用户名: 密码: 验证码:
电动微分析系统及其在药物分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用毛细管电泳领域相关理论与技术对毛细管区带电泳、微流控芯片电泳和整体毛细管电色谱在药物分析中的应用进行了研究。
     1毛细管电泳理论研究及其在药物分析中的应用
     1.1推导了一个毛细管电泳峰分离度的表达式t_s=(W_(inj)+W_(det))/(Δv-v_d)。由上式可得出一定操作条件下,所需毛细管柱的最短柱长为t_sv_1。该式对一般的色谱分析和毛细管电色谱的条件优化也具有指导意义。
     1.2指出了毛细管电渗流产生与实验之间存在的矛盾,提出了一个关于电渗流产生机制的假设:在电场作用下,由于双电层扩散层对缓冲液中同号离子的“电润滑”作用和对缓冲液中异号离子的“电阻滞”作用,使缓冲液中的正负离子相向运动产生的对本体缓冲液的推动力平衡被打破,从而产生与扩散层离子泳动方向一致的“净推动力”,使电渗流产生。同时,毛细管内壁对缓冲液的一般阻滞作用对电渗流的大小也有重要影响。利用该假设对电渗流平头流型的成因、毛细管内径、温度、缓冲液浓度和有机改性剂等对电渗流的影响重新进行了解释,这也有助于不同种类毛细管电色谱整体柱柱床的设计和分析条件的优化。
     1.3对影响毛细管电泳重现性的因素与控制方法进行了总结和讨论,阐明了对分析过程的综合控制有助于结果重现性的改善。
     1.4采用毛细管区带电泳法对曲克芦丁制剂中三羟乙基芦丁的含量,板蓝根注射液中胞苷、腺苷、鸟苷和尿苷的含量进行了测定。同时采用毛细管电泳—质谱/质谱方法对曲克芦丁及其主要杂质进行了鉴定。
     2微流控芯片检测系统的建立及其在药物分析中的应用
     本文研制了一台正交结构的微流控芯片激光诱导荧光检测器,结构简单,体积较小,对微流控芯片的尺寸与通道结构适应性强,操作灵活方便,并可采用不同波长的激光与滤光片来选择不同的测定条件。利用自组建的显微成像系统对芯片的弯道效应进行了观察。提出了芯片电泳组分进样时间与其迁移时间的关系式t_(inj)=(l_(inj)·E_(sep))/(l_(sep)·E_(inj))·t_m。以维生素B_2为实际样品,激发波长473nm,检测波长520hm,考察了芯片通道结构的设计、芯片通道的处理过程、分析条件的优化和结果重现性等。还对安非他明类毒品的芯片电泳分离分析进行了初步考察。由于药物大多具有紫外吸收,本文同时设计了一套芯片紫外检测系统,采用通道尾部接合石英毛细管的杂交芯片,对联磺甲氧苄啶片中的三组分、冬虫夏草中的三种核苷类成分进行了分析。结果表明微流控芯片电泳分析在药物分析中具有一定的实用性,有进一步深入研究的价值。
     3毛细管电色谱基本理论及其在药物分析中的应用
     3.1在组分的电泳因素基本不影响其色谱行为的前提下,推导出新的组分保留因子表达式k_(CEC)=k′-μ_(ep)/(μ_(eo)+μ_(ep))(Ⅰ)及k_(CEC)=k′-(μ_(ep)-μ_(ep)~0)/(μ_(eo)+μ_(ep))(Ⅱ),两者互为补充。同时对毛细管电色谱文献中组分保留因子的两种表达式k_(CEC)=k′+k′μ_(ep)/μ_(eo)+μ_(ep)/μ_(eo)(Ⅲ)及k_(CEC)=(k′-μ_(ep)/μ_(eo))/(1+μ_(ep)/μ_(eo))(Ⅳ)进行了讨论,指出了表达式(Ⅲ)推导中引用组分电泳迁移距离的错误。当μ_(eo)=0时,(Ⅱ)式能够弥补表达式(Ⅰ)和(Ⅳ)式的不足,有效反映组分的μ_(ep)和k′对k_(CEC)的影响。(Ⅰ)和(Ⅱ)式能够使组分保留因子始终反映出组分色谱与电泳行为的综合作用。
     3.2制备了四种毛细管电色谱整体柱:分别以BMA和LMA为单体,均含电渗流引发剂AMPS的两种整体柱与分别以BMA和LMA为单体均不含AMPS的两种整体柱。结果表明,采用阴离子表面活性剂对不含电渗流引发剂的两种电色谱整体柱进行表面修饰,电渗流产生状况一致,分离性能相似。而含电渗流引发剂的LMA柱电渗流小且不稳定,组分峰形差。电渗流引发剂似乎只适用于短碳链固定相的情况。
     3.3采用含电渗流引发剂的BMA柱对联磺甲氧苄啶片中的三组分进行了分离,对曲克芦丁片中曲克芦丁的含量、冬虫夏草中胞苷和腺苷的含量进行了测定。结果表明整体毛细管电色谱法对于中药和西药的分析都具有很大的应用潜力。虽柱效较低,但方法的重现性和耐用性等优于相应的毛细管区带电泳。整体毛细管电色谱在药物分析中的应用前景广阔。
Theories of capillary zone electrophoresis, microfluidic chip analysis and monolithic capillary electrochromatography and their applications in pharmaceutical analysis were investigated and demonstrated in the paper.1 Theoretical studies on CE and the applications of CE in pharmaceutical analysis1.1 An expression that permits the determination of the resolution froman electropherogram was firstly formulated. The least length of a capillary column was t_sv_1. The expression should be useful in the optimization of common chromatographicanalysis and CEC.1.2 The conflicts between the motivity of EOF and the experimental phenomena in CE were described, and a hypothesis on the mechanism of EOF development was presented for the first time: under the applied voltage, the diffuse layer of the EDL acted as a stationary phase and had a chromatographic function to the ions in buffer, the co-ions in buffer which had the same charge of the ions in the diffuse layer were "lubricated", while the counter-ions in buffer were "retarded". So, the balance of the push forces to the bulk buffer in two directions was broken and a net push force produced, and thus formed the motivity of EOF in the direction of the electrophoresis of the ions in the diffuse layer. The inhibition of the capillary inner wall to the bulk solution was also played an important role in the process of EOF. The flat profile mechanism and how the capillary inside diameter, buffer concentration, temperature and added modifiers, etc. influenced EOF were re-explained according to the assumption, and this will be helpful for the design of different kinds of monolithic capillary electrochromatographic bed and the optimization of its operational condition.1.3 Factors that influenced the reproducibility in CE and its controls were summarized and discussed. The reproducibility of the results could be improved when the analytical process was synthetically controlled.1.4 The content of troxerutin in troxerutin preparations and the contents of Cytidine, Adenosine, Guanosine and Undine in Banlangen injection were determined by CE. Troxerutin and its impurities were also identified by CE-MS/MS.2 The establishment of microfluidic chip analytical systems and their applications in pharmaceutical analysis
     A small-scale LIF detector with simple orthogonal structure for the chip analysis was developed. It was seasoned with chips of different size and channel network. The position of the detection could be adjusted conveniently. The replacement of the laser and the filter with different wavelength could adapt to the corresponding condition. The turn-induced broadening named turn effect was observed through a set of homemade micro=imagining system. The expression t_(inj)=(l_(inj)·E_(sep))/(l_(sep)·E_(inj))·t_m, which described the relationship between the injection time and the migration time of a component in chip analysis, was given. Vitamin B_2 was analyzed with excited wavelength 473nm and emission wavelength 520nm. The design of the channel structure, the treatment of the channel, the operational condition optimizing and the reproduction of the results were investigated. The primary separation of amphetamine kind drugs on microchip was also carried out. A set of UV detection system for chip analysis was also established since many medicines had UV absorbanee. Three components in sulfamethoxazole, sulfadiazine and trimethoprim tablets and three nueleotides in aweto were analyzed by the designed UV system, using the hybridized chip with a length of fused silica capillary was conglutinated to the channel end. The results demonstrated the feasibility of chip analysis for pharmaceutical analysis. Chip analysis is of value for further investigation.
     3 Theoretical study on CEC and the applications of CEC in pharmaceutical analysis
     3.1 On the assumption that component electrophoresis factor basically did not have parametric interaction with its chromatographic behavior in CEC, two new retention factor expressions k_(CEC)=k′-μ_(ep)/(μ_(eo)+μ_(ep))(Ⅰ)and k_(CEC)=k′-(μ_(ep)-μ_(ep)~0)/(μ_(eo)+μ_(ep))(Ⅱ) was deduced, and they can complement each other. Two expressions of component retention factor in literatures k_(CEC)=k′+k′μ_(ep)/μ_(eo)+μ_(ep)/μ_(eo)(Ⅲ) and k_(CEC)=(k′-μ_(ep)/μ_(eo))/(1+μ_(ep)/μ_(eo))(Ⅳ) were diseussed. Wrong citation of the component electrophoresis distance expression in the deduction of expression (Ⅲ) was pointed out. The expression (Ⅱ) could make up the limitation of above expressions, especially whenμ_(eo)=0. Expressions (Ⅰ)and (Ⅱ)could reflect the integrated effect of component chromatographic and electrophoresis behaviors.
     3.2 Four kinds of MLCEC column with or without AMPS as an EOF initiator using BMA and LMA, respectively, were prepared. The performance of the EOF on the four columns was investigated. The results indicated that the performances of the two columns without AMPS were consistent when modified using anionic surfactant. The EOF on the LMA column with AMPS was smaller and not stable causing poor peak shape. EOF initiator seems only applicable to the short chain stationary phase.
     3.3 The separation of three components in sulfamethoxazole, sulfadiazine and trimethoprim tablets and the determination of two nucleotides in aweto, and troxerutin in troxerutin tablets were performed by the BMA column with AMPS. The reproducibility and the ruggedness of MLCEC were better than those of CE though with lower column efficiency. The results indicated that M.LCEC had the broad prospects in pharmaceutical analysis.
引文
[1] 陈义.毛细管电泳技术及应用.第一版,北京:化学工业出版社,2000.
    [2] 邓延倬,何金兰.高效毛细管电泳.第一版,北京:科学出版社,2000.
    [3] Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass capillaries. Anal Chem, 1981, 53: 1298-1302.
    [4] Terabe S, Otsuka K, Ichikawa K, et al. Separation of neutral compound with micellar electrokinetic chromatography. Anal Chem, 1984, 56: 111-113.
    [5] 贡素萱,薄涛,刘虎威等.毛细管微乳液电动色谱的原理及应用.色谱,2003,21:226-229.
    [6] Hjerten S, Zhu MD. Adaptation of the equipment for high performance eletrophoresis to isoelectric focusing. J Chromatogr, 1985, 346: 265-270.
    [7] Cohen AS, Karger BL. High performance sodium dodecyl sulfate polyacrylamide gelcapillary electrophoresis of peptides and proteins. J Chromatogr, 1987, 397:409-417
    [8] Hirokawa T, Ohmori A, Kiso Y. Analysis of a dilute sample by capillary zone electrophoresis with isotachophoretic preconcentration. J Chromatogr, 1993, 634:101-106
    [9] 陈英,刘忠平.毛细管电泳—质谱联用技术及其在药物分析中的应用.药物分析杂志,2000,20:434-437
    [10] 胡琴,田颂九,宋景政,许鸣镝.非水毛细管电泳技术及其在药物分析中的应用.药物分析杂志,2001,21:218-224
    [11] 陈静,林慧琼.毛细管电泳技术及其在药物分析中的应用.广东药学院学报,2003,19:72-74
    [12] 孔爱英,王颖.高效毛细管电泳在临床体液中药物分析的应用.中国临床药学杂志,2003,12:119-123
    [13] 林金明,陈子林.毛细管电泳在药物分析中的应用.药学学报,1999,34:716-720
    [14] Lin JM, Goto H, Yamada M. On-line chemiluminescence detection for capillary electrophoresis based on the reaction of barium peroxide with luminescence reagents. J Chromatogr A, 1999, 844: 341-348.
    [15] Wolters AM, Jayawickrama DA, Larive CK, et al. Capillary isotachophoresis/NMR: extension to trace impurity analysis and improved instrumental coupling. Anal Chem, 2002, 74:2306-2313.
    [16] Manz A, Graber N, Widmer HM. Miniaturized total chemianalysis system: a novel concept for chemical sensing. Sensors and Actuators B, 1990, 1: 244-248
    [17] Manz A, Fettinger JC, Verpoorte E, et al. Micromachining of monocrystalline silicon and glass for chemical analysis systems-A look into next century's technology or just a fashionable craze? Trends Anal Chem, 1991, 10:144-149
    [18] Harrison DJ, Manz A, Fan ZH et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem.1992, 64:1926-1932
    [19] 方肇伦等编著.微流控分析芯片.第一版,北京:科学出版社,2003
    [20] Sahlin E, Beisler AT, Woltman SJ, et al. Fabrication of microchannel structures in fluorinated ethylene propylene. Anal Chem. 2002, 74:4566-4569
    [21] McCormick RM, Neison RJ, Alomso-Amigo MG, et al. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal Chem, 1997, 69:2626-2630
    [22] Henry AC, Tutt TJ, Galloway M, et al. Surface modification of PMMA used in the fabrication of microanalytical devices. Anal Chem, 2000, 72:5331-5337
    [23] Soper SA, Ford SM, Qi S, et al. Polymeric microelectro-mechanical systems. Anal Chem, 2000, 72: 643A-651A
    [24] He B, Tan L, Regnier F. Microfabricated filters for microfluidic analytical systems. Anal Chem, 1999, 71:1464-1468
    [25] 颜流水,梁宁,王建勇等.PDMS微流体芯片快速成型与化学发光检测研究.首届全国微全分析会议论文摘要集,北京,2002:81-82
    [26] Effenhauser CS, Manz A, Widmer HM. Manipulation of sample fractions on a capillary electrophoresis chip. Anal Chem, 1995, 67:2284-2287
    [27] Jacobson SC, Hergenroder R, Koutny LB, et al. effects of infection schemes and column geometry on the performance of microchip electrophoresis devices. Anal Chem, 1994, 66:1107-1113
    [28] Burggraf N, Manz A, Effenhauser CS, et al. Synchronized cyclic capillary electrophoresis: A novel approach to ion separations in solution. J High Resolution Chromatogr, 1993, 16:594-596
    [29] Cullbertson CT, Jacobson SC, Ramsey JM. Microchip devices for high efficiency separations. Anal Chem, 2000, 72:5814-5819
    [30] Vazquez M, McKinley G, Mitnik L, et al. Electrophoretic injection within microdevices. Anal Chem, 2002, 74:1952-1961
    [31] Shi y, Simpson PC, Scherer JR, et al. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chem, 1999, 71:5354-5361
    [32] Emrich CA, Tian HJ, Medintz IL, et al. Microfabricated 384 lane capillary array electrophoresis bioanalyzer for ultrahigh throughput genetic analysis. Anal Chem, 2002, 74:5076-5083
    [33] 陈超,赵湛.线性阵列电极电泳芯片的理论设计.首届全国微全分析会议论文摘要集,北京,2002:87-90
    [34] Fan ZH, Harrison DJ. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal Chem, 1994, 66:177-184
    [35] Jacobson SC, Hergenroder R, Moore AW, et al. Precolumn reactions with electrophoretic analysis integrated on a microchip. Anal Chem, 1994, 66:4127-4132
    [36] Jacobson SC, Koutny LB, Hergenroder R, et al. Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal Chem, 1994, 66:3472-3476
    [37] Kamholz AE, Weigl BH, Finlayson BA, et al. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem, 1999, 71:5340-5347
    [38] Xu N, Lin YH, Hofstadler SA, et al. A microfabricated dialysis device for sample cleanup in electruspray ionization mass spectrometry. Anal Chem, 1998, 70:3553-3556
    [39] Dertinger SKW, Chiu DT, Jeon NL, et al. Generation of gradients having complex shapes using microfluidic networks. Anal Chem, 2001, 73:1240-1246
    [40] 金亚,罗国安,王如骥.集成毛细管电泳芯片研究进展.色谱,2000,18:313-317
    [41] Ross D, Locascio LE. Microfluidic temperature gradient focusing. Anal Chem, 2002, 74: 2556-2564
    [42] Stephen CJ, Roland H, Lance BK, et al. Open channel electrochromatography on a microchip. Anal Chem, 1994, 66:2369-2373
    [43] Ceriotti L, Rooij NF, Verpoorte E. An integrated fritless column for on-chip capillary electrochromatography with conventioned stationary phases. Anal Chem, 2002, 74:639-647
    [44] Chen XX, Wu HK, Mao CD, et al. A prototype two-dimensional capillary electrophoresis system fabricated in poly (dimethylsiloxane). Anal Chem, 2002, 74:1772-1778
    [45] Fu LM, Yang RJ. Lee GB, et al. Electrokinetic injection techniques in microfluidic chips. Anal Chem, 2002, 74:5084-5091
    [46] Xu HW, Roddy TP, Lapos JA, et al. Parallel analysis with optically gated sample introduction on a multichannel microchip. Anal Chem, 2002, 74:5517-5522
    [47] Huang XH, Gordon.M J, Zare RN. Bias in quantitative capillary zone electrophoresis caused by electrokinetic sample injection. Anal Chem, 1988, 60:375-377
    [48] 陈继峰,金庆辉,赵建龙等.DNA电泳芯片快速检测系统的设计与实现.分析化学,2001,29:864
    [49] 张祖训著.超微电极电化学.第一版,北京:科学出版社,2000
    [50] Wooley AT, Lao KQ, Glazer AN, et al. Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem, 1998, 70:684-688
    [51] Manz A, Verpoorte E, Effenhauser CS, et al. Planar chip technology for capillary electrophoresis. Fresenius J Anal Chem, 1994, 348:567-571
    [52] Ramsey RS, Ramsey JM. Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem, 1997, 69:1174-1178
    [53] Kameoka J, Craighead HG, Zhang HW, et al. A polymeric microfluidic chip for CE/MS determination of small molecules. Anal Chem, 2001, 73:1935-1941
    [54] Lazar LM, Ramsey RS, Sundberg S, et al. Subattomole-sensitivity microchip nanoelectrospray source with time-of-flight mass spectrometry detection. Anal Chem, 1999, 71: 3627-3631
    [55] Lcklider L, Wang XQ, Desai A, et al. A micromachined chip-based electrospray source for mass spectrometry. Anal Chem, 2000, 72: 367-375
    [56] Schultz GA, Corso TN, Prosser SJ, et al. A fully integrated monolithic microchip electrospray device for MS. Anal Chem, 2000, 72: 4058-4063
    [57] Liu J, Tseng K, Garcia B, et al. Electrophoresis separation in open microchannels. A method for coupling electeophoresis with MALDI-MS. Anal Chem, 2001, 73: 2147-2151
    [58] Briviom, Fokkens RH, Verboom W, et al. Integrated microfluidic system enabling biochemical reactions with on line MALDI-TOF mass spectrometry. Anal Chem, 2002, 74:3972-3976
    [59] Lendl B, Schindlor R, Frank J, et al. Fourier transform infrared detection in miniaturized total analysis systems for sucrose analysis. Anal Chem, 1997, 69:2877-2881
    [60] Eijkel TCT, Stoeri H, Manz A. A molecular emission detector on a chip employing a direct current microplasma. Anal Chem, 1999, 71:2600-2606
    [61] 王辉,林炳承.芯片毛细管电泳及其在生命科学中的应用.分析化学,2002,30:307-311
    [62] McReynolds JA, Edirisinghe P, Shippy SA. Shah and sine convolution forrier transform detection for microchannel electrophoresis with a charge couple device. Anal Chem, 2002, 74: 5063-5070
    [63] Kwok YC, Jeffory NT, Maze A. Velocity measurement of particles flowing in a microfluidic chip using shah convolution fourier transform detection. Anal Chem, 2001, 73: 1748-1753
    [64] 郭怀忠,杨准,张尊建等.小波变换及其在分析化学中的应用.药学进展,2000,24:5-9
    [65] Polson NA, Hayes MA. Electroosmotic flow control of fluids on a CE microdevice using an applied external voltage. Anal Chem, 2000, 72:1088-1092
    [66] Barker SLR, Ross D, Tarlov J. Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal Chem, 2000, 72:5925-5929
    [67] Liang H, Wang ZG, Lin BC, et al. Nonequilibrium thermodynamic separation model in capillary electrophoresis. J Chromatogr A, 1997, 763:237-251
    [68] Liang H, Lin BC. Frameworks of separation theories from two separate worlds: dynamics and thermodynamics. J Chromatogr A, 1998, 828:3-17
    [69] 梁恒,董艳花,刘颖.非平衡热力学分离理论在μ-TAS中的应用研究.首届全国微全分析会议论文摘要集,北京,2002:18-19
    [70] 金亚,罗国安.微流控芯片十字交叉区域中电渗流行为研究.首届全国微全分析会议论文摘要集,北京,2002:13-14
    [71] Bianchi F, Ferrigno R, Girault HH. Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions. Anal Chem, 2000, 72:1987-1993
    [72] 范博源,闫卫平,刘冲.芯片毛细管电泳微沟道电场分布的数值计算.第五届全国毛细管电泳会议文集,上海,2002:20-21
    [73] 王辉,毛秀丽,盖宏伟等.芯片毛细管中组分的迁移行为及其特征.高等学校化学学报,2002,23:1030-1034
    [74] Ermakov SV, Jacobsen SC, Ramsey JM. Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem, 2000, 72:3512-3517
    [75] Ermakov SV, Jacobsen SC, Ramsey JM. Computer simulations of electrokinetic transport in microfabricated channel structures. Anal Chem, 1998, 70:4494-4504
    [76] Wooley AT, Mathies RA. Ultra-high-sheep DNA sequencing using capillary electrophoresis chip. Anal Chem, 1995, 67:3676-3680
    [77] Griffiths SK, Nilson RH. Design and analysis of folded channels for chip-based separations. Anal Chem, 2002, 74:2960-2967
    [78] Brian MP, Lester DH, Peter CS, et al. Turn geometry for minimizing band broadening in microfabricated capillary electrophoresis channels. Anal Chem, 2000, 72:3030-3037
    [79] Griffiths SK, Nilson RH. Band spreading in two-dimensional microchannel turns for electrokinetic species transport. Anal Chem, 2000, 72:5473-5482
    [80] Molho JI, Herr AE, Mosier BP, et al. Optimization of turn geometries for microchip electrophoresis. Anal Chem, 2001, 73:1350-1360
    [81] 胡新珉主编.医学物理学.第五版,北京:人民卫生出版社,2001
    [82] Auroux PA, Lossifidis D, Reyes DR, et al. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem, 2002, 74:2637-2652
    [83] 曹小丹,方群,方肇伦.基于芯片-毛细管耦合技术的微流控芯片毛细管电泳紫外光度检测系统.首届全国微全分析会议论文摘要集,北京,2002:216-217
    [84] 金亚,罗国安.微流控芯片与电喷雾质谱连用接口的制作与应用.首届全国微全分析会议论文摘要集,北京,2002:203-205
    [85] 水雯箐,苏佳,黄懿等.聚甲基丙烯酸甲酯微流控芯片与质谱相连的初步研究.首届全国微全分析会议论文摘要集,北京,2002:199-202
    [86] Deng YZ, Zhang HW, Henion J. Chip-based quantitative capillary electrophresis/MS determination of drugs in human plasma. Anal Chem, 2001, 73:1432-1439
    [87] Deng YZ, Henion J, Li J, et al. Chip-based CE/MS detection of camitines in human urine. Anal Chem, 2001, 73:639-646
    [88] Jiang Y, Wang PC, Locascio LE, et al. Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis. Anal Chem, 2001, 73:2048-2053
    [89] 李清岭,徐跃,崔爱红等.CDJ-2001集成毛细管电泳芯片/电化学检测系统的研制与开发.首届全国微全分析会议论文摘要集,北京,2002:36-37
    [90] Jacobson SC, Hergenroder R, Koutny, LB,et al. Open channel electrochromatography on a microchip. Anal Chem, 1994, 66:2369-2373
    [91] Moores AW, Jacobson SC, Ramsey JM. Microchip separations of neutral species via micellar electrokinetic capillary chromatography. Anal Chem, 1995, 67:4184-4189
    [92] Koutny LB, Schmalzing D, Taylor TA, et al. Microchip electrophoretic immunoassay for serum cortisol. Anal Chem, 1996, 68:18-22
    [93] 曾勇,陈洪,庞代文等.新型芯片毛细管电泳电化学检测系统及其在神经递质检测中的应用.高等学校化学学报,2002,23:567-569
    [94] Wang J, Chatrathi MP, Mulchandani A. Capillary electrophoresis microchip for separation and detection of organophosphate nerve agents. Anal Chem, 2001, 73:1804-1808
    [95] Woolley AT, Lao K, Glazer AN, et al. Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem, 1998, 70:684-688
    [96] Wang J, Chatrathi MP, Tian B, et al. Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen. Anal Chem, 2000, 72: 2514-2518
    [97] Chiem N, Harrison DJ. Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem, 1997, 69:373-378
    [98] Pretorious V, Hopkins BJ, Schieke JD. Electro-osmosis: new concept for high-speed liquid chromatography. J Chromatogr, 1974, 99:23-30
    [99] 路豪杰,阮宗琴,康经武等.毛细管电色谱进展.分析测试技术与仪器,1999,5:129-134
    [100] 张凌怡,平贵臣,张丽华等.微电渗流毛细管原位柱的制备及性能考察.色谱,2002,20:403-406
    [101] Altria KD, Smith NW, Turnbull CH.A review of the current status of capillary electrochromatography technology and applications. Chromatographia, 1997, 46:664-674
    [102] 李前锋,陈宏丽,陈兴国等.毛细管电色谱整体式高聚物毛细管柱技术的进展.分析化学,2002,30:754-759
    [103] 张维冰,张凌怡,张丽华等.离子对电色谱法分离机理的探讨.分析测试学报,2003,22,31-34
    [104] Stephanie MP, John GD. Comparison of frits used in the preparation of packed capillaries for capillary electrochromatography. Anal Chem, 2003, 75:4292-4296
    [105] 邹汉法,刘震,叶明亮等.毛细管电色谱及其应用.第一版,北京:科学出版社,2001:15
    [106] Jorgenson JW, Lukacs KD. High-resolution separations based on electrophoresis and electroosmosis. J Chromatogr, 1981, 218:208-216
    [107] Hiroyuki N, Masahiko S, Shinya K, et al. Alternating Voltage capillary electrochromatography. Anal Chem, 2003, 75:3512-3517
    [108] 戴朝政.电色谱塔板高度方程的推导.色谱,1999,17:514-517
    [109] Veheij ER, Tjaden UR, Niessen WMA, et al. Pseudo-electrochromatography-mass spectrometry: a new alternative. J Chromatogr, 1991,554:339-349
    [110] Lord GA, Gordon DB, Myers P, et al. Taper and restrictors for capillary electrochromatography and capillary-mass spectrometry. J Chromatogr A, 1997, 768:9-16
    [111] Schmeer K, Behnke B, Bayer E. Capillary electrochromatography-electrospray mass spectrometry: a microanalysis technique. Anal Chem, 1995, 67:3656-3658
    [112] 李方,顾峻岭,博若农.毛细管电色谱法的研究进展.色谱,1997,15:392-395
    [113] Shinya K, Takao T. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange. J Chromatogr A, 2003, 995:209-215
    [114] LIU Zh, Zou HF, Ye ML, et al. Method develepment of adsorbed stationary phase open tubular capillary electrochromatography.色谱,1999, 17:245-248
    [115] Mayer S, Schuring V. Enantiomer separation by electrochromatograghy in open tubular columns coated with Chirasil-Dex. J Liq Chromatogr, 1993, 16:915-931
    [116] 李丽敏,张胜强,杭太俊等.毛细管电色谱法分离手性药物.药学进展,2001,25:4-7
    [117] Lelieve F, Yan C, Zare R, et al. Capillary electrochromatography: operating characteristics and enantiomeric separations, J Chromatogr A, 1996, 723:145-156
    [118] Li S, Lloyd DK. Direct chiral separations by capillary electrophoreses using capillaries packed with an α_1-Acid Glycoprotein chiral stationary phase. Anal Chem, 1993, 65:3684-3690
    [119] Wistuba D, Czesla H, Roeder M, et al. Enantiomer separation by pressure-supported clectrochromatography using capillaries packed with a permethyl-β-cyclodextrin stationary phase. J Chromatogr A, 1998, 815:183-188
    [120] Lloyd DK, Li S, Ryan P. Protein chiral selecora in free-solution capillary electrophoreses and packed-capillary electrochromatography. J Chromatogr A, 1995, 694:285-296
    [121] 叶明亮,邹汉法,雷政登等.吸附蛋白质固定相电色谱手性分离的研究.色谱,2001,19:390-394
    [122] Fanali S, Catarcini P, Presutti C. Enantiomeric separation of acidic compounds of pharmaceutical interest by capillary electrochromatography employing glycopeptide antibiotic stationary phases. J Chromatogr A, 2003, 994:227-232
    [123] Zheng J, Shamsi SA. Brush-type chiral stationary phase for enantioseparation of acidic compounds.Optimization of chiral capillary electrochromatographic parameters. J Chromatogr A, 2003, 1005:177-187
    [124] Schweitz L, Andensson LI, Nilsson S. Molecular imprint based stationary phase for capillary electrochromatogrphy. J Chromatogr A, 1998, 817:5-13
    [125] 姜忠义,吴洪.分子印迹技术.第一版,北京:化学工业出版社,2003
    [126] Schweitz L, Andensson LI, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal Chem, 1997, 69:1179-1183
    [127] Wistuba D, Schurig V. Enantioner separation of chiral pharmaceuticals by capillary electrochromatography. J Chromatogr A, 2000, 875:255-276
    [128] Altria KD, Smith NW, Turnbull CH. Analysis of acidic compounds using capillary electrochromatography. J Chromatogr B, 1998, 717:341-353
    [129] De Rossi A, Desiderio C. Separation of negatively charged nonsteroidal anti-inflammatory drugs by reversed-phase capillary electrochrornatography. J Chromatogr A, 2003, 984:283-290
    [130] Que AH, Konse T, Baker AG, et al. Analysis of bile acids and their conjugates by capillary electrochromatography/electrospray trap mass spectrometry. Anal Chem, 2002, 72:2703-2710
    [131] Lurie IS, Meyers RP, Conver TS. Capillary electrochromatography of cannabinoids. Anal Chem, 1998, 70:3255-3260
    [132] Lurie IS, Conver TS, Ford VL. Simultaneous separation of acidic, basic and neutral organic compounds, including strong and moderate acids and bases, by capillary electrochromatography. Anal Chem, 1998, 70: 4563-4569
    [133] Wei W, Luo GA, Hua GY, et al. Capillary electrochromatographic separation of basic compounds with bare silica as stationary phase. J Chromatogr A, 1998, 817:65-74
    [134] 魏伟,胡平,王义明等.毛细管离子交换电色谱的分离行为.分析化学,1997,25:1132-1137
    [135] Smith NW, Evans MB. The efficient analysis of neutral and highly polar pharmaceutical compounds using reversed-phase and ion-exchange electrochromatography. Chromatographia, 1995, 41:197-203
    [136] Euerby MR, Gilligan D, Johnson CM, et al. Step-gradient capillary electrochromatography. Analyst, 1997, 122: 1087-1088
    [137] Paterson CJ, Boughtflower RJ, Higton D, et al. An investigation into the application of capillary electrochromatography-mass spectrometry (CEC-MS) for the analysis and quantification of a potential drug candidate in extracted plasma. Chromatogrphia, 1997, 46: 599-604
    [138] Miyawa JH, Lioyd DK, Alasandro MS. Capillary electrochromatography as a method development tool for the liquid chromatographic separateion of DUP 654 and related substances. J High Resol Chromatogr, 1998, 21:161-168
    [139] Miyawa JH, Alasandro MS, Riley CM. Application of a modified central composite design to optimize the capillary electrochromatographic separation of related s-oxidation compounds. J Chromatogr A, 1997, 769:145-153
    [140] Reilly J, Saeed M. Capillary electrochromatography as an alternative separation technique to high-performance liquid chromatography and capillary zone electrophoresis for the determination of drug related impurities in lilly compound LY300164. J Chromatogr A, 1998, 829:175-186
    [141] Taylor MR, Teale P. Gradient capillary electrochromatography of drug mixtures with UV and electrospray ionization mass spectrometric detection. J Chromatogr A, 1997, 768:89-95
    [142] Taylor MR, Teale P. Analysis of corticosteroids in biofluids by capillary electrochromatography with gradient elution. Anal Chem, 1997, 69:2554-2558
    [143] Enlund AM, Andersson ME, Hagman G. Peak compression effects in capillary electrochromatography of basic drag substances using a strong cation-exchanger. J Chromatogr A, 2002, 979:335-344
    [144] Smith NW, Evans MB. The analysis of pharmaceutical compounds using electrochromatography. Chromatographia, 1994, 38:649-657
    [145] Pesek JJ, Matyska MT. Seperation of tetracyclines by high performance capillary electrophoresis and capillary electrochronatography. J Chromatogr A, 1996, 736:313-320
    [146] Pesek JJ, Matyska MT. Electrochromatography in chemically modified etched fused-silica capillaries. J Chromatogr A, 1996, 736:255-264
    [147] Starkey JA, Mechref Y, Byun CK, et al. Determination of trace isoflavone phytoestrogens in biological materials by capillary electrochromatography. Anal Chem, 2002, 74:5998-6005
    [148] Henry CW, Fortier CA, Warner IM. Separation of tocopherol isomers using capillary electrochromatography. Comparison of monomeric and polyneric C[sub 30] stationary phases. Anal Chem, 2001, 73:6077-6082
    [149] Fanali S, Catarcini P, Quaglia MG, et al. Separation of δ-,γ-and α-tocopherol by CEC. J Pharm Biomed Anal, 2002, 29:973-979
    [150] Bezhan C, Irma K, Chiyo Y, et al. Comparative study on the application of capillary liquid chromatography and capillary electrochromatography for investigation of enantiomeric purity of the contraceptive drug levonorgestrel. J Pharm Biomed Anal, 2003, 30:1897-1906
    [151] Quaglia MG, Donati E, Carlucci G, et al. Determination of losartan and hydrochlorothiazide in tablets by CE and CEC. J Pharm Biomed Anal, 2002, 29:981-987
    [152] Klaus KU, Marion H, Karin W, et al. A Critical Appraisal of Capillary Electrochromatography. Anal Chem.2002, 74: 200A-207A
    [153] 施维,邹汉法,张津等.毛细管电色谱柱性能的理论与应用.色谱,1997,15:388-391
    [154] Smith RD, Wahl JH, Goodlett DR, et al. Capillary electrophoresis/Mass spectrometry. Anal Chem, 1993, 65: 574A-584A
    [155] 李奕,黎艳,刘虎威.毛细管电泳-质谱联用技术及其在中草药分析中的应用.现代仪器,2001,(1):18-20
    [156] 陈英,刘忠平.毛细管电泳-质谱联用技术及其在药物分析中的应用.药物分析杂志,2000,20:434-437
    [157] Henion JD, Mordehal AV, Cai J. Quantitative capillary eletrophoresis- iso spray mass spectrometruy on a benchtop ion trap for the determination of isoquinoline alkaloivs. Anal Chem, 1994, 66: 2103-2109
    [158] Unger M, Stockigt D, Belder D, et, al. General approach for the analysis of various alkaloid classes using capillary electrophoresis and capillary eletrophoresis-mass spectrometry. J Chromatogr A, 1997, 767:263-276
    [159] Johansson M, Pavelka R, Koutny LB, et al. High-speed separations on a microchip. Anal Chem, 1994, 66:1114-1118
    [160] 赵新峰.六味地黄丸的内在控制方法研究.沈阳药科大学博士学位论文,2003:107-137
    [161] Aramendia MA, Garcta I, Lafont F, et al. Determination of isoflavones using capillary electrophoresis in combination with electrospray mass spectrometry. J Chromatogr, 1995, 707: 327-333
    [162] 梁振,单亦初,赵瑞环等.毛细管电色谱—质谱联用技术进展.分析化学,2003,31:360-363
    [1] 邓延倬,何金兰.高效毛细管电泳.第一版,北京:科学出版社,2000
    [2] 邹汉法,刘震,叶明亮等.毛细管电色谱及其应用.第一版,北京:科学出版社,2001
    [3] 郭怀忠,毕开顺,孙毓庆.毛细管电色谱中组分保留因子表达式的讨论.色谱,2004,22:465-468
    [4] Katz E, Ogan K, Scott RPW. Peak dispersion and mobile phase velocity in liquid chromatography: The-pertinent relationship for porous silica. J Chromatogr, 1983, 270:51-75
    [5] 陈义.毛细管电泳技术及应用.第一版,北京:化学工业出版社,2000:18-20.
    [6] Atamna IZ, Issaq HJ, Muschik GM, et al. Optimization of resolution in capillary zone electrophoresis: combined effect of applied voltage and buffer concentration. J Chromatogr, 1991, 588:315-320
    [7] 孙毓庆,王延琮.现代色谱法及其在医药中的应用.第一版,北京:人民卫生出版社,2000:22
    [8] Ghowsi K, Foley JP, Gale RJ. Micellar electrokinetic capillary chromatography theory based on electrochemicall pamameters: Optimization for three modes of operation. Anal Chem, 1990, 62: 2714-2721
    [9] IUPAC compendium of chemical terminology, 1997, 2nd Edition
    [10] Grushka E, McCormick RM. Zone broadening due to sample injection in capillary zone electrophresis. J Chromatogr, 1989, 471: 421-428
    [11] Huang X, Coleman WF, Zare RN. Analysis of factors causing peak broadening in capillary zone electrophoresis. J Chromatogr, 1989, 480:95-110
    [12] Otsuka K, Terabe S. Extra-column effects in high-performance capillary electrophoresis. J Chromatogr, 1989, 480:91-94
    [13] Hjerten S. High-performance electrophoresis elimination of electroendosmosis and solute adsorption. J Chromatogr, 1985, 347:191-198
    [14] Bushey AM, Jorgenson JW. Capillary electrophoresis of proteins in buffers containing high concentrations of zwittedonic salts. J Chromatogr, 1989, 480:301-310
    [15] McCormick RW. Capillary zone electrophoretic separation of peptides and proteins using low pH buffers modified silica capillaries. Anal Chem, 1988, 60:2322-2328
    [16] Towns JK, Regnier FE. Polyethyleneimine-boned phases in the separation of proteins by capillary electrophoresis. J Chromatogr, 1989, 516:69-78
    [17] Terabe S, Otsuka K, Ando T. Band broadening in electrokinetic chromatography with micellar solutions and open-tubulan capillaries. Anal Chem, 1989, 61: 251-260
    [18] Jorgenson JW, Lukacs KD. Capillary zone electrophoresis. Science, 1983, 222:266-272
    [19] Sepaniak MJ, Cole RO. Column efficiency in mcellar electrokinetic capillary chromatography. Anal Chem, 1987, 59:472-476
    [20] 姬磊,戴朝政,张维冰.电色谱塔板高度方程的考察.色谱,2003,21:131-134
    [21] Ewing AG, Wallingford RA, Olefirowicz TM. Capillary electrophoresis. Anal Chem, 1989, 61: 292A-298A
    [22] 邓延倬,何金兰.高效毛细管电泳.第一版,北京:科学出版社,2000:39
    [23] Knox JH, Grant IH. Miniaturization in pressure and electroendosmotically driven liquid chromatography: some theoretical considerations. Chromatographia, 1987, 24: 135-143
    [24] Grushka E, McCormick RM, Kirkland JJ. Effect of temperature gradients on the efficiency of capillary zone electrophoresis separation. Anal Chem, 1989, 61: 241-246
    [25] Foret F, Deml M, Bocek P. Capillary zone electrophoresis quantitative study of the effects of some dispersive processes on the separation efficiency. J Chromatogr, 1988, 452:601-613
    [26] 戴朝政.电色谱塔板高度方程的推导.色谱,1999,17:514-517
    [27] Hoffstetter KS, Paulus A, Gasamann E, et al. Influence of borate complexation on the electrophoretic behavior of carbonhydrates in capillary electrophoresis. Anal Chem, 1991, 63: 1541-1547
    [28] Probstein RF. Physicochemical Hydrodynamics. 2nd ed, New York: Wiley, 1994
    [29] Stalberg O, Stahlberg J. Theoretical aspects on the regulation of electroosmotic flow in capillary electrophoresis by adding charged amphiphiles. J Chromatogr A, 1997, 776:311-318
    [30] Hunter RJ. Zeta potential in colloid science: principles and applications. London: Academic Press, 1981:59
    [31] Jorgenson JW, Lukacs KD. High-resolution separations based on electrophoresis and electroosmosis. J Chromatogr, 1981, 218:209-216
    [32] Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass capillaries. Anal Chem, 1981, 53:1298-1302
    [33] Pretorious V, Hopkins BJ, Schieke JD. Electro-osmosis: new concept for high-speed liquid chromatography. J Chromatogr, 1974, 99:23-30
    [34] Michael JP. The role of electroosmotic flow in transdermal iontophoresis. Advanced Drug Delivery Review, 2001, 46:281-305
    [35] Yao SH, Santiago JG. Porous glass electroosmotic pumps: theory. J Colloid Interface Sci, 2003, 268:133-142
    [36] Martin M, Guiochon G. Axial dispersion in open-tubular capillary liquid chromatography with electroosmotic flow. Anal Chem, 1984, 56:614-620
    [37] Martin M, Guiochon G, Walbrochl Y, et al. Peak broadening in open-tubular liquid chromatography with electroosmotic flow. Anal Chem, 1985, 57:559-561
    [38] Knox JH, Scott HP. Theoretical models for size-exclusion chromatography and calculation of pore size distribution from size-exclusion chromatography data. J Chromatogr, 1984, 316:311-332
    [39] Knox JH, Grant IH. Miniaturization in pressure and electroendosmotically driven liquid chromatography: some theoretical considerations. Chromatographia, 1987, 24:135-143
    [40] Zeng SZ, Chen CH, Mikkelsen Jr JC, et al. Fabrication and characterization of electroosmotic micropumps. Sensors and Actuators B, 2001, 79:107-114
    [41] Lee CS, Blanchard WC, Wu CT. Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field. Anal Chem, 1990, 62:1550-1552
    [43] Tsai P, Patel B, Lee CS. Direct control of electroosmosis and retention window in micellar electrokinetic capillary chromatography. Anal Chem, 1993, 65:1439-1442
    [43] Hayes M A, Kheterpal I, Ewing AG. Electroosmotic flow control amd surface conductance in capillary zone electrophoresis. Anal Chem, 1993, 65:2010-2013
    [44] Atamna IZ, Issaq HJ, Muschik GM, et al. Optimization of resolution in capillary zone electrophoresis: combined effect of applied voltage and buffer concentration. J Chromatogr, 1991, 588: 315-320
    [45] Lambert WJ, Middleton DL. pH hysteresis effect with silica capillaries in capillary zone electeophoresis. Anal Chem, 1990, 62:1585-1587
    [46] Issaq HJ, Atamna IZ, Metral CJ, et al. Factors that influence mobility, resolution, and selectivity in capillary zone electrophoresis.I, sodium phosphate vs. potassium phosphate. J Liq Chromatogr 1990, 13:1247-1259
    [47] Atamna IZ, Metral CJ, Muschik GM, et al. Factors that influence mobility, resolution, and selectivity in capillary zone electrophoresis. Ⅱ. Role of the buffer cation. J Liq Chromatogr, 1990, 13:2517-2527
    [48] Atamna IZ, Metral CJ, Muschik GM, et al. Ⅲ. Factors that influence mobility, resolution, and selectivity in capillary zone electrophoresis. The role of the buffer anion. J Liq Chromatogr, 1990, 13:3201-3210
    [49] Bruin GJM, Chang JP, Kuhlman RH, et al. Capillary zone electrophoretic separations of proteins in polyethylene glycol-modified capillary. J Chromatogr, 1959, 471:429-436
    [50] Hjerten S. High-performance electrophoresis elimination of eletroendosmosis and solution adsorption. J Chromatogr, 1985, 347:191-198
    [51] Bushey AM, Jorgenson, JW. Capillary electrophoresis of proteins in buffers containing high concentrations of zwitterionic salts. J Chromatogr, 1989, 480:301-310
    [52] McCormick RW. Capillary zone electrophorefic separation of pepfides and proteins using low pH buffers in modified silica capillaries. Anal Chem, 1988, 60:2322-2328
    [53] Towns JK, Regnier FE. Polyethleneimine-bonded phases in the separation of proteins by capillary electrophoresis. J Chromatogr, 1989, 516:69-78
    [54] Muijselaar WGHM, Briujn de CHMM, Everatrts FM. Capillary zone electrophoresis of proteins with a dynamic surfactant coating influence of a voltage gradient on the separation efficiency. J Chromatogr, 1992, 605:115-123
    [55] Kaneta T, Tanaka S, Taga M. Effect of cetylrrimethylammoniun chloride on electroosmotic and electrophoretic mobilities in capillary zone electrophoresis. J Chromatogr A, 1993, 653:313-319
    [56] Yao YJ, Li SFY. Capillary zone electrophoresis of basic proteins with chitosan as a capillary modifier. J Chromatogr A, 1993, 663: 97-104
    [57] Tsui P, Wu CT, Leo CS. Electrokinefic studios of inorganic coated capillaries. J Chromatogr B, 1994, 657:285-290
    [58] Cohen N, Grushka E. Controlling electroosmotic flow in capillary zone electrophoresis. J Chromatogr A, 1994, 678:167-175
    [59] Oda RP, Madden BJ, Spelsberg TC, et al. d,w-Bis-quatennary ammonium alkanes as effective buffer additives for enhanced capillary electrophoretic separation of glycoproteins. J Chromatogr A, 1994, 680:85-92
    [60] 陈令新,关亚风,马继平.电渗泵中电渗流的控制.分析化学,2003,31:619-623
    [61] 陈义.毛细管电泳技术及应用.第一版,北京:化学工业出版社,2000:81.
    [62] Deyl Z, Miksik I, Charvatova J, et al. Comparision of the electrophoretic separation of proteins in capillaries with different inner diameter. J Chromatogr A, 2003, 1013:233-238
    [63] Sinton DC, Escobedo-Canseco C, Pen LQ, et al. Direct and indirect electroosmotic flow velocity measurements in microchannels. J Colloid Interface Sci, 2002, 254:184-189
    [64] 邹汉法,刘震,叶明亮等.毛细管电色谱及其应用.北京:科学出版社,2001
    [65] Towns JK, Regnier FE. Impact of polycation adsorption on efficiency and electroosmotically driven transport in capillary electrophoresis. Anal Chem, 1992, 64:2473-2478
    [66] Issaq HJ, Atamna IZ, Muschik GM, et al. The effect of electric field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis. Chromatographia, 1991, 32:155-161
    [67] Keely CA, Goor van de TAAM, McManigill D. Modeling flow profiles and dispersion in capillary electrophoresis with nonuniform ζ-protential. Anal Chem, 1994, 66:4236-4242
    [68] Cohen AS, Paulus A Karger BL. High-performance capillary electrophoresis using open tube and gels. Chromatographia, 1987, 24:15-24
    [69] 陈海峰,金文睿,全如翔.毛细管区带电泳的电渗流.分析科学学报,1998,14:257-262
    [70] Taylor JA, Yeung ES. Imaging of hydronamic and electrokinetic flow profiles in capillaries. Anal Chem, 1993, 65:2928-2932
    [71] Morf WE, Guenat OT, Rooij de NF. Partial electroosmotic pumping in complex capillary systems Part 1: Principles and general theoretical approach. Sensors and Actuators B, 2001, 72:266-272
    [72] Fernandez H, Ruperez FJ, Barbas C. Capillary electrophoresis determination of loratadine and related imputities. J Pharm Biomed Anal, 2003, 31: 499-506
    [73] Kunkel A, Degenhardt M, Schirm B, et al. Performance of instruments and aspects of methodology and validation in quantitative capillary electrophoresis. J Chromatogr A, 1997, 768:17-27
    [74] Faller T, Engelhardt H. How to achieve higher repeatalility and reproducibility in capillary electrophoresis. J Chromatogr A, 1999, 853:83-94
    [75] Mayer BX. How to increase precision in capillary electrophoresis. J Chromatogr A, 2001, 907: 21-37
    [76] 林梅,冯敏,张正行等.酸性药物的反向电渗流高效毛细管电泳分离分析研究.色谱,1998,16:383-385
    [77] Christine S, Ernst K. Electrophoresis in fused-sillica capillaries: the influencee of organi solvents on the electroosmotic velocity and the ζ potential. Anal Chem, 1991, 63:1801-1807
    [78] 刘学良,王进防,王俊德等.毛细管电泳中获得稳定电渗流的毛细管预处理方法.分析化学,2000,28:1110-1113
    [79] Lamber WJ, Middleton DL. pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal Chem, 1990, 62:1585-1587
    [80] Ehmann T, Bachmann K, Fahry L, et al. Capillary preconditioning for analysis of anion using indirect UV detection in capillary zone electrophoresis systematic investigation of alkaline and acid prerinsing techniques by designed experiments. J Chromatogr A, 1998, 816:261-275
    [81] Smith SC, Strasters J-K, Khaledi MG. Influence of operating parameters on reproducibility in capillary electrophoresis. J Chromatogr, 1991, 559:57-68
    [82] Lloyd DK, Watzig H. Sodium dedecyl sufate solution is effective between-rum rinse for capillary electrophoresis of samples in biological matrices. J Chromatogr B, 1995, 663:400-405
    [83] Cahours X, Morin PH, Dreux M. Quantitative determination of inorganic miner cations in sodium-, calcium-,magnesium-matrx simulated samples by capillary electrophoresis. J Chromatogr A, 1998, 810:209-220
    [84] Christa LC, Keith BO, Artjom VS. Electroosmotically transported baseline perturbations in capillary electrophoresis. Anal Chem. 1995, 67:3234-3245
    [85] Locasio LE, Perso CE, Lee CS. J Chromatogr A. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. 1999, 857:275-284
    [86] Watzig H, Derre C. Precise quantitative capillary electropheresis methodological and instrumental aspects. J Chromatogr, 1993, 636:31-38
    [87] Altria KD, Fabre H. Approaches to optimization of precision in capillary. Chromatographia, 1995, 40:313-320
    [88] Ikonomou MG, Blades AT, Kebarle P. Electrospray-ion spray: A comparison of mechanisms and performance. Anal Chem, 1991, 63:1989-1998
    [89] Blades AT, Ikonomou MG, Kebarle P. Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell. Anal Chem, 1991, 63:2109-2114
    [90] Timperman A, Tracht SE, Sweedler J. Dynamic on-column pH monitoring in capillary eletrophoresis: Application to volume-limited outlet vials. Anal Chem, 1996, 68:2693-2698
    [91] Xu XM, Nolan SP, Cole RB. Electrochemical oxidation and nucleophilic addition reactions of metallocences in electrospray mass spectrometry. Anal Chem, 1994, 66:119-125
    [92] Berkel GJ, Zhou FM. Characterization of an electrospray ion source as a controlled-current electrolytic cell. Anal Chem, 1995, 67:2916-2923
    [93] Figeys D, Oostveen I, Ducvet A, et al. Protein identification by capillary zone electrophoresis/microelectrospray ionization-tandem mass spectrometry at the subfentemole level. Anal Chem, 1996, 68:1822-1828
    [94] Li MX, Liu L, Wu JT, et al. Use of a polybrene capillary cooling in capillary electrophoresis for rapid analysis of hemoglobin variants with on-line dictation via an ion trap storage/reflection time-of-flight mass spectrometer. Anal Chem, 1997, 69:2451-2456
    [95] Macka M, Andersson P, Haddad PR. Changes in electrolyte pH due to electrolysis during capillary zone electrophoresis. Anal Chem, 1998, 70:743-749
    [96] 熊建辉,张维冰,许国旺等.非水毛细管电泳进展.色谱.2000,18:218-223
    [97] Boughtflower RJ, Underwood T, Paterson CJ. Capillary electrochromatography-some important considerations in the preparation of packed capillaries and choice of mobile phase buffers. Chromatographia, 1995, 40:329-335
    [98] Kelly MA, Altria KD, Clark BJ. Approaches used in the reduction of buffer electrolysis effects for routine capillary electrophoresis procedures in pharmaceutical analysis. J Chromatogr A, 1997, 768: 73-80
    [99] Strege MA, Lagu AL. Studies of migration time reproducibility of capillary electrophoretie protein separations. Liq Chromatogr, 1993, 16:51-68
    [100] 朱亮,许旭,林炳承.毛细管电泳中的温度效应和温度梯度技术.色谱,1999,17:21-25
    [101] Kurosu Y, Hibi K, Sasaki T, et al. Influence of temperature control in capillary electrophoresis. J High Resolut Chromatogr, 1991, 14:200-203
    [102] Nelson RJ, Paulus A, Cohen AS, et al. Use of peltier thermoelectric devices to control column temperature in high-performance capillary electrophoresis. J Chromatogr, 1989, 480:111-127
    [103] Grushka E, McCormick RM, Kirkland JJ. Effect of temperature gradients on the effecience of capillary zone electrophoresis separations. Anal Chem, 1989, 61: 241-246
    [104] Knox JH. Thernal effects and band spreading in capillary electro-separation. Chromatoghia, 1988, 26:329-337
    [105] Davis JM. Influence of thermal variation of diffusion coefficient on nonequilibdum plate height in capillary zone eletrophoresis. J Chromatogr, 1990, 517:521-547
    [106] Wynia GS, Windhorst G, Post PC, et al. Development and variation of a capillary electrophoresis method within a pharmaceutical quality control environment and comparison with high-performance liquid chromatography. J Chromatogr A, 1997, 773:339-350
    [107] Shihabi ZK. Therapertic drug monitoring by capillary electrophoresis. J Chromatogr A, 1998, 807: 27-36
    [108] Agllent CEC Guidebook: 22-23
    [109] Colyer CL, Oldham KB, Sokirko AV. Electroosmotically transported baseline perturbations in capillary electrophoresis. Anal Chem, 1995, 67:3234-3245
    [110] Colyer CL, Oldham KB. Emersion peaks in capillary electrophoresis. J Chromatogr A, 1995, 716: 3-15
    [111] Cohen N, Grushka E. Influence of capillary edge on the separation efficiency in capillary electrophoresis. J Chromatogr A, 1994, 684:323-328
    [112] Does EV, Guiochon G. Problems of quantitative infection in capillary zone electrophoresis. Anal Chem, 1992, 64:123-128
    [113] 陈义,竺安.高效毛细管电泳的扩散进样.色谱,199l,9:353-356
    [114] Huang XH, Gordon MJ, Zare RN. Bias in quantitative capillary zone electrophoresis caused by electrokinetic sample injection. Anal Chem, 1988, 60:375-377
    [115] Poppe H. Overloading and interaction phenomena in electrophorefic separations. Anal Chem, 1992, 64:1908-1919
    [116] 张云华,胡上序,俞蒙槐.模式滤波器在色谱信号除噪中的应用.色谱,1996,14:435-437
    [117] 王磊,陈农,张玉奎.高效毛细管电泳迁移重复性的考察.色谱,1993,11:207-209
    [118] Yang J, Bose S, Hage DS. Improved reproducilility in capillary electrophoresis through he use of mobility and migration time rations. J Chromatogr A, 1996, 735:209-220
    [119] Muijselaar PG. Retention indices in micellar electrokimetic chromatography. J Chromatogr A, 1997, 780:117-127
    [120] 孙毓庆,阮婧华,马欣.中药的毛细管电泳指纹图谱研究.色谱.2003,21:303-306
    [121] Thomsd BR, Ghodbane D. Evaluation of a mixed micellar electrokinetic capillary electrophoresis method for validated pharmaceutic quality control. J Liq Chromatogr, 1993, 16:1983-2006
    [122] Thomas BR, Fang XG, Chen X, et al. Validated micellar electrokinetic capillary chromatography method for quality control of the drag substance hydrochlorethiazide and chlorothiazide. J Chromatogr B, 1994, 657:383-394
    [123] Lookabaugh M, Biswas M, Krull IS. Quanfitation of insulin injection by high-performance liquid chromatography and high-performance capillary electrophoresis. J Chromatogr, 1991, 549: 357-366
    [124] 张颖.板蓝根清热解毒及化学有效成分研究进展.河北中西医结合杂志,1999,8:341-342
    [125] 崔树玉,薛原,杨建莉等.板蓝根研究进展.中草药,2001,32(7):670,附1
    [126] 张润珍,张玉文.板蓝根的研究进展.中草药,2000,31:474-476
    [127] 刘小清,罗宪堂,李昶.板蓝根的药学研究进展.基层中药杂志,2001,15(3):43-45
    [128] 肖珊珊,金郁,孙毓庆.板蓝根化学成分、药理及质量控制研究进展.沈阳药科大学学报,2003,20:455-459
    [129] 金郁,肖珊珊,孙毓庆.高效液相色谱/二极管阵列检测/质谱/质谱(HPLC/DAD/MS~2) 联用在板蓝根注射液成分鉴定中的应用.色谱,2003,21:558-561
    [130] 李子成,陈淑华,符宁等.核苷类抗病毒药物的研究进展.化学研究与应用,2002,14:15-20
    [131] Wadworth AN, Faulds D. Hydroxyethylrutosides: A Review of its Pharmacology, and TherapeuticEfficacy in Venous Insufficiency and Related Disorders. Drugs, 1992, 44:1013-1032
    [132] 陈新谦,金有豫.新编药物学.第十四版,北京:人民卫生出版社,2000:408
    [133] 邓海星,晁若冰.HPLC检查曲克芦丁原料药中其它羟乙基芦丁衍生物.华西药学杂志,2001,16:251-253
    [134] 丁少纯,王美芳,徐士飞等.利用HPLC法测定维脑路通输液中三羟乙基芦丁含量的研究.药物分析杂志,2002,22:318-319
    [135] 梅丹,张翠莲,李大魁等.11种市售曲克芦丁制剂的产品质量评价.中国药学杂志,1998,33:605-608
    [136] 张昌鸣,李爱英,陈克玲.中药“维脑路通”的组成分析研究.药学学报,1981,16:925-930
    [137] 顾泽民,乔志毅.维脑路通的反相高效液相色谱法测定.医药工业,1987,18:11-12
    [138] 于春杰.高效液相色谱法分离测定维脑路通.中国医药工业杂志,1989,20:268-269
    [139] 陈镇生.高效液相色谱法测定三羟乙基芦丁的血药浓度.药物分析杂志,1999,19:111-114
    [140] 曹晓芝,袁成,王景祥.高效液相色谱法测定血浆中羟乙基芦丁的浓度.中国医院药学杂志,1997,17:215-216
    [141] 袁成,朱丽青,王景祥等.维脑路通及其各组分在7例患者的药物动力学.中国临床药理学与治疗学杂志,1998,3:14-17
    [142] Kuhnz W, Zech K, Lupp R, et al. Quantitative Determination of O-(β-hydroxyethly)-rutosides in Serum by High Performance Liquid Chromatography. J Chromatogr, 1983, 272:333-340
    [143] 何丽一,李宝明.维脑路通的组分分析.药物分析杂志,1987,7:251-252
    [144] 郭怀忠,陈蓉,毕开顺等.短毛细管区带电泳法测定2种维脑路通制剂中曲克芦丁的含量.药物分析杂志,2004,24:457-459
    [145] 何树华,吕弋,何德勇等.铁氰化钾—罗丹明6G化学发光体系测定维脑路通.西南师范大学学报(自然科学版),2003,28:606-608
    [146] 邓树海,王晓静,钱平等.维脑路通胶囊剂与片剂体外溶出度的研究.1989,9:456-457
    [147] 任瑞莉.荷移分光光度法测定维脑路通含量.山西化工,2002,22:30-32
    [148] 刘丽丽,李志宏,崔春花等.分光光度法测定维脑路通含量.1999.12:215-216
    [149] 赫春香,张淑敏.维脑路通的伏安行为及其二阶导数卷积伏安法测定.分析试验室,2001,20:23-26
    [150] Hoang MDLE, Postaire E, Progono P, et al. Separation et Dosage des Differents Constituents de la Troxerutine par Chromatographie Liquide Haute Performance en Phase Inverse. J Chromatogr, 1985, 346:382-389 (in France)
    [151] 郭怀忠,金郁,毕开顺等.曲克芦丁及其主要杂质的毛细管电泳—质谱/质谱鉴定.中国化学会第24届学术年会,长沙,2004:13-Ⅰ-009
    [152] 赫春香,张淑敏.维脑路通与铜(Ⅱ)的配位化学研究.分析实验室,2000,19(6):10-12
    [153] 赫春香,张淑敏.维脑路通与铟(Ⅵ)配合物的紫外分光光度法研究.光谱实验室,2001,18:548-552
    [154] 国家药品监督管理局药品标准WS_1-XG-2002
    [155] Olivares JA, Nguyen NT, Yonker CR, et al. On-line mass spectrometric detection for capillary zone electrophoresis. Anal Chem, 1987, 59:1230-1232
    [1] 熊文莲.维生素最大的家族.化学教育,2002,(7~8):10-11
    [2] 王镜岩,朱圣庚,徐长法.生物化学,北京:高等教育出版社,2003:447
    [3] 严健,王小如,张君倩等.毛细管电泳法测定复合维生素B片含量.中国现代应用药学,2002,19:326-327
    [4] 关玉群,胡锡民.同步荧光法同时测定复合维生素制剂中B_2和B_6.中国卫生检验杂志,1999,9:220-221
    [5] 张俊清.维生素B_2片剂中维生素B_2的荧光分光光度测定法.海南大学学报自然科学版,1997,15:324-326
    [6] 陆长元,韩镇辉,蔡喜臣等.核黄素(维生素B_2)的光物理和光化学性质.中国科学(B辑),2000,30:428-430
    [7] 韦寿莲,邓光辉,郑一宁等.复方维生素B片中主要成分的高效毛细管电泳电化学法检测.分析测试学报,2002,21(2):32-34
    [8] 陈小明,李松青,黄灵芝等.柱层析光纤荧光检测器测定药物中的维生素B_2.分析化学,1999,27:620
    [9] 中国药典2000版.二部:786
    [10] Ramseier A, von Heeren F, Thormann W. Aanlysis of fluoresein isothiocyanate derivatized amphetamine and analogs in human urine by capillary electrophoresis in chip-based and fused-silica capillary instrumentation. Electrophoresis, 1998, 19:2967-2975
    [11] Wsllenborg SR, Lurie IS, Arnold DW, et al. On-chip chiral and achiral separation of amphetamine and related compounds labeled with 4-fluoro-7-nitrobenzofurazane. Electrophoresis, 2002, 21: 325-363
    [12] 中国药典2000年版.二部:813
    [13] 张琴,董燕.高效液相色谱法测定增效联磺片中三组分的含量.山西预防医学杂志,1997,6 (2):128-129
    [14] 邹定,吴学军,南国柱.毛细管区带电泳色谱法测定增效联磺片含量的研究.中国药学杂志,1998,33:106-108
    [15] 陈蓉,郭怀忠,孙毓庆等.短毛细管区带电泳快速测定增效联磺片中三组份含量.药物分析杂志,2004,24:190-193
    [16] 吕瑞绵,杨永春,杨云鹏等.冬虫夏草化学成分的研究.药学通报,1981,16:567
    [17] 陈博,金瓯.冬虫夏草及其虫草菌粉中核苷类成分的HPLC测定.中国生化药物杂志,1998,19(2):88-90
    [18] 中国药典2000年版.一部:88
    [19] 李雪芹,王雁,包天桐.反相高效液相色谱法测定人工冬虫夏草中腺苷的含量.中国中药杂志,1999,24:12-14
    [20] 张敏如,洪亮,郭祥.高效液相色谱法测定发酵虫草菌粉和金水宝胶囊中腺苷的含量.中草药,1994,25(2):77-78
    [21] 郭澄,江丽霞,刘放等.冬虫夏草发酵菌丝体中主要核苷及核酸碱基的HPLC测定.中成药.1993,15(5):33-34
    [22] 李绍平,李萍,季晖等.毛细管电泳法测定冬虫夏草中核苷类的含量.药物分析杂志,2001,21(2):77-79
    [23] 李绍平,李萍,季晖等.天然与发酵培养冬虫夏草中核苷类成分的含量及其变化.药学学报,2001,36:436~439
    [24] 杨更亮,李海鹰,刘海燕等.毛细管区带电泳法测定冬虫夏草中的腺苷、腺嘌呤和尿嘧啶.分析化学,2002,30:1081-1084
    [25] 吕武清,颜华荣,龙新华.薄层扫描法测定金水宝胶囊中腺苷的含量.中草药,1996,27:14-16
    [1] Pretorious V, Hopkins BJ, Schieke JD. Electro-osmosis: new concept for high-speed liquid chromatography. J Chromatogr, 1974, 99:23-30
    [2] 邹汉法,刘震,叶明亮等.毛细管电色谱及其应用.第一版,北京:科学出版社,2001
    [3] 叶明亮,邹汉法,刘震等.离子型化合物在电色谱中分离机理的理论研究.中国科学(B辑),2000,30:33-41
    [4] Wu JT, Huang PQ, Li MX, et al. Protein_ digest analysis by pressurized capillary electrochromatography using an on-line ion trap storage-referectron time of flight mass detector. Anal Chem, 1997, 69:2908-2913
    [5] Rathore AS, Horvath CS. Separation parameters via virtual migration distances in high-performance liquid chromatography capillary zone electrophoresis and electrokinetic chromatography. J Chromatogr A, 1996, 743:231-246
    [6] Xiang R, Horvath C. Fundamental of capillary electrochromatography: migration behavior of ionized sample components. Anal Chem, 2002, 74:762-770
    [7] Liu Z, Otsuka K, Terabe S. Modeling of retention behavior in capillary electrochromatography from chromatographic and electrophoretic data. J Chromatogr A, 2002, 959:241-253
    [8] Wu RA, Zou HF, Ye ML, et al. Capillary electrochromatography for separation of peptides driven with electrophoretic mobility on monolithic column. Anal Chem, 2001, 73:4918-4923
    [9] 张维冰,许国旺,李瑞江等.色谱柱分离过程的驰豫理论基本模型的建立.色谱,1999,17:1-4
    [10] Basak SK, Velayudhan A, Kohlnamm K, et al. Electrochromatographic separation of proteins. J Chromatogr. A, 1995, 707:69-76
    [11] Rathore AS, MeKeown AP, Euerby MR. Interplay of chromatographic and electrophoretcc processes in capillary electrochromatography. J Chromatogr A, 2003, 1010:105-111
    [12] Minakuchi H, Nakanishi K, Soga N, et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem, 1996, 68:3498-3501
    [13] Peters EC, Petro M, Svec F, et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography..Effect of chromatographic conditions on the separation, Anal Chem, 1998, 70:2296-2302
    [14] Wang CQ, Svee F, Frechet JMJ. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography, Anal Chem, 1993, 65:2243-2248
    [15] Xie SF, Svec F, Freehet JMJ. Rigid porous polyacrylamide-based monolithic columns containing butyl methacryalte as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J Chromatogr A, 1997, 775:65-72
    [16] Amatschek K, Necina R, Hahn R, et al. Affinity chromatography of human blood coagulation factor Ⅷ on monoliths with peptides from a combinational library. J High Resol Chromatogr, 2000, 23:47-58
    [17] Sykora D, Svec F, Frechet JMJ. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces. J Chromatogr A, 1999, 852, 297-304
    [18] Seugert A, Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene: a new type of cation exchanger for the analysis of multivalent metal cations. J Chromatogr A, 1997, 782: 149-157
    [19] Moore RE, Lichlider L, Schumann D, et al. Amicroscale electrospray interface incorporating a monolithic, poly(styrene-divinylbenzene) support for on-line liquid chromatography/tandem mass spectrometry analysis of peptides and proteins. Anal Chem, 1998, 70:4879-4884
    [20] Fujimoto C, Kino J, Sawada H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow. J Chromatogr A, 1995, 716:107-113
    [21] Podgornik A, Barut M, Jancar J, et al. Isocratic separations on thin glycidyl methacrylate-ethylenedimethacrylate monoliths. J Chromatogr A, 1999, 848:51-60
    [22] Mihelic I, Koloini T, Podgomik A, et al. Dynamics capacity studies of CIM (convective interaction media). J High Resol Chromatogr, 2000, 23:39-43
    [23] Bidling B, Unger KK, Doehren NV. Comparative study on the columns performance of microparticlate 5-μm C_(18)-bonded and monolirhic C_(18)-bonded reversed-phase columns in high-performance liquid chromatography. J Chromatogr A, 1999, 832:11-16
    [24] Schulte M, Lubda D, Delp A, et al. Preparative monolithic silica sorbents (PrepRODs~(TM)) and their use in preparative liquid chromatography. J High Resol Chromatogr, 2000, 23:100-105
    [25] Ericson C, Liao JL, Nakazato K, et al. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds. J Chromatogr A, 1997, 767:33-41
    [26] Hoffstetter-Kuhn S, Paulus A, Gasamann E, et al. Influence of Borate Complexation on the Electrophoretic Behavior of Carbohydrates in Capillary Electrophoresis. Anal Chem, 1991, 63: 1541-1547
    [27] Altria KD, Fabre H. Approaches to Optimization of Precision in Capillary Electrophoresis. Chromatographia, 1995, 40:313-320
    [28] Dose EV, Guiochon G.A. Internal Standardization Technique for Capillary Zone Electrophoresis. Anal Chem, 1991, 63:1154-1158
    [29] 国家药品监督管理局药品标准WS_1-XG-2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700