用户名: 密码: 验证码:
计算传递学及其在填料床传质与反应过程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一部分对计算流体力学(CFD)、计算传热学(CHT)、计算传质学(CMT)相关知识及其相关的湍流理论、湍流模型进行了简单地介绍与讨论。并对CFD、CHT与CMT在化工单元操作过程中尤其是在预测填料塔、固定床中的流体流动、温度分布以及浓度分布的应用进行了综述、评论。
     本文第二部分提出建立统一动量、热量及质量传递的计算传递学基础。从广义的传递变量Φ出发,详细推导出了Φ的瞬时守恒微分方程、雷诺时均微分方程、以及用以封闭雷诺时均方程的两个辅助微分方程及其模型化,这样就构成了计算传递学体系的基本微分方程组,其中包括连续性、传递量守恒及其雷诺时均的微分方程,以及传递脉动方差及其耗散率的微分方程。根据上述计算传递学的基本方程,分别导出动量传递、热量传递及质量传递的相应微分方程及相应的方差及其耗散率的微分方程组,以及不同研究者给出的各自模型化的方程。对基于Boussinesq假设引入的湍流粘度系数μ、湍流热量传递扩散系数α_t、湍流质量传递扩散系数Dt的定义及物理意义进行了分析比较。对辅助的k,ε, t~2,ε_t, c~2,ε_c微分方程的入口、出口边界条件设置进行了讨论分析。
     本文第三部分是计算传递学模型在化工过程的推广应用,并对过程中的速度、温度及浓度的分布进行预测,包括(1)填料塔内流动分布:对直径分别为0.5m、1.0m散堆填料塔进行了模拟,并预测塔内的液体流动分布、发展;(2)化学吸收过程:对直径为0.1m的实验散堆填料塔、直径为1.9m的工业散堆填料塔内用碱溶液吸收CO2过程的流体流动、传热、传质过程进行了模拟,并预测了气相中CO2浓度、液相中碱浓度(碱溶液的碳化率)、液相温度沿塔高分布;(3)精馏过程:对直径为1.22m的工业散堆填料塔内精馏过程进行了模拟,并预测了浓度分布、HETP;(4)催化反应过程:对在直径为0.041m的固定床内,用乙炔、醋酸气相制备醋酸乙烯的壁冷固定床催化反应器进行了模拟,并预测温度分布、转化率分布等。上述各项预测均与文献上发表的实验测量符合较好。此外,用两方程导出的k -ε、t 2 -εt、ci 2 -εci模型可计算出的湍流动力粘度、湍流传热扩散系数、传质扩散系数沿固定床轴向、径向的分布,结果显示出彼此有部分的相似,但并不是完全相似,说明湍流动量、热量、质量传递既有类似性,又有各自的特殊性。预测的湍流传质扩散系数沿固定床轴向、径向的分布与文献报道一致。
     本文第四部分是进行萃取精馏实验并用计算传递学模型进行模拟及与实验结果比较。实验是研究用N-甲基吡咯烷酮(NMP)萃取精馏苯和噻吩混合物的过程,并考察了不同回流比对苯和噻吩分离情况的影响。模拟得出的结果与实验测量符合较好。
     本文最后,对计算传质学的展望及进一步探索提出了一些建议。
The first part of this dissertation is the summary of some basic knowledge about computational fluid dynamics (CFD), computational heat transfer (CHT) and computational mass transfer (CMT), and their related turbulent theory and turbulent models are briefly reviewed. The application of CFD, CHT and CMT to the chemical engineering unit operations, such as predicting the fluid flow, temperature profile and concentration profile in packed columns or fixed-bed, are also summarized.
     The second part is the detailed derivation of the basic differential equations of the proposed computational transport, including the conservation equation of the general transport variableΦ, its Reynolds averaged equation together with its closure two equations and their modeled equations. From the generalized transport equation, the precise governing conservation equations of continuity, momentum transfer, heat transfer, mass transfer, as well as their auxiliary equations of turbulent kinetic energy k and its dissipation rateε, temperature variance t 2and its dissipation rateεt, concentration variance c 2 and its dissipation rateεc can be obtained, which formulates the system of equation for the transport computation. The definition and physical meaning of the turbulent kinetic viscosityμ, turbulent heat transfer diffusivityαtand turbulent mass transfer diffusivity Dt which are introduced by the Boussinesq hypothesis are analyzed and compared. Furthermore, the inlet and outlet boundary conditions of k,ε, t 2,εt, c 2,εc differential equations are also discussed and suggested.
     The third part is the application of the computational transport model to various chemical processes, including (1) the modeling of liquid flow in the randomly packed column of 0.5m and 1.0m I.D. in predicting the velocity profile and its evolution; (2) the modeling of chemical absorption processes in the randomly packed columns of 0.1m I.D. and 1.9m I.D. respectively for removing CO2 from gas mixtures by the alkaline solutions in predicting the profiles of CO2 concentrations in gas phase, the alkali concentrations (carbonation ratio of the alkali aqueous solutions) and the temperature in liquid phase; (3) the modeling of distillation process in randomly packed column of 1.22m I.D. in predicting the profiles of component concentration and the height equivalent of theoretical plate (HETP) as function of gas phase F-factor; (4) the modeling of the wall-cooled fixed bed catalytic reactor of 0.041m I.D for the gas phase synthesis process of vinyl acetate from acetic acid and acetylene in predicting the profiles of conversion and the temperature along the reactor axial and radial directions. All foregoing predictions were compared with the experimental measurements taken from literatures, and good agreements were found. The predicted profiles of turbulent kinetic viscosity, turbulent heat transfer diffusivity and turbulent mass transfer diffusivity calculated by using the k-ε, t 2-εt, c 2-εc two equations models respectively along the radial and axial directions in randomly packed columns displayed some similarity, which is in agreement with the reported literatures. However, they were not totally identical, which demonstrates that the turbulent momentum, heat and mass transports are not completely analogous, and they have their own characteristics.
     The fourth part is the description of the experimental work of the extractive distillation processes for separating the mixture of benzene and thiophene using N-methyl-2-pyrrolidone (NMP) as the extractant under the different operating conditions in a randomly packed column and the process simulation in predicting the benzene concentrations in gas phase and liquid phase by the proposed computational transport model. The prediction is confirmed by the experimental measurements.
     Finally, several aspects concerning the prospect and further investigation of computational transport are suggested.
引文
[1] 刘伯潭, 流体力学传质计算新模型的研究和在塔板上的应用: [博士学位论文], 天津: 天津大学, 2003.
    [2] 孙志民, 化工计算传质学的研究——及其在精馏塔中的应用: [博士学位论文], 天津: 天津大学, 2005.
    [3] Patankar, S. V., Numerical heat transfer and fluid flow New York McGraw-Hill, 1980.
    [4] 李洪钟, 聚焦结构、界面与多尺度问题,开辟化学工程的新里程, 2006 年中国科学院院士大会论文集, 2006, 201-212.
    [5] Bode, J., Computational fluid dynamics applications in the chemical industry, Computers & Chemical Engineering, 1994, 18:S247-S251.
    [6] Ranade, V. V., Computational fluid dynamics for reactor engineering, Reviews in chemical engineering, 1995, 11:229.
    [7] Harris, C. K., Roekaerts, D., Rosendal, F. J. J., et al., Computational fluid dynamics for chemical reactor engineering, Chemical Engineering Science, 1996, 51 (10):1569-1594.
    [8] Kuipers, J. A. M., Swaaij, W. P. M. v., Computational fluid dynamics applied to chemical reaction engineering, Advances in Chemical Engineering, 1998, 24:227-328.
    [9] 中国科学院化学学部, 国家自然科学基金委员会化学科学部, 展望 21 世纪的化学工程, 北京: 化学工业出版社, 2004.
    [10] 张兆顺, 湍流, 北京: 国防工业出版社, 2002.
    [11] 陈义良, 湍流计算模型, 合肥: 中国科技大学出版社, 1991.
    [12] 陈景仁, 湍流模型及有限分析法, 上海: 上海交通大学出版社, 1989.
    [13] Rodi, W., Turbulence modles and their application in hydraulics, Netherlands: IAHR, 1984.
    [14] Launder, B. E., Spalding, D. B., Lectures in Mathematical Models of Turbulence, London: Academic Press, 1972.
    [15] Jones, W. P., Launder, B. E., The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, 1972, 15 (2):301-314.
    [16] Jones, W. P., Launder, B. E., The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, 1973, 16 (6):1119-1130.
    [17] Lam, C., Bremhorst, K., A modified form of the k-epsilon model for predicting wall turbulence, ASME Journal of Fluids Engineering, 1981, 103:456-460.
    [18] Nagano, Y., Hishida, M., Improved form of the k-epsilon model for wall turbulent shear flows ASME Journal of Fluids Engineering, 1987, 109:156-160.
    [19] Speziale, C., On nonlinear K-l and K-ε models of turbulence Journal of Fluid Mechanics, 1987, 178:459-475.
    [20] Kim, S., Chen, C., A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum Numerical Heat Transfer, Part B: Fundamentals, 1989, 16:193-211.
    [21] yakhot, V., Orzag, S. A., Renormalization group analysis of turbulence:basic theory, J. Scient Comput., 1986, 1:3-11.
    [22] FLUENT, FLUENT 6.2 Documentation, 2004.
    [23] de Klerk, A., Voidage variation in packed beds at small column to particle diameter ratio, AIChE Journal, 2003, 49 (8):2022-2029.
    [24] Manning, R. E., Cannon, M. R., Distillation Improvement by Control of Phase Channeling in Packed Columns, Industrial & Engineering Chemistry, 1957, 49 (3):347-349.
    [25] Stichlmair, J., Stemmer, A., Influence of maldistribution on mass transfer in packed columns, IChemE. Symp. Ser., 104, 1987, B155-B164.
    [26] Silvey, F. C., Keller, G. J., Testing on a commercial scale, Chemical Engineering Progress, 1966, 62:68-74.
    [27] Kunesh, J. G., Lahm, L., Yanagi, T., Commercial scale experiments that provide insight on packed tower distributors, Industrial & Engineering Chemistry Research, 1987, 26 (9):1845-1850.
    [28] Shariat, A., Kunesh, J. G., Packing Efficiency Testing on a Commercial Scale with Good (and Not So Good) Reflux Distribution, Industrial & Engineering Chemistry Research, 1995, 34 (4):1273-1279.
    [29] Lerou, J. J., Froment, G. F., Velocity, Temperature and Conversion Profiles in Fixed-Bed Catalytic Reactors, Chemical Engineering Science, 1977, 32 (8):853-861.
    [30] Kalthoff, O., Vortmeyer, D., Ignition/extinction phenomena in a wall cooled fixed bed reactor : Experiments and model calculations including radial porosity and velocity distributions, Chemical Engineering Science, 1980, 35 (7):1637-1643.
    [31] Papageorgiou, J. N., Froment, G. F., Simulation models accounting for radial voidage profiles in fixed-bed reactors, Chemical Engineering Science, 1995, 50 (19):3043-3056.
    [32] Daszkowski, T., Eigenberger, G., A reevaluation of fluid flow, heat transfer and chemical reaction in catalyst filled tubes Chemical Engineering Science, 1992, 47 (9-11):2245-2250.
    [33] Froment, G. F., Bischoff, K. B., Chemical reactor analysis and design New York: John Wiley & Sons, Inc., 1990.
    [34] Kister, H. Z., Distillation Design, New York: McGraw-will, Inc., 1992.
    [35] Roblee, L. H. S., Baird, R. M., Tierney, J. W., Radial porosity variations in packed beds, AIChE Journal, 1958, 4 (4):460-464.
    [36] Scott, G. D., Radial distribution of the random close packing of equal spheres, Nature, 1962, 194:956-.
    [37] Benenati, R. F., Brosilow, C. B., Void fraction distribution in beds of spheres, AIChE Journal, 1962, 8 (3):359-361.
    [38] Goodling, J. S., Vachon, R. I., Stelpflug, W. S., et al., Radial porosity distribution in cylindrical beds packed with spheres, Powder Technology, 1983, 35 (1):23-29.
    [39] Kufner, R., Hofmann, H., Implementation of radial porosity and velocity distribution in a reactor model for heterogeneous catalytic gasphase reactions (TORUS-Model), Chemical Engineering Science, 1990, 45 (8):2141-2146.
    [40] Ridgway, K., Tarbuck, K., Radial voidage variation in randomly packed beds of spheres of different sizes, J. Pharm. Pharmacol, 1966, 18:168-175.
    [41] Ridgway, K., Tarbuck, K. J., Voidage fluctuations in randomly-packed beds of spheres adjacent to a containing wall, Chemical Engineering Science, 1968, 23 (9):1147-1155.
    [42] Giese, M., Rottschafer, K., Vortmeyer, D., Measured and modeled superficial flow profiles in packed beds with liquid flow, AIChE Journal, 1998, 44 (2):484-490.
    [43] Stephenson, J. L., Stewart, W. E., Optical measurements of porosity and fluid motion in packed beds, Chemical Engineering Science, 1986, 41 (8):2161-2170.
    [44] Dixon, A. G., DiCostanzo, M. A., Soucy, B. A., Fluid-phase radial transport in packed beds of low tube-to-particle diameter ratio, International Journal of Heat and Mass Transfer, 1984, 27 (10):1701-1713.
    [45] Dixon, A. G., Correlations for wall and particle shape effects on fixed bed bulk voidage, Canadian Journal of Chemical Engineering, 1988, 66:705-708.
    [46] Foumeny, E. A., Roshani, S., Mean voidage of packed beds of cylindrical particles, Chemical Engineering Science, 1991, 46 (9):2363-2364.
    [47] Thadani, M. C., Peebles, F. N., Variation of Local Void Fraction in Randomly Packed Beds of Equal Spheres, Industrial & Engineering Chemistry ProcessDesign and Development, 1966, 5 (3):265-268.
    [48] Schneider, F. A., Rippin, D. W. T., Determination of the local voidage distribution in random packed beds of complex geometry, Industrial & Engineering Chemistry Research, 1988, 27 (10):1936-1941.
    [49] Mueller, G. E., Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers, Powder Technology, 1992, 72 (3):269-275.
    [50] Toye, D., Marchot, P., Crine, M., et al., Local measurements of void fraction and liquid holdup in packed columns using X-ray computed tomography, Chemical Engineering and Processing, 1998, 37 (6):511-520.
    [51] Vortmeyer, D., Schuster, J., Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method, Chemical Engineering Science, 1983, 38 (10):1691-1699.
    [52] Martin, H., Low peclet number particle-to-fluid heat and mass transfer in packed beds, Chemical Engineering Science, 1978, 33 (7):913-919.
    [53] Yoram Cohen, A. B. M., Wall effects in laminar flow of fluids through packed beds, AIChE Journal, 1981, 27 (5):705-715.
    [54] Mueller, G. E., Prediction of radial porosity distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers, Chemical Engineering Science, 1991, 46 (2):706-708.
    [55] Nandakumar, K., Shu, Y. Q., Chuang, K. T., Predicting geometrical properties of random packed beds from computer simulation, AIChE Journal, 1999, 45 (11):2286-2297.
    [56] Freund, H., Zeiser, T., Huber, F., et al., Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation, Chemical Engineering Science, 2003, 58 (3-6):903-910.
    [57] Baker, T., Chilton, T. H., Vernon, H. C., The course of liquid flow in packed towers, Trans. AIChE, 1935, 31:296-313.
    [58] Scott, A. H., Liquid distribution in packed towers, Trans IChemE, 1935, 13:211-217.
    [59] Porter, K. E., Liquid flow in packed columns. part I: the riulet model, Trans IChemE, 1968, 46:T69-T73.
    [60] Porter, K. E., Barnett, V. D., Templeman, J. J., Liquid flow in packed columns. part ΙΙ: the spread of liquid over random packings, Trans IChemE, 1968, 46:T74-T85.
    [61] Porter, K. E., Templeman, J. J., Liquid flow in packed columns. part ΙΙΙ: wall flow, Trans IChemE, 1968, 46:T86-T94.
    [62] Bemer, G. G., Zuiderweg, F. J., Radial liquid spread and maldistribution in 176packed columns under different wetting conditions, Chemical Engineering Science, 1978, 33 (12):1637-1643.
    [63] Onda, K., Takeuchi, H., Maeda, Y., et al., Liquid distribution in a packed column, Chemical Engineering Science, 1973, 28 (9):1677-1683.
    [64] Hoek, P. J., Wesselingh, J. A., Zuiderweg, F. J., Small scale and large scale liquid maldistribution in packed columns, Chemical Engineering Research and Design, 1986, 64 (11):431-449.
    [65] albright, M. A., Packed tower distributors tested, Hydrocarbon Processing, 1984, (sept.):173-177.
    [66] Johnston, W., Dybbs, A., Edwards, R., Measurement of fluid velocity inside porous media with a laser anemometer, Physics of Fluids, 1975, 18 (7):913-914.
    [67] Dybbs, A., Edwards, R. V., A new look at porous media fluid mechanics-Darcy to Turbulent, NATO ASI Ser., 1984, 82 (1):199-256.
    [68] krischke, A. M., Modellierung und experimentelle undersuchung von transportprozessen in durchstromten schuttungen, Fortschritt-Berichte VDI, 2001, 3 (Nf):713.
    [69] Calis, H. P. A., Nijenhuis, J., Paikert, B. C., et al., CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing, Chemical Engineering Science, 2001, 56 (4):1713-1720.
    [70] McGreavy, C., Foumeny, E. A., Javed, K. H., Characterization of transport properties for fixed bed in terms of local bed structure and flow distribution, Chemical Engineering Science, 1986, 41 (4):787-797.
    [71] Saleh, S., Thovert, J. F., Adler, P. M., Flow along porous media by particle image velocimetry, AIChE.Journal, 1993, 39 (11):1765-1776.
    [72] Caycik, M., Gunn, D. J., True mean velocities in the wall and bulk regions of fixed beds, Chemical Engineering Science, 1988, 43 (7):1637-1646.
    [73] Lamine, A. S., Colli Serrano, M. T., Wild, G., Hydrodynamics and heat transfer in packed beds with liquid upflow, Chemical Engineering and Processing, 1992, 31 (6):385-394.
    [74] Marchot, P., Toye, D., Crine, M., et al., Investigation of liquid maldistribution in packed columns by x-ray tomography, Trans IChemE, 1999, 77, part A:511-518.
    [75] RJ Kouri, J. S., Liquid and gas flow patterns in random and structured packings, Chem. E. Symposium Series No, 1987 1987.
    [76] RJ Kouri, J. S., Liquid and gas flow patterns in random packings, The Chemical Engineering Journal and The Biochemical Engineering Journal,1996, 61 (2):95-105.
    [77] Dutkai, E., Ruckenstein, E., New experiments concerning the distribution of a liquid in a packed column, Chemical Engineering Science, 1970, 25 (3):483-488.
    [78] 张泽廷, 余国琮, 用随机过程模拟填料塔液体的流动分布, 化工学报, 1988, 39 (2):162-169.
    [79] Schmit, C. E., Cartmel, D. B., Eldridge, R. B., The experimental application of X-ray tomography to a vapor-liquid contactor, Chemical Engineering Science, 2001, 56 (11):3431-3441.
    [80] Olujic, Z., de Graauw, J., Appearance of maldistribution in distillation columns equipped with high performance packings, Chemical and biochemical engineering quarterly, 1989, 4:181-196.
    [81] Stikkelman, R. M., Wesselingh, J. A., Liquid and gas flow patterns in packed columns, I. Chem. E. Symp.Ser., 1987, B155-B164.
    [82] Strigle, R. F., Random Packings and Packed Towers: Design and Applications, Houston: Gulf Pub. Co., 1987.
    [83] Yuan, X. J., Dong, G. Q., Wang, S. Y., Study on the temperature field and mass transfer process in a column with structured packing, I. Chem. E. Symp. Ser., 1992, A191-200.
    [84] Darakchiev, R., Dodev, C., Gas flow distribution in packed columns, Chemical Engineering and Processing, 2002, 41 (5):385-393.
    [85] Wehrli, M., Hirschberg, S., Schweizer, R., Influence of Vapour Feed Design on the Flow Distribution Below Packings, Chemical Engineering Research and Design, 2003, 81 (1):116-121.
    [86] Schwartz, C. E., Smith, J. M., Flow Distribution in Packed Beds, Industrial & Engineering Chemistry, 1953, 45 (6):1209-1218.
    [87] Morales, M., Spinn, C. W., Smith, J. M., Velocities and Effective Thermal Conductivities in Packed Beds, Industrial & Engineering Chemistry, 1951, 43 (1):225 - 232.
    [88] Dorweiler, V. P., Fahien, R. W., Mass transfer at low flow rates in a packed column, AIChE Journal, 1959, 5 (2):139-144.
    [89] William W. Schertz, K. B. B., Thermal and material transport in nonisothermal packed beds, AIChE Journal, 1969, 15 (4):597-604.
    [90] J. Szekely, J. J. P., Flow maldistribution in packed beds: A comparison of measurements with predictions, AIChE Journal, 1975, 21 (4):769-775.
    [91] Marivoet, J., Teodoroiu, P., Wajc, S. J., Porosity, velocity and temperature profiles in cylindrical packed beds, Chemical Engineering Science, 1974, 29 (8):1836-1840.
    [92] Bey, O., Eigenberger, G., Fluid flow through catalyst filled tubes, Chemical Engineering Science, 1997, 52 (8):1365-1376.
    [93] Tour, R. S., Lerman, F., Unconfined distribution of liquid in toer packing, Trans. AIChE, 1939, 35:709-718.
    [94] Cihla, Z., Schmidt, O., A study of the flow of liquid when freely tricking over the packing in a cylindrical tower, coll. Czech. Chem. Commun., 1957, 22:896-907.
    [95] Porter, K. E., Jones, M. C., A theoretical prediction of liquid distribution in a packed column with wall effect, Trans IChemE, 1963, 41:240-247.
    [96] Kolar, V., Stanek, V., Distribution of liquid over random packing, coll. Czech. Chem. Commun., 1965, 30:1054-1059.
    [97] Dutkai, E., Ruckenstein, E., Liquid distribution in packed columns, Chemical Engineering Science, 1968, 23 (11):1365-1373.
    [98] 袁孝竟, 李富生, 余国琮, 大型填料塔内液相分布状态的研究, 化工学报, 1989, 40 (6):686-692.
    [99] Lespinasse, B., Le Goff, P., Recherches sur I'absorption gaz-liquide, Rev. Inst. Fr. Pet., 1962, 17:21-.
    [100] Gunn, D. J., Liquid distribution and redistribution in packed columns-I Theoretical, Chemical Engineering Science, 1978, 33 (9):1211-1219.
    [101] Jamson, G. J., A model for liquid distribution in packed columns and trickle-beds reactors, Trans IChemE, 1966, 44:T198-T206.
    [102] Mantle, M. D., Sederman, A. J., Gladden, L. F., Single- and two-phase flow in fixed-bed reactors: MRI flow visualisation and lattice-Boltzmann simulations, Chemical Engineering Science, 2001, 56 (2):523-529.
    [103] Ergun, S., Fluid Flow through Packed Columns, Chemical Engineering Progress, 1952, 48:89-94.
    [104] Kutsovsky, Y. E., Scriven, L. E., Davis, H. T., et al., NMR imaging of velocity profiles and velocity distributions in bead packs, Physics of Fluids, 1996, 8 (4):863-871.
    [105] Sederman, A. J., Johns, M. L., Bramley, A. S., et al., Magnetic resonance imaging of liquid flow and pore structure within packed beds, Chemical Engineering Science, 1997, 52 (14):2239-2250.
    [106] Jaekeun Park, S. J. G., Mapping flow and dispersion in a packed column by MRI, AIChE Journal, 1999, 45 (3):655-660.
    [107] Sorensen, J. P., Stewart, W. E., Computation of forced convection in slow flow through ducts and packed beds--I extensions of the graetz problem, Chemical Engineering Science, 1974, 29 (3):811-817.
    [108] Sorensen, J. P., Stewart, W. E., Computation of forced convection in slow flowthrough ducts and packed beds--II velocity profile in a simple cubic array of spheres, Chemical Engineering Science, 1974, 29 (3):819-825.
    [109] Dalman, M. T., Merkin, J. H., McGreavy, C., Fluid flow and heat transfer past two spheres in a cylindrical tube, Computers & Fluids, 1986, 14 (3):267-281.
    [110] LLOYD, B., BOEHM, R., Flow and heat transfer around a linear array of spheres, Numerical heat transfer. Part A, Applications, 1994, 26 (22):237-252.
    [111] Derkx, O. R., Dixon, A. G., Determination of the fixed bed wall heat transfer coefficient using computational fluid dynamics, Numerical heat transfer. Part A, Applications, 1996, 29:777-794.
    [112] Logtenberg, S. A., Dixon, A. G., Computational fluid dynamics studies of fixed bed heat transfer, Chemical Engineering and Processing, 1998, 37 (1):7-21.
    [113] Logtenberg, S. A., Dixon, A. G., Computational fluid dynamics studies of the effects of temperature-dependent physical properties on fixed-bed heat transfer, Industrial & Engineering Chemistry Research, 1998, 37 (3):739-747.
    [114] Nijemeisland, M., Dixon, A. G., Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed, Chemical Engineering Journal, 2001, 82 (1-3):231-246.
    [115] M Tierney, A. N., G Quarini The use of proprietary computational fluid dynamics codes for flows in annular packed beds, Separation and Purification Technology, 1998, 13:97-107.
    [116] Yin, F. H., Sun, C. G., Afacan, A., et al., CFD modeling of mass-transfer processes in randomly packed distillation columns, Industrial & Engineering Chemistry Research, 2000, 39 (5):1369-1380.
    [117] A Shariat, J. K., Packing Efficiency Testing on a Commercial Scale with Good (and Not So Good) Reflux Distribution, Industrial & Engineering Chemistry Research, 1995, 34:1273-1279
    [118] Yin, F. H., Afacan, A., Nandakumar, K., et al., Liquid holdup distribution in packed columns: gamma ray tomography and CFD simulation, Chemical Engineering and Processing, 2002, 41 (5):473-483.
    [119] Guo, B. Y., Yu, A. B., Wright, B., et al., Comparison of several turbulence models applied to the simulation of gas flow in a packed bed, Third international conference on CFD in the minerals and process industries, 2003, 509-514.
    [120] Nakayama, A., Kuwahara, F., A macroscopic turbulence model for flow in a porous medium, Journal of Fluids Engineering-Transactions of the Asme, 1999, 121 (2):427-433.
    [121] Liu, S. J., A continuum model for gas-liquid flow in packed towers, ChemicalEngineering Science, 2001, 56:5945-5953.
    [122] Eisfeld, B., Schnitzlein, K., A new pseudo-continuous model for the fluid flow in packed beds, Chemical Engineering Science, 2005, 60 (15):4105-4117.
    [123] Jiang, Y., Khadilkar, M. R., Al-Dahhan, M. H., et al., CFD modeling of multiphase flow distribution in catalytic packed bed reactors: scale down issues, Catalysis Today, 2001, 66 (2-4):209-218.
    [124] Jiang, Y., Khadilkar, M. R., Al-Dahhan, M. H., et al., CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues, AIChE Journal, 2002, 48 (4):701-715.
    [125] Jiang, Y., Khadilkar, M. R., Al-Dahhan, M. H., et al., CFD of multiphase flow in packed-bed reactors: II. Results and applications, AIChE Journal, 2002, 48 (4):716-730.
    [126] 陶文铨, 数值传热学, 西安: 西安交通大学出版社, 2001.
    [127] Launder, B. E., Heat and Mass transport, in: Topics in Applied Physics, Turbulence, 1976, 231-287.
    [128] Spalding, D. B., Concentration fluctuations in a round turbulent free jet, Chemical Engineering Science, 1971, 26 (1):95-107.
    [129] Elghobashi, S. E., Launder, B. E., Turbulent time scales and the dissipation rate of temperature variance in the thermal mixing layer, Physics of Fluids, 1983, 26 (9):2415-2419.
    [130] Jones, W. P., Musonge, P., Closure of the Reynolds stress and scalar flux equations, Physics of Fluids, 1988, 31 (12):3589-3604.
    [131] Nagano, Y., Kim, C., A 2-Equation Model for Heat-Transport in Wall Turbulent Shear Flows, Journal of Heat Transfer-Transactions of the Asme, 1988, 110 (3):583-589.
    [132] Abe, K., Kondoh, T., Nagano, Y., A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows--II. Thermal field calculations, International Journal of Heat and Mass Transfer, 1995, 38 (8):1467-1481.
    [133] Rhee, G. H., Sung, H. J., A nonlinear low-Reynolds-number k-[var epsilon] model for turbulent separated and reattaching flows--II. Thermal field computations, International Journal of Heat and Mass Transfer, 1996, 39 (16):3465-3474.
    [134] Abe, K., Kondoh, T., Nagano, Y., A two-equation heat transfer model reflecting second-moment closures for wall and free turbulent flows, International Journal of Heat and Fluid Flow, 1996, 17 (3):228-237.
    [135] Deng, B., Wu, W., Xi, S., A near-wall two-equation heat transfer model for wall turbulent flows, International Journal of Heat and Mass Transfer, 2001,44 (4):691-698.
    [136] Hattori, H., Morita, A., Nagano, Y., Nonlinear eddy diffusivity models reflecting buoyancy effect for wall-shear flows and heat transfer, International Journal of Heat and Fluid Flow, 2006, 27 (4):671-683.
    [137] Newman, G. R., Launder, B. E., Lumley, J. L., Modelling the behaviour of homogeneous scalar turbulence, Journal of Fluid Mechanics, 1981, 111:217-232.
    [138] R. W. Fahien, J. M. S., Mass transfer in packed beds, AIChE Journal, 1955, 1 (1):28-37.
    [139] Roemer, G., Dranoff, J. S., Smith, J. M., Diffusion in Packed Beds at Low Flow Rates, Industrial & Engineering Chemistry Fundamentals, 1962, 1 (4):284--287.
    [140] Foumeny, E. A., Chowdhury, M. A., McGreavy, C., et al., Estimation of dispersion coefficients in packed beds Chemical Engineering & Technology, 1992, 15 (3):168-181.
    [141] Anderson, K. L., Stokke, O. M., Gilbert, R. E., Radial Mixing during Two-Phase Countercurrent Flow through a Packed Column, Industrial & Engineering Chemistry Fundamentals, 1966, 5 (4):430-432.
    [142] Michell, R. W., Furzer, I. A., Mixing in trickle flow through packed beds, The Chemical Engineering Journal, 1972, 4 (1):53-63.
    [143] Macias-Salinas, R., Fair, J., Axial Mixing in Modern Packings, Gas and Liquid Phases: I. Single-Phase Flow, AIChE Journal, 1999, 45 (2):222-239.
    [144] Macias-Salinas, R., Fair, J., Axial Mixing in Modern Packings, Gas, and Liquid Phases: II. Two-Phase Flow, AIChE Journal, 2000, 46 (1):79-91.
    [145] Vignes, A., Diffusion in Binary Solutions. Variation of Diffusion Coefficient with Composition, Industrial & Engineering Chemistry Fundamentals, 1966, 5 (2):189-199.
    [146] Rhodes, E., King, C. J., Concentration-Dependent Diffusion Coefficients and Rates of Mass Transport, Industrial & Engineering Chemistry Fundamentals, 1966, 5 (1):146-146.
    [147] Leffler, J., Jr., H. T. C., Variation of Liquid Diffusion Coefficients with Composition. Binary Systems, Industrial & Engineering Chemistry Fundamentals, 1970, 9 (1):84-88.
    [148] Dullien, F. A. L., Asfour, A. F. A., Concentration dependence of mutual diffusion coefficients in regular binary solutions: a new predictive equation, Industrial & Engineering Chemistry Fundamentals, 1985, 24 (1):1-7.
    [149] 张建候, 袁继堂, 液相扩散系数与浓度的新关联方程和实验考察, 化工学报, 1989, 40 (1):1-9.
    [150] 王维德, 余国琮, 传质系数与浓度的关系, 化工学报, 2002, 53 (5):517-521.
    [151] Sun, Z. M., Liu, B. T., Yuan, X. G., et al., New turbulent model for computational mass transfer and its application to a commercial-scale distillation column, Industrial & Engineering Chemistry Research, 2005, 44 (12):4427-4434.
    [152] Liu, G. B., Yu, K. T., Yuan, X. G., et al., Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer, Chemical Engineering Science, 2006, 61 (19):6511-6529.
    [153] Liu, G. B., Yu, K. T., Yuan, X. G., et al., New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2-NaOH chemical absorption, Industrial & Engineering Chemistry Research, 2006, 45 (9):3220-3229.
    [154] Liu, G. B., Yu, K. T., Yuan, X. G., et al. Simulation of Wall-Cooled Fixed-Bed Catalytic Reactor by Computational Transport. Proceedings of Chinese-French Collabotarory of Chemical and Enviromental Engineering for Sustainable Development Annual Meeting. Tianjin China, 2006.
    [155] Khalil, E. E., Spalding, D. B., Whitelaw, J. H., Calculation of Local Flow Properties in 2-Dimensional Furnaces, International Journal of Heat and Mass Transfer, 1975, 18 (6):775-791.
    [156] Elghobashi, S. E., Pun, W. M., Spalding, D. B., Concentration fluctuations in isothermal turbulent confined coaxial jets, Chemical Engineering Science, 1977, 32 (2):161-166.
    [157] Plumb, O. A., Kennedy, L. A., Application of k-e model to natural convection from a vertical isothermal surfaces, ASME Journal of Heat Transfer, 1977, 99:79-85.
    [158] Patankar, S. V., Sparrow, E. M., Ivanovic, M., Thermal interactions among the confining walls of a turbulent recirculating flow, International Journal of Heat and Mass Transfer, 1978, 21 (3):269-274.
    [159] Abdelmeguid, A. M., Markatos, N. C., Muraoka, K., et al., A comparison of the parabolic and partially parablic solution procedures for three-dimensional turbulent flows around ship's hulls, Appl Math Modelling, 1979, 3 (4):249-258.
    [160] Gori, F., El Hadidy, M. A., Spalding, D. B., Numerical prediction of heat transfer to low-Prandtl-number fluids Numerical Heat Transfer, Part B: Fundamentals, 1979, 2:441-454.
    [161] Singhal, A. K., Spalding, D. B., Predictions of two-dimensional boundary layers with the aid of the k-epsilon model of turbulence, Computer Methods in Applied Mechanics and Engineering, 1981, 25:365-383.
    [162] Comini, G., Del Giudice, S., A k-e model of turbulent flow, Numerical Heat Transfer, 1985, 8 (299-316).
    [163] Tavoularis, S., Corrsin, S., Experiments in Nearly Homogeneous Turbulent Shear-Flow with A Uniform Mean Temperature-Gradient .2. the Fine-Structure, Journal of Fluid Mechanics, 1981, 104 (MAR):349-367.
    [164] Tavoularis, S., Corrsin, S., Experiments in Nearly Homogenous Turbulent Shear-Flow with A Uniform Mean Temperature-Gradient .1, Journal of Fluid Mechanics, 1981, 104 (MAR):311-347.
    [165] Ferchichi, M., Tavoularis, S., Scalar probability density function and fine structure in uniformly sheared turbulence, Journal of Fluid Mechanics, 2002, 461:155-182.
    [166] 张泽廷, 王树楹, 余国琮, 填料塔传质模型的研究——二维混合池随机模型, 化工学报, 1989, 40 (1):53-59.
    [167] Bear, J., 多孔介质流体动力学, 北京: 中国建筑工业出版社, 1983.
    [168] Billet, R., Packed towers in processing and environmental technology, Weinheim, Germany: VCH Publisher, 1995.
    [169] BEMER, G. G., KALIS, G. A. J., A NEW METHOD TO PREDICT HOLD-UP AND PRESSURE DROP IN PACKED COLUMNS Chemical Engineering Research and Design, 1978, 56:200-204.
    [170] Takahashi, T., Akagi, Y., ueyama, K., A new correlation for pressure drop of packed column, J.Chem.Eng.Japan, 1979, 8:341-346.
    [171] Stichlmair, J., Bravo, J. L., Fair, J. R., General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns, Gas Separation and Purification, 1989, 3 (3):19-28.
    [172] Miyahara, T., Ogawa, K., Nagano, Y., et al., Flow dynamics in low height packed column having large fractional void space, Chemical Engineering Science, 1992, 47 (13-14):3323-3330.
    [173] Billet, R., Schultes, M., modeling of pressure drop in packed columns, Chemical Engineering & Technology, 1991, 14 (2):89-95.
    [174] Ma?kowiak, J., Pressure drop in irrigated packed columns, Chemical Engineering and Processing, 1993, 29:93-105.
    [175] Engel, V., Stichmair, J., Geipel, W., A new model to predict liquid holdup in packed columns-using data based on capacitance measurement techniques, Inst Chem Eng Symp Ser, 1997, 939-947.
    [176] Billet, R., Schultes, M., A Physical Model for the Prediction of Liquid Hold-up in Two-phase Countercurrent Columns, Chemical Engineering & Technology, 1993, 16:370-375.
    [177] Billet, R., Schultes, M., Prediction of mass transfer columns with dumped andarranged packings - Updated summary of the calculation method of Billet and Schultes, Chemical Engineering Research & Design, 1999, 77 (A6):498-504.
    [178] H. L. Shulman, C. F. U. N. W. A. Z. P., Performance of packed columns. III. Holdup for aqueous and nonaqueous systems, AIChE Journal, 1955, 1 (2):259-264.
    [179] Sater, V. E., Levenspiel, O., Two-Phase Flow in Packed Beds, Industrial & Engineering Chemistry Fundamentals, 1966, 5 (1):86-92.
    [180] Macdonald, I. F., EI-Sayed, M. S., Mow, K., et al., Flow through porous media—the Ergun equation revisited Industrial & Engineering Chemistry Fundamentals, 1979, 18:199-208.
    [181] Nemec, D., Levec, J., Flow through packed bed reactors: 1. Single-phase flow, Chemical Engineering Science, 2005, 60 (24):6947-6957.
    [182] Robbins, L. A., Improve Pressure-Drop Prediction with A New Correlation, Chemical Engineering Progress, 1991, 87 (5):87-90.
    [183] Bird, R. F., Stewart, W. E., Lightfoot, E. N., Transport Phenomena, New York: JohnWilley & Sons, Inc., 2002.
    [184] Van Doormaal, J. P., Raithby, G. D., Enhancement of the SIMPLE method for predicting incompressible fluid flows, Journal of Numerical Heat Transfer, 1984, 7:147-163.
    [185] Kouri, R. J., Sohlo , J., Liquid and gas flow patterns in random packings, The Chemical Engineering Journal and The Biochemical Engineering Journal, 1996, 61 (2):95-105.
    [186] Administration, E. I. http://www.eia.doe.gov/oiaf/ieo/ieographic_data.html. 2006.
    [187] Astarita, G., Marrucci, G., Gioia, F., The influence of carbonation ratio and total amine concentration on carbon dioxide absorption in aqueous monoethanolamine solutions, Chemical Engineering Science, 1964, 19 (2):95-103.
    [188] Tontiwachwuthikul, P., Meisen, A., Lim, C. J., Co2 Absorption by Naoh, Monoethanolamine and 2-Amino-2-Methyl-1-Propanol Solutions in A Packed-Column, Chemical Engineering Science, 1992, 47 (2):381-390.
    [189] Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., et al., Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chemical Engineering Science, 2003, 58 (23-24):5195-5210.
    [190] Kohl, A. L., Nielsen, R. B., Gas Purification Gulf Pub. Co., Book Division: Houston, 1997.
    [191] 王绍亭, 陈树章, 徐平, et al., 新型填料塔液相轴向混合的研究, 天津大学学报, 1985, (2):57-68.
    [192] 王绍亭, 陈树章, 李春利, 填料塔液相轴向混合的几种参数估计方法, 化学工程, 1988, 16 (5):46-51.
    [193] Macias-Salinas, R., Fair, J. R., Axial mixing in modern packings, gas and liquid phases: I. Single-phase flow, AIChE Journal, 1999, 45 (2):222-239.
    [194] WE Dunn, T Vermeulen, CR Wilke, et al., Longitudinal Dispersion in Packed Gas-Absorption Columns, Industrial & Engineering Chemistry Fundamentals, 1977, 16 (1):116-124.
    [195] D Strang, C Geankoplis, Longitudinal Diffusivity of Liquids in Packed Beds, Industrial & Engineering Chemistry, 1958, 50 (9):1305-1308.
    [196] Earl A. Ebach, R. R. W., Mixing of fluids flowing through beds of packed solids, AIChE Journal, 1958, 4 (2):161-169.
    [197] Tan, C., Liou, D., Axial dispersion of supercritical carbon dioxide in packed beds, Industrial & Engineering Chemistry Research, 1989, 28 (8):1246-1250.
    [198] 朱学军, 大型规整填料塔内液体流动及返混特性的研究: [博士学位论文], 天津: 天津大学, 1995.
    [199] 王文韬, 规整填料塔液相混合的研究: [博士学位论文], 天津: 天津学位大学, 1999.
    [200] 张红彦, 规整填料中液相流体力学行为的研究及传质模型的建立: [博士学位论文], 天津: 天津大学, 1999.
    [201] 王利东, 高压下规整填料塔中液相流体力学行为和传质性能的研究: [博士学位论文], 天津: 天津大学, 2000.
    [202] 张鹏, 加压下规整填料塔内流体流动和传质特性的研究及其计算流体力学模拟: [博士学位论文], 天津: 天津大学, 2002.
    [203] 孙树瑜, 板波纹规整填料塔中的液相混合行为, 化工学报, 1998, 49 (1):121-124.
    [204] 陈江波, 高压下规整填料塔的计算传递和传质性能: [博士学位论文], 天津: 天津大学, 2006.
    [205] Tontiwachwuthikul, P., Meisen, A., Lim, C. J., Novel Pilot-Plant Technique for Sizing Gas-Absorbers with Chemical-Reactions, Canadian Journal of Chemical Engineering, 1989, 67 (4):602-607.
    [206] Pintola, T., Tontiwachwuthikul, P., Meisen, A., Simulation of pilot plant and industrial CO 2 -MEA absorbers, Gas Separation and Purification, 1993, 7:47-52.
    [207] Onda, K., Sada, E., Takeuchi, H., Gas absorption with chemical reaction in packed columns, Journal of Chemical Engineering of Japan, 1968, 1 (1):62-66.
    [208] Onda, K., Takeuchi, H., Okumoto, Y., Mass transfer coefficients between gas and liquid phases in packed columns, Journal of Chemical Engineering ofJapan, 1968, 1:56-62.
    [209] Danckwerts, P. V., Gas-Liquid Reactions New York: McGraw-Hill 1970.
    [210] Wellek, R. M., Brunson, R. J., Law, F. H., Enhancement Factors for Gas-Absorption with 2Nd-Order Irreversible Chemical-Reaction, Canadian Journal of Chemical Engineering, 1978, 56 (2):181-186.
    [211] Hikita, H., Asai, S., Takatsuka, T., Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate-bicarbonate solutions, The Chemical Engineering Journal, 1976, 11 (2):131-141.
    [212] Pohorecki, R., Moniuk, W., Kinetics of Reaction Between Carbon-Dioxide and Hydroxyl Ions in Aqueous-Electrolyte Solutions, Chemical Engineering Science, 1988, 43 (7):1677-1684.
    [213] Danckwerts, P. V., Reaction of Co2 with Ethanolamines, Chemical Engineering Science, 1979, 34 (4):443-446.
    [214] Sada, E., Kumazawa, H., Butt, M. A., Analytical Approximate Solutions for Simultaneous Absorption with Reaction, Canadian Journal of Chemical Engineering, 1976, 54 (1-2):97-100.
    [215] Weiland, R. H., Dingman, J. C., Cronin, D. B., et al., Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends, Journal of Chemical and Engineering Data, 1998, 43 (3):378-382.
    [216] Vazquez, G., Alvarez, E., Navaza, J. M., et al., Surface tension of binary mixtures of water plus monoethanolamine and water plus 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 degrees C to 50 degrees C, Journal of Chemical and Engineering Data, 1997, 42 (1):57-59.
    [217] Versteeg, G. F., Vanswaaij, W. P. M., On the Kinetics Between Co2 and Alkanolamines Both in Aqueous and Non-Aqueous Solutions .1. Primary and Secondary-Amines, Chemical Engineering Science, 1988, 43 (3):573-585.
    [218] Ko, J., Tsai, T., Lin, C., et al., Diffusivity of nitrous oxide in aqueous alkanolamine solutions, Journal of Chemical and Engineering Data, 2001, 46:160-165.
    [219] Snijder, E. D., Teriele, M. J. M., Versteeg, G. F., et al., Diffusion-Coefficients of Several Aqueous Alkanolamine Solutions, Journal of Chemical and Engineering Data, 1993, 38 (3):475-480.
    [220] Hikita, H., Asai, S., Katsu, Y., et al., Absorption of Carbon-Dioxide Into Aqueous Monoethanolamine Solutions, AIChE Journal, 1979, 25 (5):793-800.
    [221] Wang, Y. W., Xu, S., Otto, F. D., et al., Solubility of N2O in Alkanolamines and in Mixed-Solvents, Chemical Engineering Journal and the Biochemical Engineering Journal, 1992, 48 (1):31-40.
    [222] Tsai, T., Ko, J., Wang, H., et al., Solubility of nitrous oxide in alkanolamine aqueous solutions, Journal of Chemical and Engineering Data, 2000, 45:341-347.
    [223] Poling, B. E., Prausnitz, J. M., O' Connell, J., The Properties of Gases and Liquids New York: McGraw-Hill, 2001.
    [224] Perry, R. H., Green, D. W., Perry's Chemical engineers' handbook McGraw-Hill: New York, 2001.
    [225] Geankoplis, J. C., Transport Processes and Separation Process Principles ( Includes Unit Operations ): Prentice Hall PTR: Upper Saddle River, NJ., 2003.
    [226] Saha, A. K., Bandyopadhyay, S. S., Biswas, A. K., Kinetics of Absorption of Co2 into Aqueous-Solutions of 2-Amino-2-Methyl-1-Propanol, Chemical Engineering Science, 1995, 50 (22):3587-3598.
    [227] Xu, S., Otto, F. D., Mather, A. E., Physical-Properties of Aqueous Amp Solutions, Journal of Chemical and Engineering Data, 1991, 36 (1):71-75.
    [228] Camacho, F., Sanchez, S., Pacheco, R., et al., Thermal effects of CO2 absorption in aqueous solutions of 2-amino-2-methyl-1-propanol, AIChE Journal, 2005, 51 (10):2769-2777.
    [229] Otake T., E., K., Mixing characteristics of irrigated packed towers, Journal of Chemical Engineering of Japan, 1958, 22:144.
    [230] I Wagner, J Stichlmair, JR Fair, Mass Transfer in Beds of Modern, High-Efficiency Random Packings, INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH, 1997, 36:227-237.
    [231] Choe, D. K., W.L.Lee, Liquid phase dispersion in a packed column with countercurrent two-phase flow, chemical engineering communication, 1985, 34:295.
    [232] Tarhan, M. O., Catalytic reactor design New York: McGraw-Hill, 1983.
    [233] Wakao, N., kaguei, S., Heat and Mass transfer in packed Beds, New York Gordon and Breach Science Publishers, 1982.
    [234] Winterberg, M., Tsotsas, E., Krischke, A., et al., A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres, Chemical Engineering Science, 2000, 55 (5):967-979.
    [235] Bejan, A., Kraus, A. D., Heat Transfer handbook, New Jersey: John Wiley & Sons, Inc., 2003.
    [236] Nield, D. A., estimation of the stagnant thermal conductivity of saturated porous media, International Journal of Heat and Mass Transfer, 1991, 34:1575-1576.
    [237] Valstar, J. M., van den Berg, P. J., Oyserman, J., Comparison between twodimensional fixed bed reactor calculations and measurements, Chemical Engineering Science, 1975, 30 (7):723-728.
    [238] Yaws, C. L., Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds Knovel, 2003.
    [239] Tsotsas, E., Schlünder, E.-U., Heat transfer in packed beds with fluid flow: remarks on the meaning and the calculation of a heat transfer coefficient at the wall Chemical Engineering Science, 1990, 45 (4):819-837.
    [240] Fahien, R. W., Smith, J. M., Mass transfer in packed beds, AIChE Journal, 1955, 1 (1):28-37.
    [241] Schertz, W. W., Bischoff, K. B., Thermal and material transport in nonisothermal packed beds, AIChE Journal, 1969, 15 (4):597-604.
    [242] Olbrich, W. E., Potter, O. E., Heat transfer in small diameter packed beds, Chemical Engineering Science, 1972, 27 (9):1723-1732.
    [243] Kwong, S. S., Smith, J. M., Radial Heat Transfer in Packed Beds, Industrial & Engineering Chemistry, 1957, 49 (5):894-903.
    [244] 赵维彭, 郑英峩, 用萃取蒸馏分离焦化苯中的噻吩, 燃料与化工, 1989, 20 (4):194-199.
    [245] 姚玉英(主编), 天津大学化工原理教研室, 化工原理(下册), 天津: 天津科学技术出版社, 1999.
    [246] Tassions, D. P., In Azeotropic and Extractive Distillation, Washington D.C.: American Chemical Society, 1972.
    [247] Tomas, E. R., Echert, C. A., Prediction of Limiting Activity Coefficients by a Modified Separation of Cohesive Energy Density Model and UNIFAC, Ind.Eng.Chem.Process.Des, 1984, 23:194-.
    [248] Weidlich, U., Gmehling, J., A Modified UNIFAC Model.l.Prediction of VLE, hE and γ∞, Ind.Eng.Chem.Process.Des., 1987, 26:1372~1381.
    [249] Laser, B. L., Rasmassen, P., Fredenslund, A., A Modified UNIFAC Group-Contribution Model For Prediction of Phase Equilibria and Heats of Mixing, Ind.Eng.Chem.Process.Des., 1987, 26: 2774~2285.
    [250] 兰化公司化机组 C 组, 应用汽液色谱法筛选萃取剂——快速测定 C5 烃在各种溶剂中无限稀释后的相对挥发度, 化学工程, 1974, 4:48-55.
    [251] 程能林, 溶剂手册, 北京: 化学工业出版社, 1994.
    [252] 赵维彭, 顾正桂, 郑英峩, 苯和噻吩萃取精馏溶剂的筛选及气液平衡数据的测定与关联, 燃料化学学报, 1991, 19 (3):261-271.
    [253] 郑英峩, 赵维彭, 苯、噻吩和溶剂间气液平衡数据的测定及关联, 燃料与化工, 1989, 20 (6):301-306.
    [254] 李继良, 萃取精馏法焦化苯精制新工艺的研究: [硕士学位论文], 天津: 天津大学, 2006.
    [255] 常彦龙, 冯庆华, 张琨, et al., θ 网环等四种小型高效精密填料流体力学性能测定及比较, 过程工程学报, 2004, 4 (6):496-501.
    [256] Ye, W., Shen, R., Liu, W., et al., Densities and volumetric properties of N-methyl-2-pyrrolidone with aromatic hydrocarbon at different temperature The Journal of Chemical Thermodynamics, 2006.
    [257] 金克新, 赵传钧, 马沛生, 化工热力学, 天津: 天津大学出版社, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700