environment. The research aim is to enable the characters to choose and control own behaviors according to the internal and external conditions without user intervention. With more and more virtual characters appearing in the applications of virtual training, industry designing and entertainment, people bring up higher requirements to the intelligence and autonomy of virtual human.Therefore, the autonomous virtual human has become a hotspot in the research field of virtual human. To solving the problems in the control of autonomous virtual human, this paper studied on some key technologies, such as motion control, perception, path plan and behavior control.
     Fistly, this paper studied on the control method of limbs motion of virtual human. The manipulability matrix from neuroscience was employed in the process, and combined with dynamic interpolation and optimal solution of IK to obtain actions according with the motion rules of human limbs. In multi-obstacle enviorment, this control method can generate conlision-free animation in real time.
     Secondly, the perception model of virtual human was established by analyzing the physiological characters and perceptive behaviors of human’s sense organs. The model provides the perceptive faculties of vision, audition, touch and memory. While simulated the perceptive limitation of human beings, this model also realized the feedback influence of results on perceptive process.
     According to the specialties of the planning problem of virtual human, this paper integrated the arithmetic of global and local planning to establish the path planning model based on mixing information, which can obtain an optimum path according to the known condition in memory, and then evade dynamic or unknown obstacles by adjusting moving direction and velocity in real time.
     An autonomous behavior system was established in the paper, which realized the autonomous behavior choosing and decomposing from abstract behaviors to motion and action streams. Then a mixing behavior control archtechture was presented. Based on this archtechture, the perception, planning, motion and behavior systems was intergrated to establish a whole behavior control model of autonomous virtual human.
     Finally, this paper applied the behavior control model into industrial design field, and developed an ergonomics system based on virtual human technology. The system realized the evaluation of accessibility and visibility of productions or working spaces, and animation of evaluating process can be generated. By applied into this system, the behavior control model was validated to be extensible and flexible.
引文
[1] G. C. Burdea. Virtual reality systems and applications. In: Proc. of Virtual Reality '95, Munich, IDG Conferences and Seminars, 1995. 317~324
    [2] N. I. Badler, C. B. Phillips, B. L. Webber. Simulating humans: Computer graphics, animation, and control. London: Oxford University Press, 1999. 1~20
    [3] N. I. Badler, M. Costa, L. Zhao. To gesture or not to gesture: What is the question? Computer Graphics International, 2000. 3~9
    [4] D. J. Wiley, J. K. Hahn. Interpolation synthesis of articulated figure motion. Computer Graphics and Applications, 1997, 17: 39~45
    [5] S. R. Musse, M. Kallmann, D. Thlmann. Level of autonomy for virtual human agents. In: Proc. ECAL '99, Lausanne, 1999. 345~349
    [6] D. Thalmann. The role of virtual humans in virtual environment technology and interfaces. Frontiers of Human-Centered Computer, Online Communities and Virtual Environments, 2001, XV: 27~39
    [7] W. L. Johnson, J. W. Rickel. Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environment. International Journal of Artificial Intelligence in Education, 2000, 11: 47~78
    [8] W. S. Lee, N. Magnenat-Thalmann. Head modeling from pictures and morphing in 3D with image metamorphosis based on triangulation. In: Proc. Modeling and Motion Capture Techniques for Virtual Environments, Geneva, Switzerland, 1998. 254~267
    [9] P. Fua, R. Plankers, D. Thalmann. From Synthesis to Analysis: Fitting Human Animation Models to Image Data. In: Proc. CGI 99, IEEE Computer Society Press, 1999. 324~331
    [10] N. I. Badler. Real-Time Virtual Humans. In: The Fifth Pacific Conference on Computer Graphics and Applications, 1997. 4~13
    [11] C. B. Phillips, N. I. Badler. Interactive Behavior for Bipedal Articulated Figures. Computer Graphics, 1991, 25(4): 359~362
    [12] P. Lee, S. Wei, J. Zhao, N. I. Badler. Strength Guided Motion. Computer Graphics, 1990, 24(4): 253~262
    [13] H. Ko, N. I. Badler. Animating Human Locomotion with Inverse Dynamics. IEEE Computer Graphics and Application, 1996, 16(2): 42~53
    [14] N. I. Badler, K. H. Manoochehri, G. Walters. Articulated Figure Positioning by Multiple Constraints. IEEE Computer Graphics and Applications, 1987, 7(6): 28~38
    [15] C. B. Philips, J. Zhao, N. I. Badler. Interactive Real-time Articulated Figure Manipulation Using Multiple Kinematics Constraints. Computer Graphics, 1990, 24(2): 245~250
    [16] Y. Liu, N. I. Badler, Real-Time Reach Planning for Animated Characters Using Hardware Acceleration. Computer Animation and Social Agents, IEEE Computer Society, New Brunswick, 2003. 86~93
    [17] D. Tolani, A. Goswami, N. I. Badler. Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models, 2000, 62(5): 353~388
    [18] G. Monheit, N. I. Badler. A kinematic model of the human spine and torso. IEEE Computer Graphics and Applications, 1991, 11(2): 29~38
    [19] N. I. Badler, M. S. Palmer, R. Bindiganavale. Animation Control for Real-Time Virtual Humans. Communications of the ACM, 1999, 42(8): 64~73
    [20] S. N. Steketee, N. I. Badler. Parametric Keyframe Interpolation Incorporating Kinetic Adjustment and Phrasing Control. Computer Graphics, 1985, 19(3): 255~262
    [21] R. Bindiganavale, J. Granieri, S. Wei, X. Zhao, N. I. Badler. Posture interpolation with collision avoidance. Computer Animation '94, Geneva, Switz, 1994: 13~20
    [22] E. Aaron, H. Sun, F. Ivancic, D. Metaxas. A Hybrid Dynamical Systems Approach to Intelligent Low-Level Navigation, Proceedings of Computer Animation, 2002, Geneva, Switzerland, 2002. 19~21
    [23] S. Chopra-Khullar, N. Badler. Where to look? Automating attending behaviors of virtual human characters. Autonomous Agents and Multi-agent Systems, 2001, 4: 9~23
    [24] N. Badler, D. Chi, S. Chopra. Virtual human animation based on movement observation and cognitive behavior models. Computer Animation Conf, Geneva, Switzerland, 1999. 128~137
    [25] B. Douville, L. Levison, N. Badler. Task level object grasping for simulated agents. Teleoperators and Virtual Environments, 1996, 5(4): 416~430
    [26] J. Park, D. Metaxas, A. A. Young, L. Axel. Deformable Models with Parameter Functions for Cardiac Motion Analysis from Tagged MRI Data. IEEE Transactions on Medical Imaging, 1996, 15(3): 278~289
    [27] J. P. Granieri, J. Crabtree, N. I. Badler. Production and playback of human figure motion for visual simulation. ACM Transactions on Modeling and Computer Simulation, 1995, 5(3): 222~241
    [28] N. Magnenat-Thalmann, D. Thalmann. The Direction of synthetic Actors in the Film Rendezvous a Montreal. IEEE Computer Graphics and Applications, 1987, 7(12): 9~19
    [29] N. Magnenat-Thalmann, D. Thalmann. The Virtual Humans Story. IEEE Annals of the History of Computing, 1998, 20(2): 50~51
    [30] P. Kalra, N. Magnenat-Thalmann. Modeling of Vascular Expressions in Facial Animation. Computer Animation '94, Geneva, Switzerland, 1994. 50~58
    [31] A. Egges, S. Kshirsagar, N. Magnenat-Thalmann. Generic Personality and Emotion Simulation for Conversational Agents. Computer Animation and Virtual Worlds, 2004, 15(1): 1~13
    [32] P. Volino, N. Magnenat-Thalmann. Real-Time Animation of Complex Hairstyles. IEEE Transactions of Visualization and Computer Graphics, 2006, 12: 131~142
    [33] P. Volino, N. Magnenat-Thalmann, S. Jianhua, D. Thalmann. The Evolution of a 3D System for Simulating Deformable Clothes on Virtual Actors. IEEE Computer Graphics and Applications, 1996: 42~50
    [34] M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, D. Thalmann. Motion Control of Virtual Humans. IEEE Computer Graphics and Applications, 1998, 18: 24~31
    [35] L. Yahia-Cherif, B. Gilles, T. Molet, N. Magnenat-Thalmann. Motion capture and visualization of the hip joint with dynamic MRI and optical systems. Computer Animation and Virtual Worlds, 2004, 15(3): 377~385
    [36] J. Kim, F. Cordier, N. Magnenat-Thalmann. Neural Network-based Violonist's Hand Animation. Computer Graphics International, 2000. 37~41
    [37] N. Magnenat-Thalmann, H. Seo. Dynamic body transformation and matching from scanned data. Proc. Shape Modeling International, IEEE Computer Society Press, 2004. 3~7
    [38] N. D'Apuzzo, R. Plankers, A. Gruen, P. Fua, D. Thalmann. Modeling Human Bodies from Video Sequences, Proc. Electronic Imaging, San Jose, California, 1999. 36~47
    [39] A. Daldegan, T. Kurihara, N. Magnenat-Thalmann, D. Thalmann. An Integrated System for Modeling, Animating and Rendering Hair. Proc. Eurographics '93, Computer Graphics Forum, 1993, 12(3): 211~221
    [40] A. Aubel, D. Thalmann. Realistic Deformation of Human Body Shapes, Proc. Computer Animation and Simulation 2000, Interlaken, 2000. 125~135
    [41] S. Jianhua, N. Magnenat-Thalmann, D. Thalmann. Muscle-Based Human Body Deformation, Proc 3rd Conf. on CAD/CG, Beijing, 1993. 95~100
    [42] W. Maurel, D. Thalmann. Human Shoulder Modeling Including Scapulo-Thoracic Constraint and Joint Sinus Cones. Computers and Graphics, Pergamon Press, 2000, 24: 203~218
    [43] R. Boulic, N. Magnenat-Thalmann, D. Thalmann. A Global Human Walking Model with Real-time Kinematics Personification. The Visual Computer, 1990, 6(6): 344~358
    [44] L. Bezault, R. Boulic, N. Magnenat-Thalmann, D. Thalmann. An Interactive Tool for the Design of Human Free-Walking Trajectories. Proc. Computer Animation '92, Springer, Tokyo, 1992. 87~104
    [45] R. Boulic, D. Thalmann. Combined Direct and Inverse Kinematic Control for Articulated Figures Motion Editing. Computer Graphics Forum, 11(4): 189~202
    [46] S. Bandi, D. Thalmann. An Adaptive Spatial Subdivision of the Object Space for Fast Collision of Animated Rigid Bodies. Proc. Eurographics `95, Maastricht, 1995. 259~270
    [47] M. Kallmann, D. Thalmann. A Behavioral Interface to Simulate Agent-Object Interactions in Real-Time. Proc. Computer Animation 99, IEEE Computer Society Press, 1999. 138~146
    [48] H. Noser, D. Thalmann. Synthetic Vision and Audition for Digital Actors. Proc. Eurographics `95, Maastricht, 1995. 325~336
    [49] H. Noser, D. Thalmann. Sensor Based Synthetic Actors in a Tennis Game Simulation. The Visual Computer, 1998, 14(4): 193~205
    [50] H. Noser, D. Thalmann. A Rule-based Interactive Behavioral Animation System for Humanoids. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 281~307
    [51] D. Thalmann, J. S. Monzani. Behavioural Animation of Virtual Humans: What Kind of Law and Rules? Proc. Computer Animation 2002, IEEE CS Press, 2002. 154~163
    [52] T. Conde, D. Thalmann. Autonomous Virtual Agents Learning a Cognitive Model and Evolving, Intelligent Virtual Agents. Lecture Notes in Computer Science, 2005, 3631: 88~98
    [53] T. Conde, D. Thalmann. Learnable Behavioural Model for Autonomous Virtual Agents: Low-Level Learning. Proc. of Fifth International Conference on Autonomous Agents and Multiagent Systems 2006, Hakodate, Japan, 2006. 89~96
    [54] A. Ulicny, D. Thalmann. Crowd simulation for virtual heritage, Proc. First International Workshop on 3D Virtual Heritage, Geneva, 2002. 28~32
    [55] A. Ulicny, P. H. Ciechomski, D. Thalmann, Crowdbrush: Interactive Authoring of Real-time Crowd Scenes. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation ‘04, 2004. 243~252
    [56] D. Thalmann, C. Hery, H. Ono, D. Sutton, S. Lippman, S. Regelous. Crowd and Group Animation. SIGGRAPH 2004, Los Angeles, 2004
    [57] D. Thalmann, C. Babski, T. Capin, N. Magnenat Thalmann, I. Pandzic. Sharing VLNET Worlds on the WEB. Computer Networks and ISDN Systems, Elsevier, 1997, 29: 1601~1610
    [58] I. Pandzic, T. Capin, E. Lee, N. Magnenat Thalmann, D. Thalmann. A Flexible Architecture for Virtual Humans in Networked Collaborative Virtual Environments. Proc. Eurographics '97, 1997. 177~188
    [59] I. Pandzic, C. Babski, T. Capin, W. S. Lee, N. Magnenat-Thalmann, S. R. Musse, L. Moccozet, H. Seo, D. Thalmann. Simulating Virtual Humans in Networked Virtual Environments, MIT Press, 2001, 10(6): 632~646
    [60] J. N. Bailenson, P. Garland, S. Iyengar, N. Yee. Transformed Facial Similarity as a Political Cue: A Preliminary Investigation. Political Psychology, 2006, 27: 373~386
    [61] J. N. Bailenson, A. C. Beall, J. Blascovich, J. Loomis, M. Turk. Transformed Social Interaction, Augmented Gaze, and Social Influence in Immersive Virtual Environments. Human Communication Research, 2005, 31: 511~537
    [62] J. N. Bailenson, A. C. Beall, J. Blascovich, M. Weisbuch, R. Raimmundo. Intelligent Agents Who Wear Your Face: Users' Reactions to the Virtual Self. Lecture Notes in Artificial Intelligence, 2001, 2190: 86~99
    [63] R. A. Metoyer, J. K. Hodgins. Animating Athletic Motion Planning By Example. Proceedings of Graphics Interface 2000, Montreal, Quebec, Canada, 2000/ 61~68
    [64] J. F. O'Brien, B. E. Bodenheimer, G. J. Brostow, J. K. Hodgins. Automatic Joint Parameter Estimation from Magnetic Motion Capture Data. Proceedings of Graphics Interface 2000, Montreal, Quebec, Canada, 2000: 53~60
    [65] W. L. Wooten, J. K. Hodgins, Animation of Human Diving. Computer Graphics Forum, 1996, 15(1): 3~13
    [66] N. S. Pollard, V. B. Zordan. Physically based grasping control from example. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2005. 311~318
    [67] P. S. A. Reitsma, N. S. Pollard. Evaluating motion graphs for character navigation. ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2004. 89~98
    [68] J. K. Hodgins. Atlanta in motion. ACM SIGGRAPH 96, Visual Proceedings: The art and interdisciplinary programs of SIGGRAPH '96, ACM Press, 1996. 163~164
    [69] B. Bodenheimer, A. V. Shleyfman, J. K. Hodgins. The effects of noise on the perception of animated human running. Computer Animation and Simulation '99, 1999. 53~63
    [70] H. Vilhjalmsson, J. Cassell, Bodychat: Autonomous communicative behaviors in avatars. Proc. of the ACM Conference on Autonomous Agents, 1998. 269~276
    [71] N. M. Thalmann, D. Thalmann. Computer Animation Theory and Practice. 2th ed., Tokyo: Springer-Verlag, 1990. 129~152
    [72] International Standard ISO/IEC, 14496-16, The MPEG-4 Animation Framework extension, 2004
    [73] International Standard ISO/IEC, FCD 19774, The Humanoid Animation Specification, 2004
    [74] M. Girard, A. Maciejewski. A computational modeling for the computer animation of legged figures, Computer Graphics, 1985, 19(3): 263~270
    [75] R. Boulic, R. Mas, D. Thalmann. Inverse Kinetics for Center of Mass Position Control and Posture Optimization. Computers and Graphics, 1996, 20(5): 693~701
    [76] A. Witkin, K. Fleischer. A. Barr. Energy constraints on parameterized models. Computer Graphics, 1987, 21(4): 225~232
    [77] M. Moors, J. Withclms. Collision detection and response for computer animation. Computer Graphics, 1988, 22(A): 289~298
    [78] C. F. Rose III. Verbs and Adverbs: Multidimensional motion interpolation using radial basis functions, PhD thesis, Princeton University, 1999
    [79] H. A. Mallot. Behavior-oriented approaches to cognition: theoretical perspectives, Theory in biosciences, 1997, 116: 196~220
    [80] R. G. Lord, P. E. Levy. Moving from cognition to action: A control theory perspective. Psychology: an international review, 1998, 43(3): 335~298
    [81] Newell, Unified Theories of Cognition, Harvard University press, Mass, 1990
    [82] C. Reynolds. Computer animation with scripts and actors. ACM Computer Graphics, ACM SIGGRAPH 82, 1982, 16(3):289~296
    [83] C. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM Computer Graphics, SIGGRAPH 87, 1987, 21(4): 25~34
    [84] B. Blumberg, M. Downie, Y. Ivanov, Integrated Learning for Interactive Synthetic Characters. Proc. of Siggraph, 2002: 417~426
    [85] E. Bouvier, E. Cohen, L. Najman. From crowd simulation to airbag deployment: particle systems, a new paradigm of simulation. Journal of Electrical Imaging, 1997, 6(1): 94~107
    [86] D. Brogan, J. Hodgins. Group Behaviors for Systems with Significant Dynamics. Autonomous Robots, 1997, 4: 137~153
    [87] S. R. Musse, D. Thalmann. Hierarchical Model for Real Time Simulation of Virtual Human Crowds. IEEE Trans. on Visualization & Computer Graphics, 2001, 7(2):152~164
    [88] B. Arnaldi, G. Dumont, G. Hégron, N. Magnenat-Thalmann, D. Thalmann. Animation Control with Dynamics. State-Of-The-Art in Computer Animation. Tokyo, Springer, 1996, 20(5): 693~701
    [89] W. Abend, E. Bizzi, P. Morasso. Human Arm Trajectory Formation. Brain. 1982, 105: 331~348
    [90] P. N. Sabes, M. I. Jordan. Obstacle Avoidance and a Perturbation Sensitivity Model for Motor Planning. Journal of Neuroscience. 1997, 17: 7119~7128
    [91] P. N. Sabes, M. I. Jordan, D. M. Wolpert. The Role Of Inertial Sensitivity In Motor Planning. Journal Of Neuroscience, 1998, 18: 5948~5957
    [92] J. Dean, M. Bruwer. Control of Human Arm Movements In Two Dimensions: Paths And Joint Control In Avoiding Simple Linear Obstacles. Brain, 1994, 97: 497~514
    [93] J. Nebel. Realistic Collision Avoidance of Upper Limbs Based On Neuroscience Models. Computer Graphics Forum, 2000, V19 (3): 219~227
    [94] T. Flash, N. Hogan. The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. Journal of Neuroscience. 1985, 5: 1688~1703
    [95] C. Bordeux, R. Boulic, D. Thalmann. An Efficient and Flexible Perception Pipeline for Autonomous Agents. Proc. Eurographics'99, Milano, Italy, 1999. 23~30
    [96] H. Noser, O. Renault, D. Thalmann, N. Magnenat-Thalmann. Navigation for Digital Actors based on Synthetic Vision, Memory and Learning. Computer and Graphics, 1995,19(1):7~19
    [97] H. Noser, D. Thanlmann. Synthetic Vision and Autidtion for Digital Actors. Proc. Eurographics 95, Maatricht, 1995. 325~336
    [98] T. L. Perez. Automatic planning of manipulator transfer movements. IEEE Trans. Systems, Man and Cybernetics, 1981, 11(11): 681~698
    [99] R. A. Brooks. Solving the find-path problem by good representation of free space. IEEE Trans on Systems, Man and Cybernetics, 1983, 13(3): 190~197
    [100] M. B. Metea. Planning for intelligence autonomous land vehicles using hierarchical terain representation. Proc of IEEE Int Conf on Robotics and Automation, 1987. 1947~1952
    [101] O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. Int. J. Robotics Res, 1986, 5(1): 90~98
    [102] B. H. Krogh. A generalized potential field approach to obstacle avoidance control. Proc. of SME Conf. on Robotics Research, Bethlehem, 1984. 950~955
    [103] F. Lamiraux, J. P. Laumond. On the expected complexity of random path planning. Proc. of the IEEE Int. Conf on Robotics and Automation, 1996, 4: 3014-3019
    [104] X. P. Yun, K. Tan. A Wall-Following Method for Escaping Local Minima in Potential Field Based Motion Planning. ICAR' 97, Monterey, CA, 1997. 421~426
    [105] H. Surmann, J. Huser, J. Wehking. Path planning for a fuzzy controlled autonomous mobile robot. Proc. Fifth IEEE Int. Conf. on Fuzzy Systems, 1996,(8-11): 1660~1665
    [106] C. W. Reynolds. Steering Behaviors For Autonomous Characters. In Proc. 1999 Game Developer’s Conference, 1999. 763~782
    [107] D. Helbings, P. C. Molnar. Social force model for pedestrian dynamics, Physical Review E, 1995, 51(5): 4282-4286
    [108] R. A. Metoyer, J. K. Hodgins. Reactive Pedestrian Navigation from Examples. The Visual Computer, 2004, 20(10): 635~649
    [109] J. Pettre, J. P. Laumond, T. Simeon. A 2-Stages Locomotion Planner for Digital Actors. In Proc. of Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2003. 258~264
    [110] R. Boulic, H. Noser, D. Thalmann. Automatic Derivation of Curved Human Walking Trajectories from Synthetic Vistion. In: Proc. Computer Animation'94, IEEE Computer Society Press, 1994. 93~103
    [111] T. Tyrrell. Defining the action selection problem. In the Fourteenth Annual Conf. of the Cognitive Society, Lawrence Erlbaum Associates, 1992.
    [112] C. Hull. Principles of Behaviour: an Introduction to Behaviour Theory. D. Appleton-Century Company, Inc. 1943.
    [113] D. McFarland. Mechanisms of behavioural disinhibition. Animal Behaviour, 1969, 17: 238~242
    [114] N. Tinbergen. The hierarchical organization of mechanisms underlying instinctive behaviour. Experimental Biology, 1950, 4: 305~312
    [115] P. Maes. Adaptive action selection. Programme of the Thirteenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, 1991.
    [116] G. Saridis. Toward the Realization of Intelligent Controls. Proc.of the IEEE, 1979, 67(8): 1115~1133
    [117] J. S. Albus, H. G. Mcain, R. Lumia. NASA/NBS standard reference model for tele-robot control system architecture (NASREM). NIST Technical Note 1235, 1989.
    [118] R. Brooks. A robust layered control system for a mobile robot. IEEE Transactions on Robotics and Automation. 1986, 2(1): 14~23
    [119] E. Gat. Three layer architectures in artificial intelligence and mobile robots. AAAI Press/The MIT Press, 1990.
    [120] S. Donikian. HPTS: A Behaviour Modelling Language for Autonomous Agents. AGENTS’01, Montreal, Quebec, Canada, 2001. 401~408
    [121] N. I. Badler, B. Reich, B.Webber. Towards personalities for animated agents with reactive and planning behaviors. Lecture Notes in Artificial Inteligence, Creating Personalities for synthetic actors. 1997, 1195: 43~57
    [122] D. Reich. An Architecture for behavioral locomotion. Ph.D Dissertation, University of Pennsylvania, 1997
    [123] R. Beer, H. Chiel, L. Sterling. A biological perspective on autonomous agent design. Robotics and Autonomous Systems, 1990, 6: 169~186
    [124] 王兆其,虚拟人合成研究综述,中国科学院研究生院学报,2000,17(2):89~98
    [125] 涂晓媛,人工鱼-计算机动画的人工生命方法,北京:清华大学出版社,2001
    [126] 刘艳,三维虚拟人行为控制关键技术的研究,博士学位论文,天津大学,2003
    [127] 贺怀清,虚拟人的建模及运动控制算法的研究,博士学位论文,哈尔滨工业大学,2001
    [128] 宋顺林,詹永照,薛安荣,伏劲松,三维计算机动画中人体建模方法的研究,软件学报,1995,6 (5):311~315
    [129] 宋顺林,詹永照,薛安荣,伏劲松,三维人体行走模型的研究与实现,计算机学报,1996,19(6):429~434
    [130] 袁修干,庄达民,人机工程,北京:北京航空航天大学出版社,2002:87~90
    [131] 陈信,袁修干,人-机-环境系统工程计算机仿真,北京:北京航空航天大学出版社,2001:135~160
    [132] 贺怀清,洪炳熔,虚拟人实时运动控制的研究,计算机工程,2000,26:51~55
    [133] 贺怀清,洪炳熔,一种虚拟人运动拟合算法,电子学报,2001,29(8):1107~1109
    [134] 贺怀清,刘浩翰,一种基于力矩优化的虚拟人运动控制算法,宇航学报,2001,22(3):45~51
    [135] 洪炳熔,贺怀清,虚拟人步行和跑步运动方式的实现,计算机应用研究,2000,11:15~19
    [136] 贺怀清,路径规划在 Intelligent Agent 三维人体动画中的应用,计算机科学,2001,28(3):116~118
    [137] 贺怀清,刘浩瀚,一种虚拟人漫游虚拟环境的路径规划算法,计算机工程,2002,28(12):32~34
    [138] 刘涛,孙守迁,潘云鹤,面向艺术与设计的虚拟人技术研究,计算机辅助设计与图形学学报,2004,16(11):1475~1484
    [139] 纪庆革,潘志庚,梅林,杨世琦,李祥晨,团体操虚拟编排和演练原型系统,计算机辅助设计与图形学学报,2004,16(9):1185~1190
    [140] 徐孟,孙守迁,潘云鹤,虚拟人运动控制技术的研究,系统仿真学报,2003,15(3):338~346
    [141] 许威威,潘志庚,葛云芳,基于足迹采样的运动编辑,计算机辅助设计与图形学学报,2003,15(7):805~811
    [142] 许威威,潘志庚,张明敏,智能虚拟环境中的决策模型及其应用,中国图象图形学报,2001,6(5):496~501
    [143] 刘箴,潘志庚,虚拟人情绪行为动画模型,计算机图象图形学报,2003,8(7):817~822
    [144] 朱强,庄越挺,潘云鹤,基于紧身衣的人体动画研究,软件学报,2002,13(4):601~607
    [145] 罗忠祥,庄越挺,刘丰,潘云鹤,基于时空约束的运动编辑和运动重定向,计算机辅助设计与图形学学报,2002,14(12):1146~1151
    [146] 杨长水,王兆其,高文,陈益强,个性化虚拟人体模型骨架生成方法,计算机辅助设计与图形学学报,2004,16(1):67~72
    [147] 李艳,王兆其,毛天露,基于广义交叉截面的实时虚拟人皮肤变形方法,计算机科学,2005,32(1):190~193
    [148] 王兆其,徐燕,一种基于传感器的人体上肢运动实时跟踪方法,计算机学报,2001,24(6):616~619
    [149] 束搏,毛天露,王兆其,基于 D3D 的三维虚拟人运动显示,计算机辅助设计与图形学学报,2004,16(11):1505~1510
    [150] 王兆基,杨长水,基于 VRML 的中国手语三维显示,计算机研究与发展,2003,40(3):459~463
    [151] 王兆其,高文,基于虚拟人合成技术的中国手语合成方法,软件学报,2002,13(10):2051~2056
    [152] 柏艺琴,贺怀清,移动机器人路径规划方法简介,中国民航学院学报,2003,21(A02):206~209
    [153] 付宜利,顾晓宇,王树国,基于模糊控制的自主机器人路径规划策略研究,机器人,2004,26(6):548~552
    [154] 周明,孙树栋,彭炎午,基于遗传模拟退火算法的机器人路径规划,航空学报,1998,19(1):l18~120
    [155] 庄晓东,孟庆春,动态环境中基于模糊概念的机器人路径搜索方法,机器人,2001,23(5):397~399
    [156] 李瑞峰,李伟招,基于多传感器信息融合的移动机器人路径规划,机电一体化,2002,(4):20-23
    [157] 李智军,罗青,吕恬生,多智能体机器人系统中的自适应导航算法,上海交通大学学报,2001,35(7):1015-1019
    [158] 陈华志,谢存禧,张铁,基于多 Agent 的移动机器人体系结构研究,组合机床与自动化加工技术,2003,4:31~32
    [159] 王海,田彦涛,基于行为的分布式多智能体系统,吉林大学学报,2002,32(1):93~97
    [160] 薛宏涛,叶媛媛,多智能体系统体系结构及协调机制研究综述,机器人,2001,23(1):85~90
    [161] 李磊,移动机器人系统设计与视觉导航控制研究,博士学位论文,中国科学院自动化研究所,2003
    [162] 张卫东,基础心理学纲要,北京:原子能出版社,2004:81~164
    [163] 马祖礼,行为学导论,天津:南开大学出版社,1990:13~28
    [164] 郭青山,汪元辉,人机工程设计,天津:天津大学出版社,1994:12~44
    [165] 丁玉兰,郭钢,沈文琪等,人机工程学,北京:北京理工大学出版社,1991:23~130
    [166] 中华人民共和国国家技术监督局,GB10000-88,中华人民共和国国家标准,北京:中国标准出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700