用户名: 密码: 验证码:
六盘山洪沟小流域森林植被的水文影响与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨北方干旱缺水地区森林植被的水文影响,在2006~2007年的两个生长季(5~10月)在六盘山南侧具半湿润气候特征的洪沟小流域,开展森林植被特征、森林水文过程、小流域径流的研究,以求深入认识森林植被的水文作用机理并为六盘山及类似地区的水源涵养林建设提供理论基础和技术支持。
     六盘山位于我国黄土高原地区中西部和宁夏回族自治区南端,处于由半湿润区向半干旱区过渡的气候带上,黄河中游地区的主要支流泾河、清水河以及葫芦河都发源于此,在维持区域生态平衡和提供水源等方面具有重要作用。洪沟是典型的山地森林小流域,面积为10.49km2,海拔高度变化在2140~2598m,山高坡陡,土壤多石砾,植被类型丰富,森林覆盖率65.5%,年降水量591.6mm。
     具体研究内容包括土壤物理性质空间分布、森林植被特征及空间分布、流域主要森林水文过程、流域径流规律、流域水文模型运用等,主要研究成果如下:
     1.小流域内的植被特征和其空间分布
     通过样线调查分析了六盘山洪沟小流域的森林植被群落结构和其空间分布。洪沟小流域植被可划分为华北落叶松人工林、华山松林、红桦林、山杨林和天然灌丛5个群落类型。在乔灌木树种组成上,乔木层优势种主要有华北落叶松、华山松、红桦、山杨等,灌木层优势种主要有稠李、刺翅峨嵋蔷薇、秦岭小檗、灰栒子、沙棘、华西箭竹等。
     流域植被的空间分布规律是:华北落叶松主要分布在2200~2500m的半阳坡和阳坡;华山松在每个海拔带上都有分布,其中2100~2200m的阴坡和半阴坡分布最多;红桦集中分布于2200~2300m的阴坡和半阴坡;山杨分布在2400m以上的半阴坡和半阳坡;而天然灌丛分布在人工破坏后的2300m以上阳坡和半阴坡。从坡度分布上看,20o~40o的坡地占小流域面积的55.48%,各植被类型也在该坡度范围内分布较多。但华北落叶松人工林在0o~10o的缓坡分布最多;而华山松天然次生林多分布于30o以上的陡坡。
     2.土壤物理性质的小流域空间分布规律
     在洪沟小流域开展了大量调查,研究土壤物理性质随土层深度、坡向、坡位及植被类型的变化。结果表明:土壤容重和石砾含量的变化范围分别为0.905~1.31g/cm3和8.4~13.83%之间,并随土层加深逐渐增大,容重的增幅随土层深度增加而减小;石砾含量的增幅却逐渐加大。总孔隙度(46.51~62.69%)、毛管孔隙度(35.54~43.88%)和非毛管孔隙度(10.97~18.81%)都随土层加深而降低。
     在不同坡向中,阴坡的土壤物理性质最好。随着坡位下降,土壤厚度、土壤容重、石砾含量、非毛管孔隙度逐渐增大,总孔隙度和毛管孔隙度逐渐减小,各种持水量指标基本上也有不同程度地减小,但上坡的持水量大于阴坡坡顶。
     在华北落叶松人工林、华山松林、红桦林、山杨林、天然灌丛5种植被类型土壤物理性质中,土壤容重为天然灌丛(0.98)>山杨林(0.91)>华山松林(0.89)>华北落叶松林(0.83)>红桦林(0.73);土壤石砾含量最高的是华北落叶松林(19.21%),最小的是山杨林(9.33%);毛管孔隙度为华山松林(43.40%)>红桦林(42.73%)>山杨林(40.88%)>华北落叶松林(40.35%)>天然灌丛(34.36%);非毛管孔隙度为华北落叶松林(21.69%)>红桦林(20.19%)>天然灌丛(17.56%)>山杨林(16.05%)>华山松林(13.65%)。
     3.流域的主要森林水文过程
     测定了一次性降雨与截留量的关系,结果表明:当降雨量小于1.0mm时,不同林分的林冠几乎将降雨全部截留,截留率近100%。在雨量级1~10mm时,不同林分的林冠平均截留量多在1.11~3.0mm,平均截留率在20-57%,天然灌丛的截留率相对较小,只为20.5%;在10~50mm的降雨量时,大多数林分类型的截留量在5.0mm左右,截留率在10.28~21.5%,红桦的截留量较小,平均仅1.4mm(截留率10.28%);当降雨大于50mm时,多数林分的降雨截留量在3.0mm以上,截留率在5.78~14.06%以下,且随雨量增加而降低。
     运用网格取样方法,测得华北落叶松林枯落物的储量为16.83 t/hm2,厚度为3.6cm。根据半方差分析,2个华北落叶松人工纯林样地的枯落物储量存在一定空间异质性现象,变异系数分别为0.41和0.56;以95%的置信区间,要准确得到华北落叶松样地的枯落物储量,取样数不能小于9个1m×1m的样方。
     在六盘山地区自然雨强范围内(小于30mm/h),利用模拟降雨研究了枯落物的截持降雨过程,表明单位重量(1kg/m2)的华北落叶松林枯落物最大截持量对应为1.3mm、1.4mm、1.5mm,红桦林枯落物对应为2.1mm、2.3mm、2.6mm,枯落物的持水能力随雨强增大而提高;华北落叶松枯落物和红桦枯落物的最大截持量数值低于浸泡法测定的结果(华北落叶松林1.8mm;红桦林2.7mm),但吸持水分过程基本一致。并基于实验结果分析,构建了具有较好的截留机制、可同时反映枯落物含水量和降雨强度及降雨历时对枯落物持水动态和实际持水量影响的枯落物截持降雨过程模型:
     洪沟小流域华北落叶松树干液流密度的昼夜变化趋势表现为明显的昼夜交替波动。在“相对静止期”内(20:00~次日07:00),树干液流密度比较稳定和微弱,其值约在0.05μl·cm~(-2)·min~(-1)以下;而“活跃期”(07:00~20:30)树干液流密度表现为持续快速上升,呈现出单峰、双峰或多峰曲线,峰值一般在0.25μl·cm~(-2)·min~(-1)以下。
     土壤蒸发研究表明,林内与林外土壤的日蒸发变化规律相似;到12 :00~14 :00时达到最高,林外和林内土壤的蒸发速率分别是0.697mm/h和0.505 mm/h;选择土壤水分含量(SW,%)、太阳辐射(SR,lux)、空气相对湿度(RH,%)、风速(W,m/s)作为影响因子,建立了同时适合于林内外土壤蒸发的回归关系式:E=-0.468+0.205SW+0.01557SR-0.0137RH,R~2=0.8732
     通过测定小流域内各植被类型典型样地不同深度土壤层次的水分渗透过程,得到各林分样地表层(0~20cm)土壤初渗速率(8.32~62.96 mm/min)和稳渗速率(7.55~40.91 mm/min),并用4种模型对环刀法测定的土壤分层渗透速率进行拟合,认为Horton公式模拟的比较合理。
     4 .流域径流特征分析
     洪沟小流域径流年内分配不均匀,主要集中在8和9月份即夏季,根据小流域现有实测径流资料(2006年1月-2007年12月)计算,小流域径流年内分配不均匀系数在0.44。采用滑动最小值法对小流域2006年和2007年生长季的径流过程线进行分割,计算出平均基流系数BFI为0.039;在此基础上的分析表明了径流增加量(Y)与单场降雨量(X)呈正相关关系:Y=145.11X~(0.5977),R~2=0.6499。
     5.植被变化对流域径流的影响
     应用分布式生态水文模型SWIM于洪沟小流域,分别利用2006年、2007年的气象数据和水文数据对模型进行率定和检验,并根据植被对水分条件的要求和生态环境建设与水资源保护对植被建设的需要,制定了华北落叶松覆盖率增加和降低的分布情景,模拟植被变化对径流的影响。结果表明,随着华北落叶松林的减少(替代为其它乡土阔叶林或灌木),洪峰流量增加,洪峰变得尖瘦,对降水的响应更敏感,整个流量过程线变化迅速,产流量增大;而随着华北落叶松林的增加(替代其它乡土阔叶林或灌丛),流量过程变缓,洪峰减小,蒸散量增加,产流量减小。
In order to evaluate the eco-hydrological effects of forest and vegetation in the arid areas of Northern China, a serial of experimentations focused on forest vegetation characteristics, hydrological process and runoff were performed during the growing seasons (from May to October) of 2006 and 2007 in the small watershed of Honggou, which is located at the south side of Liupanshan Mountains with a semi-humid climate. With these works it is expected to understand the hydrological mechanism of forest/vegetation more deeply and also to provide the theoretical and technological basis for the management of water-retention forest in the Liupanshan Mountains and similar regions.
     As a representative mountainous and headwater area in the Loess Plateau, several branches of the Yellow River are started here, such as Jing River, Qingshui River and Hulu River. Liupanshan Mountains is very important to maintain the regional ecological balance and provide water resource. Xiangshuihe watershed is a representative mountain forest small watershed, of which the area is 10.49km2 and its elevation ranges from 2040m to 2942m. With a coverage of 65.5%, the forest vegetation consists of many vegetation types. The soil is embedded many stone fragments. The annual mean precipitation is 591.6mm.
     The content of the dissertation is comprised of analysis upon the distribution characteristics of soil physical properties, the forest vegetation characteristics and special distribution, the main forest hydrological processes, runoff dynamics, and the application of hydrological model. The main results are shown as follows:
     1. Spatial patterns and characteristics of vegetation
     Based on sampling-line investigation upon typical vegetation , the following five main types of vegetation in Honggou watersherd are identified: Larix principis-rupprechtii, Pinus armandii, Betula albo-sinensis, Populus davidiana and shrub. Regarding species composition of the arbors and shrub layers, dominant species within arbor layer are Larix principis-rupprechtii, Pinus armandii, Betula albo-sinensis and Populus davidiana. The dominant species of shrub layer are Prunus virginiana, Rosa omeienis var. pteracantha, Berberis cirumserrata, Cotonedster acutifolius, Hippophae hamnoides and Fargesia nitida.
     The results about the spatial distribution law of vegetation showed that the range of vertical distribution of L. principis-rupprechtii was from the elevation of 2200m to 2500m; Pinus armandii is distributed from 2040m to 2942m, and the most suitable range is from 2100 to 2200m in shady slope and half-shady slope. B. albo-sinensis is distributed mainly within 2200~2300m in shady slope and half-shady slope. The shrub is distributed above the elevation of 2300m in sunny slope and half-shady slope, which reveals the relationship between vegetation pattern and human activity to some extent.
     2. Distribution characteristics of soil physical properties
     Based on field investigations, the variation of soil physical characteristics with soil depth, slope aspect, slope position, and vegetation types within Honggou watershed was studied. The result shows: The soil bulk density and stone content increase with increasing soil depth; while total porosity, capillary porosity, non-capillary porosity, saturated water content, capillary soil water content, and field capacity of soil decrease with increasing soil depth.
     All the soil physical properties measured in this study are relatively better on the shady slope than on the sunny slopes and all other half-sunny slopes. With lowering slope position, the soil thickness, bulk density, stone content, and non-capillary porosity are gradually increasing; while the total porosity, capillary porosity, and all water-holding capacity indicators gradually decreasing, with an exception that the water-holding capacity on the up-slope is higher than that on the slope top.
     By comparing the averaged soil physical properties among five main vegetation types, the soil bulk density showed the following order: shrub land (0.98) > the Populus davidiana (0.91) > Pinus armandii (0.89) > Larix principris-upprechtii (0.83) > Betula albo-sinensis (0.73). The stone content of soil in the P. davidiana (9.33) is the least among all vegetation types. The capillary porosity of the soil in different vegetations showed order as follows: P. Armandii (43.40%) > B. albo-sinensis (42.73%) > P. davidiana (40.88%) > L. principris-upprechtii (40.35%) >shrub(34.36%) ; non-capillary porosity showed the following order: L. principris-upprechtii (21.69%) > B. albo-sinensis (20.19%) > shrub(17.56%) > P. armandii(16.05%) >P. armandii(13.65%).
     3. The main forest hydrological process of watershed
     This study discusses the relationship between canopy interception and the precipitation during one precipitation event in the Honggou watershed during the growing seasons from 2006 to 2007. The results show that the the canopy interception ratio to total precipitation is 100% when the precipitation is less than 1 mm during one precipitation event, and it declines to 15% when the precipitation is 10 ~50mm. But when the precipitation is over 50mm, the rate of canopy interception is basically lee than 15%. The canopy interception is more relative to the level of total rainfall, i. e. the higher the total rainfall is, the lower the interception ratio is, and the more the holding capacity of interception is.
     The paper studied the spatial variability and minimum sampling area of litter mass. The result shows that litter mass of two plots are not uniform in the spatial distribution, and the variation coefficient is 0.41 and 0.56 respectively. The litters mass and micro-landform of the two Larix principis-rupprechtii plots are related linearly, and the correlation coefficient is 0.444 and 0.677, respectively. The semivariograms of litter mass in two Larix principis-rupprechtii plots were best described by spherical model, and spatial correlation is moderate. Statistical analysis showed that 9 is the least adequate sampling area (at least 9m2) to denote the average total litter mass of Larix principis-rupprechtii plot in liupan mountain.
     The rainfall interception processes were studied under artificial simulated rainfall within the normal rainfall intensity range of this region (< 30 mm/h). The results showed that the interception capacity of litter increases with rainfall intensity. A mechanism-based model for describing the rainfall interception process of litter of the two species was developed:
     The model can reflect the effects of water content, rainfall intensity,and duration of rainfall simultaneously. The model parameters were calibrated based on the observed data both from the soaking experiment and simulated rainfall interception experiments.
     The diurnal variation of stem sap flow of Larix principis-rupprechtii on clear days in the whole growing season can be described as diurnal alternating fluctuation. The activity of stem sap flow can be divided into three phases:“relative rest stage”(20:00~next day07:00)with sap flow velocity less than 0.05μl·cm~(-2)·min~(-1) , and“active phase”(07:00~20:30)with sap flow velocity less than 0.25μl·cm~(-2)·min~(-1).
     The soil evaporation of internal forest was similar to that of external forest. The maximum evaporation rate of soil outside and inside of forest is 0.697mm/hand 0.505 mm/h respectively at 12 :00~14 :00. The environmental factors influencing soil evaporation include solar radiation, temperature, relative humidity, air temperature and wind speed and its equation follows: E=-0.468+0.205SW+0.01557SR-0.0137RH,R~2=0.8732.
     According to observed data of soil infiltration under different vegetation types in Honggou watershed, the initial velocity of infiltration range from 8.23mm/min to 62.96mm/min and the velocity of stable infiltration range from 7.55mm/min to 40.91mm/min. The velocity of infiltration increased with the time passing, and trend to be a constant finally. The soil infiltration rates of typical plots of vegetation are simulated by Kostiakov model, Horton model, Phillip model and Fangzhengsan model and the results show that the Horton model, of which the parameters have clearly physical meaning, is a relatively acceptable model for soil infiltration.
     4. The analysis of watershed runoff
     Influenced by temperature and precipitation,the runoff varies between seasons.The runoff volume is concentrated in the summer (September, August). The runoff is mostly consist of basic flow from November to June the next year. The Minimum Smoothing Method was used to separate the runoff component of Honggou watershed during growing seasons of 2006 and 2007, and the calculated BFI is 0.039. The investigation about the relation between runoff(m3) and rainfall(mm) indicates that they having a significant function relationship(Y=145.11X~(0.5977),R~2=0.6499。).
     5. The effect of vegetation variation on water balance of watershed
     In order to understand the mechanism of the interaction between forest/vegetation and hydrological processes, and to quantify the effect of the heterogeneity of physical conditions on the hydrological processes and water balance in watershed,as well as to evaluate the hydrological response to vegetation transition, especially the watershed function of water yield, the hydrological model SWIM was used in Honggou small Watershed of Liupan Mountains in this paper. Calibration and validation of SWIM model was done using the meteorological and hydrological data observeded at the outlet of the watershed during 2006 and 2007. Based on the simulation of the hydrological processes, the water balance on slope as well as the contribution to watershed runoff generation of different watershed parts was analyzed. Seven scenarios with different forest coverage of Larix principis-rupprechtii were established. Then the responses of hydrological processes of the watershed for these vegetation scenarios were simulated, and the effect of the vegetation transition on water balance of watershed, especially on runoff generation, were calculated.
引文
[1]马雪华.森林水文学.北京:中国林业出版社,1993,13-56
    [2]刘世荣,温远光,王兵,周光益等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996,61-62
    [3] Kittredge J.Forest Influence.New york:Graw-Hill Book Co,1948,838.
    [4]陈信雄.森林水文学.台湾:千华出版社,1979,582.
    [5]王礼先,张志强.森林植被变化的水文生态效应研究进展.世界林业研究.1998,11:(6):14-23
    [6]于志民,王礼先.水源涵养林效益研究.北京:中国林业出版社,1999,134.
    [7] Mc Culloeh J G.Robinson M.History of forest hydrology.Journal of Hydrology,1993, 150:189-216.
    [8] Bormann F H,Likens G E.Pattern and processes in a forested ecosystem.New York:Springer Verlag,1979,1-120.
    [9]熊立华,郭生练.采用非线性水库假设的基流分割方法及应用.武汉大学学报(工学版) ,2005 ,38 (1) :27-29.
    [10]余新晓,王礼先,张志强,等.森林植被影响径流形成机制研究进展.自然资源学报,2001,16(1):79-84
    [11]贺庆棠.气象学.北京:中国林业出版社,1988,11
    [12] Teng- Chiu Lin,et a1.Spatial variability of throughfall in a subtropical rain forest in Taiwan.Journal of Environmental Quality,1997,26(1):172-180
    [13] Delphis F Levia Jr,Ethan E Frost.A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems.Journal of Hydrology,2003,274:1-29.
    [14] Hornbeck J W,Swank W T.Watershed ecosystem analysis as a basis for multiple use management of eastern forests.Eco1.App1,1992,(2):238-247
    [15] Mc Culloch J G,Robinson M.History of forest hydrology.Journal of Hydrology,1993,150:189-216
    [16] Stednick J D . Monitoring the effects of timber harvests on annual water yield.Journal of Hydrology,1996,176:79-95
    [17] Swank W T,et a1.Stream flow changes associated with forest cutting,species conversion sand natural disturbance . In : Forest Hydrology and Ecology at Coweet . Eco1 . Stud . New York: Springer-verlag,1988,66:297-312.
    [18]王佑民.我国林冠降水再分配研究综述.西北林学院学报,2000,15(3):1-7
    [19] Dave M Morris,et a1.Patterns of canopy interception and throughfall along a topographic sequence for black Spruce dominated forest ecosystems in northwestern Ontario.Canadian Journal of Forest Research,2003,33(6):10-46
    [20]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评.水土保持学报,2001,15(5):60-75
    [21] Ian R.Calder.Canopy processes:implications for transpiration,interception and splash induced erosion.ultimately for forest management and water resources.Plant Ecology,2001,153:203-214
    [22]崔启武,边履刚,史继德,等.林冠对降水的截留作用.林业科学,1980,16(2):41-46
    [23]刘向东,吴钦孝,苏宁虎,等.六盘山林区森林树冠截留、枯枝落叶层和土壤水文性质的研究.林业科学,1989,25(3):220-227
    [24]邓世宗,韦炳贰.不同森林类型林冠对大气降雨量再分配的研究.林业科学,1990,26(3):271-276.
    [25]刘向东,吴钦孝,赵鸿雁,等.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响.中国科学院西北水土保持研究所集刊,1991,(14):9-20
    [26]马雪华,杨茂瑞等.亚热带杉木、马尾松人工林水文功能的研究.见:周晓峰.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,346-353.
    [27]曾庆波.海南岛尖峰岭热带林生态系统的水分循环研究.见:周晓峰.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,413-429
    [28]郭景唐.华北油松人工林树枝特征函数对干流量影响的研究.见:周晓峰.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,268-273
    [29]卫正新、李树怀.不同林地林冠截留降雨特征的研究.中国水土保持,1997,(5):19-21
    [30]王佑民,刘秉正.黄土高原防护林生态特征.北京:中国林业出版社,1994,228-233
    [31]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干茎流.林业科学研究,1992,5(2):158-162
    [32]时忠杰,王彦辉,于澎涛,等.单株华北落叶松冠层穿透降雨的空间异质性.生态学报,2006,26(9):2878-2886
    [33] Putuhena W M.Cordery I.Estimation of interception capacity of the forest floor.J.Hydrol,1996,180:283-299
    [34] C Tobo’nMarin.et a1.Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia.Journal of Hydrology.2000,237(3-4):169-183
    [35]程金花,张洪江,余新晓,等.贡嘎山冷杉纯林地被物及土壤持水特性.北京林业大学学报,2002,24(3):45-49
    [36]曾信波.苔藓层的蓄水保土功能研究.水土保持学报,1995,9(4):118-121
    [37]陈丽华.余新晓,张东升.贡嘎山冷杉林区苔藓层截持降水过程研究.北京林业大学学报,2002,21(4):60-63
    [38]王佑民.中国林地枯落物持水保土作用研究概况.水土保持学报,2000,14(4):l08-113
    [39] Roger T Koide,et a1.On variation in forest floor thickness across four red pine plantations in Pennsylvania,USA.Plant and Soil.2000,219(1):57-69
    [40] Xiaoniu N Xu,EijiHirata.Forest floor mass and litterfall in Pinus luchuensis plantations with andwithout broad-leaved trees.Forest Ecology and Management,2002,157(1-3):165-173
    [41]张洪江,程金花,史玉虎,等.三峡库区几种林下苔藓的保水功能.长江流域资源与环境,2003,12(5):457-461
    [42]杨吉华,张永涛,李红云,等.不同林分桔落物的持水性能及对表层土壤理化性状的影响.水土保持学报,2003,17(2):141-144
    [43]曲银鹏,杨文化,潘紫重.不同林分类型凋落物的蓄水功能.东北林业大学学报,2002,30(5):19-21
    [44]王安志,裴铁播.森林蒸散测算方法研究进展与展望.应用生态学报,2001,12(6):933-937
    [45]魏天兴.林分蒸散耗水量测定方法述评.北京林业大学学报,1999,21(3):85-91
    [46] Paulo RodolfoLeopoldo.et a1.Real evapotranspiratilon and transpiration through a tropical rain forest in central Amazonia as estimated by the water balance method . Forest Ecology and Management,1995,73(1-3):185-195
    [47] Kel1 B Wilson,et a1.A comparison of methods for determining forest evapotranspiration and its components:sap-flow,soil water budget.eddy covariance and catchment water balance.Agriculture and Forest Meteorology,2001,106(2):153-168
    [48] Thomas W Giambelluca.et a1.Transpiration in a small tropical forest patch.Agriculture and Forest Meteorology,2003,117(1-2):1-22
    [49] M G Schaap.et a1.Forest floor water content dynamics in a Douglas fir stand.Journal of Hydrology,1997,201(1-4):367- 383
    [50]高人.宁东部山区几种主要森林植被类型水量平衡研究.水土保持通报,2002,22(2):5-8
    [51]孟广涛,郎南军,方向京,等.滇中华山松人工林的水文特征及水量平衡.林业科学研究,2001,14(1):78-84
    [52]程根伟,余新晓,赵玉涛,等.贡嘎山亚高山森林带蒸散特征模拟研究.北京林业大学学报,2003,25(1):23-27
    [53]刘志,江忠善.雨滴打击作用对黄土结皮影响的研究.水土保持通报,1998,8(1):62-64
    [54]石健,郭小平.森林植被对径流形成机制的影响.水土保持应用应用技术,2006,2:5-8
    [55]潘紫文,刘强,佟得海.黑龙江省东部山区主要森林类型土壤水分的入滲速率.东北林业大学学报,2002,30(5):24-26
    [56]余新晓,赵玉涛,张志强,等.长江上游亚高山暗针叶林土壤水分入滲特征研究.应用生态学报,2003,14(1):15-19
    [57]王新平,李新荣,张景光.沙坡头人工植被固沙区天然降水的入滲和分配研究.中国沙漠,2002,22(6):534-540
    [58]秦耀东,任理,王济.土壤中大孔隙流研究进展与现状.水科学进展,2000,11(2):203-207
    [59]杨新华.湛江市的干旱状况及水资源的可持续利用.华中农业大学学报(社会科学版),2001(4):19-23
    [60]吴绳聚,孟昭福,刘文环.森林对水环境影响浅议.防护林科技,1994(2):22-24
    [61]郭晓寅,程国栋.遥感技术应用于地表蒸发的研究进展.地球科学进展,2004,19(1):107-114
    [62] Rosenberg NJ, Blad B L. Uerma S.B. Microclimate the Biological Environment of Plants. New York:Johwiley&Sons,1983
    [63]刘向东,吴钦孝,苏宁虎.六盘山林区森林树冠截留、枯枝落叶层和土壤水稳性质的研究.林业科学, 1989, 25 (3) : 220- 227
    [64]范世香,裴铁,蒋德明,等.两种不同林分截留能力的比较研究.应用生态学报, 2000, 11 (5):671- 674
    [65]杨玉盛,陈光水,谢锦升.论森林水源涵养功能.福建水土保持,1999, (3):3- 7
    [66]张建列,李庆夏.国外森林水文研究概述.世界林业研究.1988(4):41-47
    [67]王德连,雷瑞德,韩创举.国内外森林水文研究现状和进展.西北林学院学报,2004,19(2):156-160
    [68]高人.辽宁东部山区几种主要森林植被类型水量平衡研究.水土保持通报,2002,22(2):5-8
    [69]张玲,王震洪.云南牟定三种人工林森林水文效应的研究.水土保持研究.2001.8(2):69—73
    [70]朱劲伟.小兴安岭红松阔叶林的水文效应.东北林学院学报,1982(4):17-24
    [71]赵强,宫辉力,邓伟.分布式水文概念性模型及应用.水利水电技术,2005,36(5):4-6
    [72]穆宏强,夏军,王中根.分布式流域水文生态模型的理论框架.长江职工大学学报,2001,18(1):1-5
    [73] Martin,Lawrence W. The Application of Digital Terrain Analysis Modelling Techniques for the Parameterization of a Hydrological Model in the Wolf Creek Research Basin, Lacroix & Martz Digital Terrain Analysis,79-88
    [74] Scott A.W,Jetse D.Regional scale hydrological modelling using multiple~parameter landscape zones and a quasi distributed water balance model, Regional scale hydrological modelling using multiple parameter Hydrology and Earth System Sciences, 2001,5(1):59-74
    [75] Kirsten W,Marc S . Advantages of a Topographically Controlled Runoff Simulation in a Soil–Vegetation–Atmosphere Transfer Model.American Meteorological Society,2002,4:131-148
    [76] Abbort M.B,Bathurst JC,Cunge J.A,et al . An introduction to the European hydrological system~Système Hydrologique Européen,“SHE”,1:History and philosophy of a phydically~based, distributed modeling system. Journal of Hydrology. 1986a,87:45-59
    [77] Abbort M.B,Bathurst J. C,Cunge J.A et al. An introduction to the European hydrological system~Système Hydrologique Européen,“SHE”,2:Structure of a physically~based distributed modeling system .Journal of Hydrology,1986b,87:61-77
    [78] Todd M., Jeff P. Raffensperger, George M. Shallow subsurface storm flow in a forested headwater catchment:Observations and modeling using a modified TOPMODEL. Water resources research,2000,36(9):2575-2586
    [79] Freeze R.A.,Harlan R,L. Blueprint for a physically-based digitally-simulated hydrological response model.Journal of hydrology,1969,9:237-258
    [80]王旭东,蒋云钟.分布式水文模拟模型在流域水资源管理中的应用.南水北调与水利科技,2004:1
    [81] Connolly R.D. Silburn, D.M. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator dataⅡ: Application to spatially uniform catchment.Journal of hydrology, 1995,172:105-125
    [82] Connolly R.D, Ciesiolka,C.A.A., et al. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator dataⅣ: Evaluating pasture catchment hydrology. Journal of hydrology, 1997,201:311-328
    [83] Manguerra H B . Hydrologic parameterization of watersheds for runoff prediction using SWAT. Journal of the American Water Resources Association,1998,34(5):1149-1162
    [84] R.P. Silbersteina,R.A. Vertessy,J. Morris, P.M.Modelling the effects of soil moisture and solute conditions on long-term tree growth and water use: a case study from the Shepparton irrigation area. Australia, Agricultural Water Management, 1999,39:283-315
    [85] Beven K,Germann P.Macropores and water flow in soils.Water Resource Research.1982,18(5):1311-1325
    [86] Beven K.Micro.meso. and macroposity and channeling flow phenomena in soils. Soil Sci. Soc.Am. J. 1981,45:1245
    [87] Beven, K. On subsurface stormflow:prediction with simple kine matic theory for saturated and unsaturated flows. Water Resour. Res., 1982,18(6):1627-1633
    [88]李兰.流域水文数学物理耦合模型.中国水利学会优秀论文集,2000,322-329
    [89]李兰.流域水文分布动态参数反问题模型.中国水利学会优秀论文集,2000,48-54
    [90]郭生练,熊立华,杨井等.分布式流域水文物理模型的应用和检验.武汉大学学报(工学版), 2001 ,34(1):1-5
    [91]于澎涛,徐德应,王彦辉.应用官司河分布式水文模型模拟流域降雨一径流过程. 2003,39(1):1-9
    [92]于澎涛.分布式水文模型在森林水文学中的应用.林业科学研究,2000,13(4):431-438
    [93] Warrick R. Dawes,Lu Zhang,Tom J. Hattona. Evaluation of a distributed parameter ecohydrological model[TOPOG_IRM]) on a small cropping rotation catchment.Journal of Hydrology,1997,191:64-86
    [94] Arnold, J.G., Allen, P.M. & Bernhardt, G. . A comprehensive surface-groundwater flow model. Journal of Hydrology, 1993,142: 47-69.
    [95] Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W., Griggs, R.H., SWAT, Soil and WaterAssessment Tool, USDA, Agriculture Research Service, Grassland, Soil & Water Research Laboratory, 808 East Blackland Road, Temple, 1994,TX 76502.
    [96] Krysanova, V. & Luik, H. (eds.), Simulation modelling of a system watershed - river - seaba y. Tallinn, Valgus, 1989a.428 pp, (in Russian).
    [97] Krysanova, V., Meiner, A., Roosaare, J., & Vasilyev, A., Simulation modelling of the coastal waters pollution from agricultural watershed. Ecological Modelling, 1989b. 49: 7-29.
    [98]王淑元,林升寿.中国森林生态系统定位研究进展.见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:
    [99]潘维俦,谌小勇.森林水文学研究中的生态系统观念.见:全国森林水文学术讨论会文集,北京:测绘出版社,1989a :25-31.
    [100]王彦辉,刘永敏.毛竹人工林水文作用的研究.见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:354-363.
    [101]王彦辉.刺槐对降雨的截持作用.生态学报,1986,7( 1):43-49.
    [102]王彦辉.陇东黄土地区刺槐林水土保持效益的定量研究.北京林业大学学报,1996,8(l )
    [103]王彦辉,于澎涛,徐德应,等.林冠截留降水模型转化和参数规律的初步研究.北京林业大学学报,1998,20(6):25-30.
    [104] Valentina Krysanova, Frank Wechsung.SWIM (Soil and Water Integrated Model) User Manual.2000:17
    [105]宁夏林业厅自然保护区办公室.六盘山自然保护区科学考察.宁夏人民出版社,1989
    [106]林业部科技司编.森林生态系统定位研究方法.北京:中国科学技术出版社.1994:98-100
    [107]熊伟、王彦辉、于澎涛,等.六盘山辽东栎、少脉椴天然次生林夏季蒸散研究.应用生态学报.2005,16 (9):1628-1632
    [108]万洪涛,万庆,周成虎.流域水文模型研究的进展.地球信息科学,2002,4:46-48
    [109]刘金清,陆建华.国内外水文模型概论.水文,1996,4:4-8
    [110]黄新会,王占礼,牛振华.水文过程及模型研究主要进展.水土保持研究,2004,11(4):105-108
    [111] Bo Huang and Michael F.Worboys, Dynamic Modelling and Visualization on the Internet, Transactions on GIS,2001,5(2):131-139
    [112]李天杰,郑应顺,王云.土壤地理学.北京:高等教育出版社,1979
    [113]林民治,贝荣良.英德林场地形条件对土壤形状影响的初步研究.广东林业科技,1990,1.
    [114]吴淑芳,张华,吴普特.杨陵区土壤物理特性的水平与垂直变化规律.水土保持研究,2002,9(2):13-14.
    [115]王政权,王庆成.森林土壤物理性质的空间异质性研究.生态学报,2000,20(6):945-950
    [116]张远东,刘世荣,赵常明.川西亚高山森林恢复的空间格局分析.应用生态学报,2005 ,16 (9):1706-1710
    [117]高贤明,黄建辉.秦岭太白山弃耕地植物群落演替的生态学研究.生态学报,1997,17(6):619-62
    [118]金则新.浙江仙居俞坑森林群落物种多样性研究.武汉植物学研究,2000,18(5):383-389
    [119]刘智慧..四川省缙云山栲树种群结构和动态的初步研.植物生态学与地植物学学报,1990,14(2):120~127
    [120]张金泉.植物地理学.重庆:重庆出版社,1989,221
    [121]武吉华,张绅.植物地理学].北京;高等教育出版社,1995,62
    [122]潘树荣,伍光和.自然地理学.北京:高等教育出版社,1985,377、380.
    [123]焦超卫,赵牡丹,汤国安,等.基于GIS的植被空间格局特征与地形因子的相关关系.水土保持通报,2005,25(6):19-23.
    [124]刘瑞民,杨志峰,沈珍瑶,等.基于DEM的长江上游土地利用分析.地理科学进展,2006,25(I):102-109.
    [125]曾宏达,陈光水,杨玉盛.基于DEM的森林空间分布研究.国土与自然资源研究,2005,(3):85-87.
    [126]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法.北京;科学出版社,2005.4、213、216、390.
    [127]陈奇伯,解明曙,张洪江.森林枯落物影响地表径流和土壤侵蚀研究动态.北京林业大学学报,1994(16增刊3):88~97
    [128]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展.江西农业大学学报.2000,22(3):405~410
    [129] Bray J.R.& E.Gorham.1964.Litter production in forest of the world.Advances in Ecological Research,2:101-157.
    [130]卢俊培,刘其汉.海南岛尖峰岭热带林凋落物及其分解过程的研究.中国森林,生态系统定位研究,1994,178-191
    [131]程伯容,等.长白山阔叶红松林生物养分循环.森林生态系统研究,1992,(6):185-193
    [132]林鹏,卢昌义,王恭礼,等.海南岛河港海莲红树林凋落物动态的研究.植物生态学与地植物,1988,14:69-73
    [133]温远光,韦炳二,黎洁娟.亚热带森林凋落物产量及动态的研究.林业科学,1989,25(6):542~54
    [134]刘文耀,邢桂芬,和爱军.滇中常绿阔叶林及云南松林凋落物和死地被物中的养分动态.植物学报,1990,32:637-646
    [135]官丽莉,周国逸,张德强.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究.植物生态学报,2004,28(4):449-456
    [136]王政权.地统计学及在生态学中的应用.科学出版社,北京,1999
    [137]周慧珍,龚子同.土壤空间变异性研究.土壤学报,1995,33,(3)232-241
    [138]冯益明,唐守正,李增元.空间统计分析在林业中的应用.林业科学,2004,40,3:149-155
    [139] Webster R.Quantitative spatial analysis of soil in field. Advance in Soil Science,1985,3:1-70
    [140]郭旭东,傅伯杰,马克明,等.河北省遵化平原土壤养分的时空变异特征.地理学报,2000,55(5):555-565
    [141] Li H, Reynolds JF. On definition and quantification of heterogeneity .Oikos, 1995,73,280-284
    [142] Christien HE , Ettema DA .Spatial soil ecology. Trends in Ecology & Evolution, 2002,17,177-183
    [143]龚绍琦,黄家柱,李云梅等.太湖梅梁湾水质参数空间变异及合理取样数目研究.地理与地理信息科学,2006,22(2):50-54
    [144]薛正平,杨星卫,段项锁,等.土壤养分空间变异及合理取样数研究.农业工程学报,2002,18(4):6-9
    [145] Maguire DA..Branch mortality and potential litter fall from Douglas-fir trees in stands of varying density.Forest Ecology and Management,1994,70:41-53.
    [146]鲍文,包维楷,丁德蓉,等.岷江上游人工油松林凋落量及其持水特征.西南农业大学学报,2004,26(5):567- 569
    [147] Mazvimavi D ,Meijerink M J.Stein A. Prediction of base flows f rom basin characteristics : a case study f rom Zimbabwe . Hydrological Science Journal ,2004 ,49 (4) :703-715.
    [148]丁晶,邓育仁.随机水文学.成都:成都科技大学出版社,1988
    [149]王彦辉、于澎涛、徐德应,等.林冠截留降雨模型转化和参数规律的初步研究.北京林业大学学报,1999,20(6):25-30
    [150] Richard Lee and Alfredo B.Granillo. Soil protection by natural vegetation on clearcut forest land in Arkansas.Journal of Soil and Water Conservation.,1985,40(4):379-382
    [151] Rowe PB.Effects of the forest floor on disposition of rainfall in pine stands.Journal of Forestry 1955,53: 342-348
    [152] Dabral BG, Premnath, Ramswarup.Some preliminary investigation on the rainfall interception by leaf litter. Indian Forester 1963,89:112-116
    [153] Schaap MG, Bouten W, Verstraten. Forest floor water content dynamics in a douglas fir stand.Journal of Hydrology ,1997.201: 367-383.
    [154] Pitman JI.Rainfall interception by bracken litter—relationship between biomass, storage and drainage rate.Journal of Hydrology 1989,111: 281-291.
    [155] Yoshinobu Sato,Tomo’omi Kumagai,Atsushi Kume,et al.Experimental analysis of moisture dynamics of litter layers - the effects of rainfall conditions and leaf shapes. Hydrol. Process. 2004.:18: 3007-3018
    [156]张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性,林业科学研究. 2003,39:148-151
    [157] Putuhena WM, Cordery I. Estimation of interception capacity of the forest floor. Journal ofHydrology,1996,180: 283-299
    [158] Tobon-Marin C, Bouten IW, Dekker S.Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia.Journal of Hydrology,2000,237: 169-183
    [159] Crockford RH, Richardson DP. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate.Hydrological Processes,12000,4: 2903-2920
    [160]薛立、何跃君、屈明,等.华南典型人工林凋落物的持水特性.植物生态学报,2005,29(3):41-421
    [161] R.K.林斯雷等著.刘光文等译:《工程水文学》.水利出版社,北京,1981
    [162]华孟,王坚.土壤物理学.北京:北京农业大学出版社,1993
    [163]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988
    [164] Seyfried M. Spatial variability constraints to modeling of soil water at different scales,Geoderma,1998,85:231-254.
    [165]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤物理性质的空间变异.地理学报,2002,57(5):587-593.
    [166] Burrough P A.soil variability :a late 20 th century view.soils and Fertilizers.1993,56(5):529-562.
    [167]林民治,贝荣良.英德林场地形条件对土壤形状影响的初步研究.广东林业科技,1990,1:5-7
    [168]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分的空间异质性及其影响因子.应用生态学报,2001,12(5):715-720
    [169]黄昌勇.土壤学.北京:中国农业出版社,2000
    [170] Smakhtin V U. Low flow hydrology : a review.Journal of Hydrology ,2001 ,240 :147-186.
    [171]孔繁智,宋波,裴铁潘.林冠截留与大气降水关系的数学模型.应用生态学报,1990,1 (3) :201-208
    [172]刘文耀,刘伦辉,郑征.滇中不同群落结构云南松林的水文作用.北京林业大学学报,1992,14 (2):38- 45
    [173]程金花,张洪江,余新晓,等.贡嘎山冷杉林地被物及土壤持水特性.北京林业大学学报,2002,,24 (3):45-49
    [174]吴建平,袁正科,等.湘西南沟谷森林土壤水文-物理性质与涵养水源功能研究.水土保持研究,2004,11 (1):74-77
    [175]谭芳林.森林水文学研究进展与展望.福建林业科技,2002,29 (4):47-51
    [176]李景文主编.森林生态学.第2版,北京:中国林业出版社,1994: 107-110
    [177]中野秀章(李云森译) .森林水文学.北京:中国林业出版社出版,1983
    [178]曾杰,郭景唐.太岳山油松人工林生态系统降雨的第一次分配.北京林业大学学报,1997,19(3):21-27
    [179]鲍文,包维楷,何丙辉等.森林生态系统对降水的分配与拦截效应.山地学报,2004,22(4):483-491
    [180] Calder IR. Water use of eucalyptus-A review.In:Calder IR.Hau RL,Adlard PG,eds.Growth and Water Use of Forest Plantations.Chichester:John W iley& Sons.1992,167-179
    [181]刘志军,张万军,曹健生等.太行山石质山地石榴中幼林林地蒸散规律研究.应用生态学报,2003,14(6):879-881
    [182] Wullschleger S,Meinzer FC,Vertessy RA. A review of whole-plant water use studies in trees.Tree Physiol.1998,18:499-512
    [183]尹光彩,周国逸,王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究.生态学报,2003.23(9):1984-1990
    [184]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究.生态学报,2002.22(9):1387-1391
    [185]王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究.植物生态学报,2002.26(6):661-667
    [186] Hatton TJ,Moore SJ,Reece PH. Estimating stand transpiration in Eucalyptus populnea woodland with the head putse method:Measurement errors and sampling strategies.Tree Physiol.1995,15:219-227
    [187] Wullschleger S,King AW . Radial variation in sap velocity as a function of stem diam eter and sapwood thickness in yellow poplar trees.Tree Physiol,2000,20:511-518
    [188]高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究.西北植物学报,2001,21(4):644-649
    [189]金红喜,刘左军,王继和,等.热平衡茎流计在荒漠灌木植物耗水研究中的应用.防护林科技,2004,(3):9-13
    [190]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,1998,20(1):1-6
    [191]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(2):1-7
    [192]时忠杰.六盘山香水河流域森林植被的坡面生态水温影响.博士学位论文,2005
    [193]曾杰、郭景唐.太岳山油松人工林生态系统降雨的第一次分配.北京林业大学学报,1997,19(3): 22-27
    [194] Sellers P J ,Randall D A , Collatz GJ , et al . 1A revised land surface parameterization (SiB2) for atmosphere GCMs PartⅠ: Model formulation. Journal of Climate , 1996.9 :676 -705
    [195] Rust S.Comparison of three methods for determining the conductive xylem area of Scots pine(Pinus sylvestris).F0restry.1999,72(2):103-108
    [196]秦耀东.土壤物理学.高等教育出版社,2003
    [197]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988.
    [198]陈建刚,李启军,侯旭峰,等.妫水河流域不同植被覆盖条件下土壤渗透及模型的比较分析.中国水土保持科学,2004,2 (3).
    [199]夏江宝,杨吉华,李红云.不同外界条件下土壤渗透性能的研究.水土保持学报,2004,11(2).
    [200]蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试.水土保持通报,1984,4(4):7
    [201]刘昌明,王会肖.土壤一作物一大气界面水分过程和节水调控.北京:科学出版社, 1999,60-91
    [202] Daamen C, SimmondsL P, Wallace J S, et al. UseMicro-lysime2ters to measure evaporation from sandy soils.Agri and For Mete, 1993, 96: 159 -173.
    [203] Boast CW, Rohertson TM. A Micro-lysimeter method for determining evaporation from bare soil: descrip tion and laboratory evalu2ation..Soil Sci Soc Am J, 1982, 46: 689-696.
    [204]熊伟,王彦辉,程积民,等.不同植被覆盖条件下土壤水分蒸发的比较.中国水土保持科学,2005,3(3):65-68.
    [205]刘丽霞,王辉,孙栋元,等.绿洲农田防护林系统土壤蒸发特征研究.干旱区资源与环境,2008,22(1):162-166
    [206]程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟.北京:科学出版社,2004
    [207]余新晓,张建军,朱金兆,等.黄土地区防护林生态系统土境水分条件的分桥与评价.林业科学,1996,106,32(4):289-296
    [208]陈海滨,孙长忠,安锋,等.高原沟望区林地土壤水分特征的研究(1)—土壤水分的垂直变化和季节变化特征.西北林学院学报.2003,18(4):13-16
    [209]杨远东.河川径流年内分配的计算方法.地理学报,1984,39(2):218-227
    [210]王俊德.水文统计.北京:水利电力出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700