用户名: 密码: 验证码:
杉木人工林断面积生长规律及动态模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断面积生长预估是林分生长和收获预估体系中的核心因子和基础。本研究以杉木密度试验林和密度间伐试验林为研究对象,在全林分、径阶和单木三个水平上,全面探讨断面积生长动态规律及其与林分因子之间的关系并采用相应模型对断面积生长动态进行模拟。主要结果如下:
     1.密度试验林断面积生长的关系规律
     对于密度试验林,分别对相同初始林分密度、立地条件下林分断面积进行比较分析;采用Chapman-Richards’方程计算林分累积胸高断面积曲线的拐点年龄(A*),应用回归模型讨论初始林分密度和立地质量与林分生长率的关系。结果表明:在幼龄林阶段,初始林分密度(单位面积林木株数)越大,立地条件越好,则林分断面积越大,林分断面积生长率也越大,达到最大生长率时间最短,这一阶段立地条件对林分的生长起主要作用;初始林分密度越大,立地条件越好的林分,进入郁闭的时间也越早。在达到最大断面积生长率后,初始林分密度大的小区其断面积生长率降低的幅度较初始林分密度小的小区大。当林分进入竞争阶段,尽管林分断面积生长率下降,但林分断面积仍旧与初始林分密度呈正相关,初始林分密度大的林分林分断面积仍旧大;当林分开始自疏并达到稳定状态时,林分单木死亡导致的断面积减小则由存活木的高生长率所弥补。林分断面积虽然还在增加,但增加幅度逐渐变小。最终,一定初始林分密度范围内,林分断面积趋于一致。对于相同立地下,同密度小区的林分断面积生长率基本相同,而不同密度小区之间林分断面积生长率差异明显。低于一定林分密度(2m×1m)下的林分几乎没有自疏现象发生。
     在相同林分密度下,立地指数越小,枯死木出现的时间越早。而立地指数越大,枯死木断面积比例也越大。随着林分密度由低到高,枯死木的断面积值达到最高点的时间逐渐变短。对于相同初始密度,同一立地指数级的小区枯损趋势比较接近,但是由于立地条件的差异,枯损的数量有所不同。
     林分雪灾受害比例大体上随着林分密度的增加呈现上升趋势。立地指数高,雪压受损程度小。位于坡度大的小区林木受害的面积比例远大于坡度小的小区。
     2.间伐对林分断面积的影响
     在立地相同的条件下,间伐次数和间伐强度均随着林分初始密度的增大而增大。在林分密度相同条件下,立地指数大的小区间伐强度明显大于立地指数小的小区。林分密度越大,立地条件越好,首次间伐时间也越早。对同一小区间伐前后断面积分布比较可知:间伐后各个小区在低径阶上的断面积分布比重明显减小。在对不同小区进行首次间伐后,不同径阶上的断面积随径阶增大出现左偏趋势。但随着间伐次数的增加,断面积随径阶左偏的趋势逐渐减弱,并有趋于正态分布的趋势。经过最后一次间伐(小区密度为1667n/hm-1)后,多数小区则又呈现左偏趋势。
     对同立地条件下不同时期间伐后的保留密度小区与临近密度的小区林分断面积比较可知:对于立地条件差的小区(SI=14),小断面积的林木所占比例大。对于立地条件好的小区(SI=16),间伐后与同密度未间伐小区林分断面积相比呈现一定的规律性:随着间伐次数的增多,大、中径阶所对应的林分断面积逐渐增加。
     相同立地、初始密度下,间伐与未间伐林分断面积比较:对于中(C)、高(E)密度的林分,在立地条件差(SI=14)的情况下,经过间伐的林分的断面积远小于没有间伐的林分;而立地条件好(SI=16)的林分,间伐林分的断面积与未间伐的林分断面积趋同。
     3.林分断面积生长的动态模拟
     以三个广为应用的方程(Korf、Hossfeld和Bertalanffy-Richards)作为基础方程,应用广义代数差分(GADA)模型对密度试验林和密度间伐试验林断面积生长动态进行模拟。模拟结果显示:(1)由于GADA可以消除异方差问题,从而获得了对林分生长模拟更高的模拟精度;(2)在给出的10个GADA形式的模型中,以两个与立地有关参数(a1、a2)的KorfⅢ方程最为合适的模拟方程。其具体形式为:
     4.径阶水平断面积生长规律
     径阶划分与模拟精度之间有着非常紧密的关系。断面积误差%( PS )与径阶距(a )成正相关和平均直径(d )成负相关。具体关系为: P_S = ( a/(2d))~2(%).
     通过径阶整化和添加方程极值的方法,增加用来模拟的数据对,从而达到了提高模拟精度的目的。通过对不同方程模拟得到的R a2dj、Root MSE、RSS进行比较检验。最终,按照模拟精度从高到低前4位分别是:Champan-Richards’> Richards’>Weibull(3参数)>Logistic。采用径阶累加作比的方法,令极值为常数1。这样模拟得到的结果与渐近值作为参数时结果极为接近,完全可信。按照方程参数与林分因子之间的关系,方程稳定性顺序为:Weibull(3参数)>Logistic>Richards’>Champan-Richards’。
     6.单木断面积生长规律及模拟
     Chow检验的结果显示:雪灾发生前后,单木断面积生长趋势没有发生显著差异。不论优势木、中间木还是被压木,单木的断面积都随着林龄的增加而增加。同一初始林分密度下,立地指数大的林分单木的断面积大,并且断面积增长趋势接近。对于同一密度,优势木随株数变化的累积断面积最大,中间木其次,被压木最小。在相同立地下,高密度林分的株数变化范围大,但是对应的累积断面积变化范围较小。对于同一林层单木,初始林分密度越小,单木断面积增长幅度越大,密度对单木断面积的影响越显著。对于被压木,低密度林分的断面积增长要远高于中、高密度林分。
     通过对年珠和青石湾样地单木断面积蓄积生长量进行面板数据分析,可以得到以下结论:(1)单木断面积蓄积生长量受立地条件影响最大,立地条件越好,单木断面积蓄积生长量越大;(2)在一定立地条件下,单木断面积蓄积生长量与林分密度呈负相关,密度越大,单木断面积蓄积生长量越小;(3)采用竞争指数可以很好的反映单木断面积的生长规律;(4)间伐是减小单木竞争,保证保留木有足够生长空间的有效方式,同时,间伐对于单木断面积生长的影响非常明显。
Basal area growth system is a key componmet of stand-level models, since basal area is directed related to other very important variables.In this paper, relationship between basal area and stand factors, which is based on spacing and thinning trials at whole- stand, size-class and individual tree levels at the Chinese fir plantations.
     Stand basal area growth trends with spacing trials have shown at the initial same growing space or site indexes; variance analysis is used to explain stand density effect; Richard’model was chosen as the cumulative stand basal area function and the ages of the growth curves inflection points were found by determining the age at which the second partial derivate of the Richard’model; regression analysis is used to illustrate relationship between stand basal area growth rate and stand density, site quality.Inspection of these data revealed that stand basal area is well correlated with stand density, site quality. The cumulative stand basal area and growth rate increase progressively with increasing initial density and better site quality.The age at which the growth rate culminates increases as initial stocking density decreases. After culmination the growth rate declines much faster for higher stocking densities, causing the growth rate for the higher densities to drop below those for the lower densities. Stand basal growth rate decreases at competition stage, while cumulative stand basal area increases slightly. When stand growth reaches a dynamic stable balance, the cumulative stand basal area converges to one at a certain initial stand density level. Self-thinning has no begin under a certain initial stand density level.
     At the same stand density, the low site index lead to high natural mortality. Stand density become from low to high, when the snag basal area reaches the maximum value early.
     The higher stand density, snow damage is higher; the higher site index, snow damage lower. Compared with the low slope, snow damage ratio is larger at the high slope.
     Thinning indiciates: after thinning was done, the different size-class logs can be gained and the remained trees growth is promoted. When trees were planted with higher site and stand density, the small size-class timber was gained. Above a certain stand site, the cumulative stand basal area between thinned and unthinned converges to one.
     Three well-known growth functions (Korf, Hossfeld and Bertalanffy-Richards) were considered for developing a stand basal area growth system for the different spacing and thinning artificial trials. Among the ten dynamic equations finally evaluated for basal area projection, the Generalized Algebraic difference Approach (GADA) formulation from the Korf equation that considered parameters a1 and a2 to be site specific was selected. The concrete formulation is fllowing:
     The basal area erroris is in proportion to diameter class and inversein proportion to mean diameter. That is P_S = ( a/2d)~2(%).
     The results were showed with basal area at the size-class level that (1)well relationship between size-class and simulation precision; (2) compared with R a2dj, Root MSE and RSS, Champan-Richards’has the higher precision gains than those, then Richards’, Weibull (3 parameters) and Logistic. Furthermore, the interval estimation with the model parameters also proved to the identical results; (3) applying size-class cumulating method, the asymptote value equals to 1. As a result, the number of the model parameters decrease and the estimated results is parallel with that the parameters is unequal to 1; ( 4) the model stability was gained by relationship between model parameters and stand factors: Weibull(3 parameters)higher, then Logistic, Richards’and Champan-Richards’.
     The results were showed that snow damage didn’t changed individual tree growth trends using Chow test with spacing and thinning artificial trials. The panel data provides a useful model of individual tree basal area grow trends. (1) the basal area increment is well correlated with site quality; (2) at a certain site index level, the basal area increment decreases while stand density increases; (3)by adding competition indexes, the basal area growth outperforms; (4)thinning decreases inter-individual tree competition and makes the remained trees gain enough growth resource.
引文
[1]张建国,段爱国.理论生长方程与直径结构模型的研究.北京:科学出版社, 2004. 1-3
    [2]张守攻.工业人工林的培育和高效利用.北京:中国林业出版社, 2002. 1-4
    [3]雷加富.中国森林资源.北京:中国林业出版社.2005.172.
    [4]唐守正,杜纪山.利用树冠竞争因子确定同龄间伐林分的断面积生长过程.林业科学, 1999. 35(6): 35-41.
    [5]李凤日.落叶松人工林林分动态模拟系统的研究.北京林业大学博士学位论文.
    [6]杜纪山.抚育间伐对林分生长效应的模型研究.北京林业大学博士学位论文.
    [7] Eerik?inen, K. A site dependent simultaneous growth projection model for Pinus kesiya plantations in Zambia and Zimbabwe. For. Sci., 2002. 48(3): 518-529
    [8] Carson, D,H Garcia. Realized gain and prediction of yield with genetically improved Pinus radiate in New Zealand. For. Sci., 1999. 45(2): 186-200.
    [9] Corona, P, M P Antonio,R Scotti. Top-down growth modeling: a prototype for poplar plantations in Italy. For.Ecol. Manag., 2002. 161: 65-73.
    [10] García, O,F Rui. A growth model for eucalypt in Galicia,Spain. For. Ecol. Manag., 2003. 173: 49-62.
    [11] Oandrés, B, D Rmiren,M Gregorio. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. For. Ecol. Manag., 2004. 201: 187-197.
    [12] Liuc, L Zhang, C J Davis, D Ssolomonet,alT B Brann. Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data. For. Sci., 2003. 49(4): 619-631.
    [13] Ralph, D N, G R David, D Y Ruth, D B Russell, L N Zhanget,alJ Robert. Early cohort development following even-aged reproduction method cuttings in New York northern hardwoods. Can. J. For. Res., 2000. 30:: 67-75.
    [14] Fang, Z, R L Bailey,B D Shiver. A multivariate simultaneous prediction system for stand growth and yield with fixed and random effects. For. Sci., 2001. 47(4): 550-562.
    [15] Sharma, M, R G Oderwald,R L Amateis. A consistent system of equations for tree and stand volume. For. Ecol. Manag., 2002. 165: 183-191.
    [16] Wang, J R, T Letchford,P G Comeau. Influences of paper birch competition on growth of understory white spruce and subalpine fir following spacing. Can. J. For. Res., 2003. 33: 1,962-1,973.
    [17] Stanton, B J. Clonal variation in basal area growth patterns during stand development in hybrid poplar. Can. J. For. Res., 2001. 31: 2,059-2,066.
    [18] Hao, Q Y, F R Meng, Y P Zhouet,alJ X Wang. A transition matrix growth model for uneven-aged mixed-species forests in the Changbai Mountains northern China. New For., 2005a. 29: 221-231.
    [19] Hao, Q Y, F R Meng, Y P Zhouet,alJ X Wang. Determining the optimal selective harvest strategy for mixed-species stands with a transition matrix growth model. New For., 2005b. 29: 207-219.
    [20] Zhao D H, B Borders,M Wilson. A density-dependent matrix model for bottomland hardwood stands in the lower Mississippi alluvial valley. Ecol. Model., 2005. 184: 381-395.
    [21]李凤日,赵宝东,苏贵林. A derivation of the generalized Korf growth equation and its application. J. For. Res., 2000. 11(2): 81-88.
    [22] Zeide, B. The U-approach to forest modeling. Can. J. For.Res., 2003. 33: 480-489.
    [23] Silvertown, J,D Charlesworth.简明植物种群生物学.北京:高等教育出版社, 2003. 1-2
    [24]马知恩.种群生态学的数学建模与研究.合肥:安徽教育出版社, 1996. 1-5.
    [25] Candy. Growth and yield models for pinus radiate in Tasmania. New Zealand J For. Sci., 1989. 19(1): 112-133.
    [26] Bailey, R L,K D Ware. Compatible basal-area growth and yield model for thinned and unthinned stands. Can J For. Res., 1983. 13: 563-571.
    [27] Pienaar, L V,K J Turnbull. The Chapman-Richards generalization of Von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. For. Sci. , 1973: 2-22.
    [28] Pienaar, L V,B D Shiver. an analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots. For.Sci., 1984. 30(4): 933-942.
    [29] Pienaar, L V, B D Shiver,G Egirider. predicting basal area growth in thinned slash pine plantations. For.Sci., 1985. 31(3): 731-741.
    [30] Clutter, J L,E P Jones. Prediction of growth after thinning in old field slash pine plantations. USDA For. Serv. Res. Paper, 1980: SE-217.
    [31]张少昂.兴安落叶松天然林分生长模型和可变密度收获表的研究.东北林业大学学报, 1986. 14(3): 17-25.
    [32]李希菲,唐守正,王松龄.大岗山实验局杉木人工林可变密度收获表的编制.林业科学研究, 1988. 1(4): 382-389.
    [33] Hasenauer, H, H E Burkhart,R Amateis. basal area development in thinned and unthinned loblolly pine plantations. Can. J.For.Res., 1997. 27: 265-271.
    [34] Mctague, J P,R L Bailey. compatible basal area and diameter distribution models for thinned loblolly pine plantations in Santa Catarina, Brazil. For.Sci., 1987. 33(1): 43-51.
    [35]克劳斯.冯佳多,惠刚盈.森林生长与干扰模型. Nonnenstieg Cuvillier Verlag, 1998. 54.
    [36]胡晓龙.长白落叶松林分断面积生长模型的研究.林业科学研究, 2003. 16(4): 449-452.
    [37] Anta, M B, F C Dorado,U Dieguez-Aranda. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can. J. For. Res., 2006. 36: 1461-1474.
    [38] Daniels, R F,H E Burkhart. An integrated system of forest stand models. . For. Eco. and Manage., 1988. 23: 159-177.
    [39] Rennols, K, D N Geary,T Rollinson. Characterizing diameter distributions by the use of the Weibull distribution. Forestry, 1985. 58: 57-66.
    [40] Maltamo, M, A Kangas,J Uuttera. Comparison of percentile based prediction methods and the Weibull distribution in describing the diameter distribution of heterogeneous Scots pine stands. For. Eco. and Manage., 2000. 133: 263-274.
    [41] Maltamo, M, J Puumalainen,R P?ivinen. Comparison of beta and Weibull functions for modelling basalarea diameter distribution in stands of Pinus sylvestris and Picea abies. Scand J For Res, 1995. 10: 284-295
    [42] Maltamo, M. Comparing basal area diameter distributions estimated by tree species and for the entire growing stock in a mixed stand. Silva Fenn, 1997. 31(1): 53-65
    [43] Zhang, L, C P Kevin,L a Chuanmin. Comparison of estimation methods for fitting Weibull and Johnson’s SB distributions to mixed spruce-fir stands in northeastern North America. Can J For Res, 2003. 33: 1340-1347
    [44] Meht?talo, L. An algorithm for ensuring the compatibility between estimated percentiles of diameter distribution and measured stand variables. For Sci, 2004. 50(1): 20-32.
    [45]段爱国,张建国,童书振.杉木人工林林分断面积分布规律的研究.福建林学院学报, 2006. 26(3): 247 -252.
    [46]林成来,洪伟,吴承祯等.马尾松人工林生长模型的研究.福建林学院学报, 2000. 20 (3): 227~230.
    [47] Hegyi, F. 1974.A simulation model for ,managing jack-pine stands.In procesdings, growth models for tree and stand simulation, IUFRO S5.01-4. Edited by J. Fries. Departmrnt of forest yield, royal college of forestry, Stockholm, Sweden.pp.74-87.
    [48] Brand, D G,S Magnussen. Asymmetric, two-sided competition in even-aged monocultures of red pine. Can. J . For. Res., 1988. 18: 901-910.
    [49] Holmes, M J,D D Reed. Competition indices for mixed species Northern Hardwood. For Sci., 1991. 37(5): 1338-1349.
    [50] Pretzsch, H, P Biber,J Dursky. The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage, 2002. 162: 3-21.
    [51] Lorimer, C G. Tests of age-independent competition indices for individual trees in natural hardwood stands. For. Ecol. Manage., 1983. 6: 343-360.
    [52] Tomé, M,H E Burkhart. Distance-dependent competition measures for predicting growth of individual trees. For. Sci. Chron., 1989. 39: 816-831.
    [53] Vettenranta, J. Distance-dependent models for predicting the development of mixed coniferous forests in Finland. Silva Fenn, 1999. 33: 51-72.
    [54] Wimberly, M C,B B Bare. Distance-dependent models of Doulas-fir and western hemlock basal area growth following silcultural treatment. For. Ecol.Manage., 1996. 89: 1-11.
    [55] Biging, G S,M Dobbertin. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For. Sci., 1992. 38: 695-720.
    [56] Biging, G S,M Dobbertin. Evaluation of competition indices in individual tree growth models. For. Sci., 1995. 41: 360-377.
    [57] Brunner, A,G Nigh. Light absorption and bole volume growth of individual models. Tree Physiol. , 2000. 20: 323-332.
    [58]张池,黄忠,良李炯等.黄果厚壳桂种内与种间竞争的数量关系.应用生态学报, 2006. 17(1): 22-26.
    [59]邹春静,韩士杰,张军辉.阔叶红松林树种间竞争关系及其营林意义.生态学杂志, 2001. 20(4): 35 - 38.
    [60]林武星,叶功富,徐俊森等.木麻黄-湿地松人工混交林中树木个体生长的竞争效应模型.林业科学, 2 0 0 3. 39(Sp. 1): 42-46.
    [61]马履一,王希群.生长空间竞争指数及其在油松、侧柏种内竞争中的应用研究.生态科学, 2006. 25(5): 385-389.
    [62]唐季林.山杨中龄林竞争指数研究.北京林业大学学报, 1988. 10(1): 86-91.
    [63]邱学清.杉木人工林竞争指数及单木竞争生长模型的研究.福建林学院学报, 1992. 12(3): 309-316.
    [64]邵国凡.红松林单木生长模型的研究.东北林业大学学报, 1985. 13(3): 38-45.
    [65]刘北刚,李凤日,于金成.落叶松人工林单木模型的研究.植物研究, 2003. 23(2): 237-244.
    [66]李茹秀,李文英,陈大珂.人工落叶松与天然水曲柳混交林中树种关系的定量分析.东北林业大学学报, 1993. 21(5): 1-6.
    [67]蓝斌,洪伟,吴承祯等.马尾松幼龄人工林竞争与生长的研究.福建林学院学报, 1995. 15(1): 40-44.
    [68]雷相东,李希菲.混交林生长模型研究进展.北京林业大学学报, 2003. 25(3): 105-110.
    [69] Brunner, A,G Nigh. Light absorption and bole volume growth of individual Douglas-fir trees. Tree Physiol., 2000. 20: 323-332.
    [70] Ccanham, K D Coates, P Bartemucciet,alS Quaglia. Measurement and modeling of spatially explicit varation in light transmission through interior cedar-hemlock forests of British Columbia. Can. J. For. Res., 1999. 29: 1775-1783.
    [71] Asteneker, G,J M Javis. A preliminary study to assess competition in a white spruce-trembling aspen stand. For. Chron., 1963. 39: 334-336.
    [72] Lorimer, C G. Tests of age-independent competition indices for individual trees in nutural hardwood stands. For. Ecol.Manage. , 1983. 6: 343-360.
    [73] Schütz. Zum problem der Konkurrenz in Mischbest?nden. Schwez. Foestwes (English abstract), 1989. 140: 1069-1083.
    [74] Ung, C H, Fraulier, D Ouelletet,alJ Fdh?te. L’indice de competition interindividuelle de Schütz (English abstract). Can.J. For. Res., 1997. 27: 521-526.
    [75] Frazer, G W, C D Canham,K P Lertzman, Gap light analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs . suer’s manaual and program documentation Simon Fraser university, 1999.
    [76] Wells, J M,J M Norman. Instrument for indirect measurement of canopy architecture. Agron. J., 1991. 83: 818-825.
    [77] Jonas, Fridman,St?hl G?ran. A three-step approach for modeling tree mortality in Swedish forests. Scand. J. For. Res. , 2001. 16: 455-466.
    [78] Daniel, Mailly, Turbis Sylvain,Pothier David. predicting basal area increment in a spatially explicit,individual tree model: a test of competition measure with black spruce. Can.J. For. Res. , 2003. 33: 435-443.
    [79] J?giste, Kalev. A basal area increment model for Norway spruce in mixed stands in Estonia. Scand. J. For. Res., 2000. 15: 97-102.
    [80] Corral Rivas, lvarez.Conzá, Oscar Aguirreet,alF J Hernández. The effect of competition on individual tree basal area growth in mature stands of Pinus cooperi Blanco in Durango (Mexico) Eur.J.Forest Res. , 2005. 124: 133-142.
    [81] Sterba, Hubert, Astrid Blb, Klauset,alKatzensteiner. Adapting an individual tree growth model for Norway spruce (Picea abies L. Karst) in pure and mixed species stands. Forest Ecology and management 2002. 159: 101-110.
    [82] Reed, D,H E Burkhart. Spatial autocorrelation of individual tree characteristics in loblolly pine stands. For Sci, 1985. 31(3): 575-587.
    [83] Nystrom, K,M Kexi. Individual tree basal area growth models for young stands of Norway spruce in Sweden. Forest Ecology and Management, 1997. 97: 173-185
    [84] Charles, E,B Thomas. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions. Forest Ecology and Management, 2001. 148: 51-61.
    [85] Sterba, H, A Blab,K Katzensteiner. Adapting an individual tree growth model for Norway spruce (Picea abies L. Karst.) in pure and mixed species standsFor. Ecol. and Manage., 2002. 159: 101-110.
    [86] Clutter. Compatible growth and yield models for loblolly pine. For. Sci., 1963. 9(3): 354-371.
    [87]孙晓梅,李凤日,牛屾等.长白落叶松人工林生长模型的研究. 11, 1998. 3: 306-312.
    [88] Dean, J T. Basal area increment and growth efficiency as functions of canopy dynamics and stem mechanics. For. Sci, 2004. 50(1): 106-116.
    [89] Tron, Eid. Models for prediction of basal area mean diameter and number of trees for forest stands in south-eastern Norway. Scand. J. For. Res., 2001. 16: 467-479.
    [90]盛炜彤,惠刚盈,张守攻等,杉木人工林优化栽培模式.北京中国科学技术出版社, 2004.
    [91] Mateny, T,A D Sullivan. Compatible stand and stock tables for thinned and unthinned loblooy pine stands. For Sci, 1982. 28(1): 161-171.
    [92] Pienaar, L,Baily. An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots. For Sci, 1984. 30(4): 933-942.
    [93]张建国,罗红燕,童书振.杉木雪压危害调查分析(未发表). 2000.
    [94] Radtke, P,E Burkhart. Basal area growth and crown closure in a loblolly pine spacing trial. For Sci, 1999. 45(1): 35-44.
    [95]童书振,张建国,罗红艳等.杉木林密度间伐试验.林业科学, 2000. 36(专刊): 96-89
    [96] Robinson, a P,A R Ek. The consequences of hierarchy for modeling in forest ecosystem. Can. J. For. Res., 2000. 30: 1837-1846.
    [97] Shifley, S R. Analysis and modeling of patterns of forest ingrowth in the north central United States. University of Minnesota, St.Paul. .
    [98] Hong-Gang, Sun, Zhang Jian-Guo, Duan Ai-Guoet,alHe Cai-Yun. A review of stand basal area growthmodels. For. Stud. China, 2007. 9(1): 85-94.
    [99] José,Juan. Compatible height and site index models for five pine species in El Salto, Durango (Mexico). Forest Ecology and Manage., 2004. 201: 145-160.
    [100] Cieszewski, C J. Developing a well-behaved dynamic site equation using a modified HossfeldⅣfunction , a simplified mixed-model and scant subalpine fir data. For.Sci., 2003. 49(4): 539-554.
    [101] Cieszewski, C J. Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. For. Sci., 2002. 48(1): 7-23.
    [102] Bailey,Cultter. Base-age invariant polymorphic site curves. For. Sci., 1974. 20: 155-159.
    [103] Cieszewski,Bailey. Generalized algebraic difference approach: theory based derivation of dynamic equations with polymorphism and variable asymptotes. For. Sci., 2000. 46: 116-126.
    [104] Schumacher. A new growth curve and its application to timber yield studies. J. For. Res., 1939. 37: 819-820.
    [105] José,Juan. Compatible height and site index models for five pine species in El Salto, Durango (Mexico). Forest Ecology and Manage., 2004. 201: 45-160.
    [106] Falcao, A, Dunas- a growth model for the National Forest of leiría . In Empirical and process-based Models for Forest Tree and Stand Growth Simulation, 21-27.September 1997. Oeiras, Portugal Edited by A.Amaro and M. Tomé. Edic?es Salamandra, Lisbon, 1997. 145-153.
    [107] Tomé, M, A Falcao,A Amaro, globules V1.1In Procedings of the IUFRO Conference: Modelling Growth of Fast-grown Tree Species, 5-7.a regionalized growth model for Eucalypt plantations in Portugal.eptember 1997, [M], ed. V. Edited by A.Ortega and S.Gezan. Universidad Austral de Chile, 1997. 138-145.
    [108] Lei, Y. modeling forest growth and yield Eucalypyus globules Labill.. in central-interior Portugal. Universidade de Tra?-os-Montes e Alto Douro, Portugal.
    [109] Mcdill,R Amateis. measuring forest site quality using the parameters of a dimensionally compatible height growth function. For. Sci., 1992. 38: 409-429.
    [110] Kotze, H,D Vonck, A growth simulator and pruning scheduler for pinus patula in Mpumalanga-North Province, South Africa [M]. In Empirical and process-based Models for Forest Tree and Stand Growth Simulation, 21-27,September 1997. Oeiras, Portugal. Edited by A.Amaro and M. Tomé. Edic?es Salamandra,Lisbon, 1997. 205-221.
    [111] Krumland,Eng. Site index for major young-growth forest and woodland species in northern California Calif.Dep.For.Fire Prot. Calif.For.Rep, 2005: 4.
    [112] Dielman, T E, Pooled cross-sectional and times series data analysis. Inc. New York, 1989.
    [113] Ulises, Juan,Marcos. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). 2005: 143-152.
    [114] Inc, Sas Institute, SAS/ETS?9.1 User’s Guide . SAS Institute Inc. Cary, NC, 2004.
    [115] Huang, S, Y Yang,Y Wang, A critical look at procedures for validating growth and yield modelsIn Modelling forest systems. CAB International, Wallingford, ed. D.R. Edited by A. Amaro, and P.Soares. Oxfordshire,UK, 2003. 271-293.
    [116] Myers, R H, Classical and modern regression with applications. Belmont, Calif Duxbury, Press,1990.
    [117] Hirsch, R P, Validation samples . Biometrics. Vol. 47, 1991. 1193-1194.
    [118]孟宪宇,测树学(第二版).北京:中国林业出版社, 1995. 61-62.
    [119] Zhang, L, C P Kevin,L a Chuanmin. Comparison of estimation methods for fitting Weibull and Johnson’s SB distributions to mixed spruce-fir stands in northeastern North America. Can J For Res, 2003. 33: 1340-1347.
    [120] Meht?talo, L. An algorithm for ensuring the compatibility between estimated percentiles of diameter distribution and measured stand variables. For Sci, 2004. 50(1): 20-32.
    [121] Sas, Institute Inc, SAS/STAT user’s guide,version 6, 4th edition . SAS Institute Inc. Vol. 1. Cary, NC., 1985. 189.
    [122] Fekedulegn, D, P Mairitin,J Jim. Paramenter Estimation of Nonlinear Growth Models in Forestry. Silva Fennica, 1999. 33(4): 327-336.
    [123]张建国,段爱国,理论生长方程与直径结构模型的研究.北京:科学出版社, 2004. 73.
    [124]洪伟,吴承祯,蓝斌.邻体干扰指数通用模型及其应用.植物生态学报, 1997. 21(2): 149- 154.
    [125] Nystrom, K,M I Kexi. ndividual tree basal area growth models for young stands of Norway spruce in Sweden. For. Ecol. and Manage., 1997. 97: 173-185.
    [126] Charles, E,B Thomas. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions. For. Ecol. and Manage., 2001. 148: :51-61.
    [127] Sterba, H, A Blab,K Katzensteiner. Adapting an individual tree growth model for Norway spruce (Picea abies L. Karst.) in pure and mixed species stands. For.Ecol. and Manage., 2002. 159: 101-110.
    [128] Diéguez-Aranda, lvarez González, J G Barrioet,alA Rojo. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Annals of Forest Science, 2005. 62(2): 143-152.
    [129] Ruha, Tommi,Martti Varmola. Precommercial thinning in naturally regenerated scots pine stands in northern Finland. Silva Fennica, 1997. 31(4): 401-415.
    [130] Pothier, D. Twenty-year results of precommercial thinning in a balsam fir stand. For. Ecol.and Manage., 2002. 168: 177-186.
    [131] Thibodeau, L, P Raymond,C Camiré. Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition, and foliar nutrition. Can, J. For. Res., 2000. 30: 229-238.
    [132] Wykoff, W R. A basal area increment model for individual conifers in the northern Rock Moumtains. For, Sci., 1990. 36: 1077-1104.
    [133] Wimberly, M C,B B Bare. Distance-dependent and distance-indepndent models of Douglas-fir and western hemlock basal area growth following silvicultural treatment. For. Ecol. Manage., 1996. 89: 1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700