用户名: 密码: 验证码:
可着陆水下自航行器系统设计与动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为有效的水下测量传感器搭载平台,水下自航行器(Autonomous underwater vehicle或AUV)在海洋环境监测领域和海洋资源开发领域的应用前景愈加广阔。但由于携带的能源有限,水下自航行器难以完成长期的海洋测量任务。为了实现长期监测以获得长时序海洋监测数据,本文设计了可着陆水下自航行器。该自航行器具有水下着陆坐底功能,可以执行长时间大航程的水下测量任务。为了实现着陆坐底功能,航行器外形结构采用主体与多个附体相组合方式。与传统的流线型细长体水下自航行器相比,其外形与附体结构更为复杂。为了在设计阶段分析可着陆水下自航行器动力学行为,首先需要建立其动力学模型。针对所开发的可着陆水下自航行器,本文着重探讨具有复杂附体结构的水下自航行器的动力学行为与系统仿真,建立可着陆水下自航行器多体系统动力学模型,并对其着陆运动进行研究。最后,通过约束模型试验和一系列的水域航行试验,完整地实现了预期的设计功能,并且试验结果与仿真结果吻合,验证了本文分析和仿真的正确性。
     本文的主要研究成果为:
     1.设计了可着陆水下自航行器原理样机,实现了航行、着陆坐底、测量、上浮通信等功能。该水下自航行器的主要设计特点为:(1)在航行阶段,将测量传感器复用为多普勒计程仪,可有效地节约成本;(2)设计了压载机构和熔断抛载机构,实现了可着陆水下自航行器变浮力功能。
     2.将多体系统动力学理论方法引入水下自航行器建模过程,建立基于多体系统动力学理论的水下自航行器动力学模型。为了减少计算量,采用基于低序体组的多体系统矢量建模方法推导了可着陆水下自航行器的空间运动方程组。该模型主要优点在于其方便性和精确性。首先,此模型中各体的物理和几何参数可单独估算和修改,避免了具有复杂附体结构的AUV整体水动力参数估算困难的问题,便于AUV的设计和优化,同时具有良好的适用性和通用性;其次,由于该模型详细描述了各体的物理和几何参数,能够获得良好的仿真精度。
     3.基于水下自航行器多体系统动力学模型,对可着陆水下自航行器纵向运动和横向运动的操纵性进行了分析。通过仿真和分析得出三个结论。(1)可着陆水下自航行器压载水舱位于主体侧下方时航行器具有更高的稳定性;(2)横向运动操纵面布局要服从于纵向运动操纵面布局;(3)操纵面位置和尺寸优化结果表明,可着陆水下自航行器的操纵面最佳位置为距离浮心1.3米处。
     4.通过研究水下自航行器的着陆运动,提出采用四阶段着陆轨迹实现水下自航行器的着陆任务,并计算出了该轨迹的几何参数。该着陆轨迹充分考虑了可着陆水下自航行器的工作环境的具体要求,比如过载、垂直下降速度、着陆轨迹的连续性和光滑性。仿真和试验表明,与压载后自由下沉的方法相比,采用该着陆轨迹,能够更加可靠和平稳地实现着陆动作。
As an effective platform for scientific sensors, autonomous underwater vehicle (AUV) has become an intense area of oceanic research because of their emerging applications in oceanographic survey. However, long-term marine environment measuring is impractical for available AUVs because the energy storage is limited. It is useful to develop the variable buoyancy AUV with the capacity of landing on the seafloor and bottom-sitting for an extended measuring period. In this thesis, a low cost modular AUV with the capacity of landing is developed. Because of more attached bodies, the new AUV developed in the thesis is more complicated than conventional AUVs in shape and construction. Accordingly, the dynamic modeling and the analysis of dynamical behavior of the AUV for landing is more complex than conventional AUVs. The AUV with the capacity of landing can be considered as a multibody system consisting of a base body and several attached bodies. In the thesis, the modeling methods based on multibody system dynamics are applied to the modeling process of the AUV with the capacity of landing. Then the dynamical behaviors of the AUV for landing are simulated and analyzed using multibody system dynamic model. Finally, a series of experiments including captive model experiment and at sea trials are conducted to testify the simulating results. Experimental results show that the simulating results are in good agreement with experimental results.
     The main contributions of the thesis are summarized as follows:
     1. The mechanical structures and control systems of the AUV with the capacity of landing are designed to achieve the functions of long-range navigation, underwater landing, bottom-sitting and rising. There are two main features in the system design. One is the convertible design for measuring sensor system. During the process of navigation, the measuring sensors onboard can also be used as DVL (Doppler Velocity Log) and the cost is reduced greatly. The other one is the ballast and releasing mechanism. Tow ballast tanks are designed to change the buoyancy of the vehicle.
     2. The model of the AUV with complex shape and construction is set up based on the theory of multibody system dynamics. In order to reduce the amount of calculation, the vector modeling method which is deduced from multibody system dynamical theory is applied to work out the motion equations of this kind of AUV. The merit of this model lies in its convenience and precision. With this model, the physical coefficients of each body of the AUV can be evaluated and revised easily without any influence on other coefficients in the process of design and optimization. Because the properties of each body are described in detail, this model can achieve eligible precision for engineering simulation. The multibody system dynamic modeling method presents an adaptive and effective tool for the design and optimization of the AUV.
     3. Based on the above dynamic model, the thesis analyses and optimizes the maneuverability of lateral movement and longitudinal movement of the AUV with the capacity of landing. Consequently, the following conclusions can be made. Firstly, the position of rudder should conform to the position of elevator. Secondly, the position of the ballast tanks fixed on the AUV should be lower than the position of the main cabin to attain the motion stability. Thirdly, the optimized result of the elevator position is 1.3 meters from buoyancy center.
     4. As for the landing movement of the AUV, four-stage landing trajectory is presented according to the physical requirements such as overload, vertical descent rate,continuity and smoothness. Then, the geometric parameters of the landing trajectory are work out. Compared to the landing method of free-fall in water, the proposed landing method is more reliable according to the simulation results and sea trial results.
引文
1. Yuh J.,Design and control of autonomous underwater robots: a survey,Autonomous Robots,2000,8(1):7~24
    2. Costanza R.,The ecological, economic, and social importance of the oceans,Ecological Economics, 1999,31(2):199~213
    3. 赵进平,发展海洋检测技术的思考与实践,北京:海洋出版社,2005
    4. 朱光文,我国海洋监测技术研究和开发的现状和未来发展,海洋技术,2002,21(2):27~32
    5. 蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000
    6. Manley J. E.,Weirich J. B.,Deep frontiers: technology for ocean exploration,Sea Technology,2005,46(4):10~15
    7. 朱光文,提升国家海洋技术总体实力 推进我国海洋强国建设,海洋技术,2002,21(1):4~6
    8. Nguyen B.,Hopkin D.,Modeling autonomous underwater vehicle (AUV) operations in mine hunting,Oceans 2005-Europe,Brest,France2005,533~538
    9. 朱继懋,潜水器设计,上海:上海交通大学出版社,1992
    10. 陈建平,发展我国载人深潜器的几点思考,机器人技术与应用,2001,2:33~36
    11. 程斐,陈建平,张良,日本海洋科学技术中心技术发展现状,海洋工程,2002,20(1):98~102
    12. Kaharl V. A.,Water baby:the story of Alvin,Oxford University Press,1990
    13. 卫民,方卓舟,俄深海高技术研究动向,全球科技经济瞭望,2000,(5):26~27
    14. The submersible capable of exploring 97% of the world's ocean floors,online available at: http://www.ifremer.fr/fleet/systemes_sm/engins/nautile.htm
    15. Aoki T.,Murashima T.,Tsukioka S.,et al,Development of deep sea free swiming ROV "UROV7K",OCEANS'99,1999,1307~1311
    16. International Submarine Engineering Ltd , online available at: http://www.ise.bc.ca/
    17. 桑恩方,庞永杰,卞红雨,水下机器人技术,机器人技术与应用,2003,(3):8~13
    18. 李志军,张占海,中国2003年北极海冰调查及未来北极海冰研究战略,极地研究,2006,16(3):202~210
    19. 张占海,中国第二次北极科学考察总结,http://www.pric.gov.cn/
    20. Nodland W.,Ewart T.,Bendiner W.,SPURV II-an unmanned, free-swimming submersible developed for oceanographic research,Conference on OCEANS,1981,92~98
    21. Blidberg D. R.,Autonomous underwater vehicles: a tool for the ocean,Unmanned Systems,1991,9(2):10~15
    22. 封锡盛,刘永宽,自治水下机器人研究开发的现状和趋势,高技术通讯,1999,13(9):55~59
    23. Tonge A. M.,Autonomous underwater vehicles (AUVs)-results of the UK collaborative research programme , Proceedings of OCEANS, Oceans Engineering for Today's Technology and Tomorrow's Preservation,1994,130~134
    24. 边信黔,陈伟,施小成,自主式水下潜器海洋环境监测系统技术概念,船舶工程,2000,18(3):61~63
    25. 李锡群,王志华,无人水下航行器(UUV)技术综述,船电技术,2003,(6):12~15
    26. 任福君,张岚,王殿君,水下机器人的发展现状,佳木斯大学学报,2000,18(4):317~320
    27. Smith S. M.,Dunn S. E.,The Ocean Voyager II: an AUV designed for coastal oceanography , Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology,1994,7:139~147
    28. Damus R.,Manley J.,Desset S.,et al,Design of an inspection class autonomous underwater vehicle,Oceans '02 MTS/IEEE,2002,1:180~185
    29. Von A. C.,Allen B.,Austin T.,et al,Remote environmental measuring units, autonomous underwater vehicle technology , Proceedings of the 1994 Symposium on AUV,1994,3:13~19
    30. Allen B.,Stokey R.,Austin T.,REMUS: a small, low cost AUV; system description, field trials and performance results,OCEANS '97 MTS/IEEE Conference Proceedings,1997,2:994~1000
    31. Purcell M.,Von A. C.,Allen B.,New capabilities of the REMUS autonomous underwater vehicle,OCEANS 2000 MTS/IEEE Conference and Exhibition,2000,1:147~151
    32. Stokey R.,Purcell M.,Forrester N.,et al,A docking system for REMUS:an autonomous underwater vehicle , OCEANS '97. MTS/IEEE Conference Proceedings,1997,2:1132~1136
    33. Anon,Unmanned vehicles tested in the Gulf,Warship Technology,2004,(3):16~17
    34. Crimmins D.,Deacutis C.,Hinchey E.,et al,Use of a long endurance solar powered autonomous underwater vehicle (SAUV II) to measure dissolved oxygen concentrations in Greenwich Bay,Oceans 2005 - Europe,Rhode Island, U.S.A2005,2:896~901
    35. Babenko V. V. , Korobov V. I. ,Moroz V. V. , Bionics principles in hydrodynamics of automotive unmanned underwater vehicles,OCEANS 2000 MTS/IEEE Conference and Exhibition,2000,3:2031~2036
    36. Ricard M.,Keegan M.,Intelligent autonomy for the Manta test vehicle,OCEANS 2000 MTS/IEEE Conference and Exhibition,2000,2:1265~1271
    37. 刘津,美海军重整无人潜航器 总体规划重新定义能力,鱼雷技术,2005,13(1):52~53
    38. Ura T.,Obara T.,Nagahashi K.,et al,Introduction to an AUV "R2D4" and its Kuroshima Knoll Survey Mission,MTS/IEEE TECHNO-OCEAN '04,2004,2:840~845
    39. Nasahashi K.,Ura T.,Asada A.,et al,Underwater volcano observation by autonomous underwater vehicle "R2D4",Oceans 2005 - Europe,2005,1:557~562
    40. Balasuriya A.,Ura T.,Autonomous target tracking by Twin-Burger 2,IEEE International Conference on Intelligent Robots and Systems,2000,849~854
    41. Kondo H.,Maki T.,Ura T.,et al,Observation of breakwaters and their rock mound by AUV "Tri-Dog1" at Kamaishi bay,Oceans 2005 - Europe,2005,1:585~590
    42. Thorleifson J. M.,Davies T. C.,Black M. R.,et al,The Theseus autonomous underwater vehicle: a Canadian success story , MTS/IEEE Conference Proceedings of OCEANS,1997,2:1001~1006
    43. Butler B.,Den H. V.,Theseus: a cable-laying AUV, Engineering in Harmony with Ocean,Proceedings of OCEANS,1993,1:1210~1213
    44. Storkersen N. J.,Kristensen A.,Indreeide J.,HUGIN - UUV for seabed surveying,Sea Technology,1998,39(2):22~27
    45. Hagen P. E.,Storkersen N. J.,Vestgard K.,HUGIN-use of UUV technology in marine applications,OCEANS '99 MTS/IEEE-Riding the Crest into the 21st Century,1999,2:967~972
    46. Hagen P. E.,Storkersen N. J.,Vestgard K.,et al,The HUGIN 1000 autonomous underwater vehicle for military applications,Proceedings of OCEANS,2003,2:1141~1145
    47. Hagen P. E.,Storkersen N. J.,Marthinsen B. E.,et al,Military operations with HUGIN AUVs: lessons learned and the way ahead,Oceans 2005 - Europe,2005,2:810~813
    48. Collar P. G.,Mcphail S. D.,Autosub: an autonomous unmanned submersible for ocean data collection,Electronics & Communication Engineering Journal,1995,7(5):105~114
    49. Wang D.,Kang S.,Guan Y.,et al,A launch and recovery system for an autonomous underwater vehicle "Explorer" , Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology,1992,1:279~281
    50. Green D. , Mcgowen D. , Development of integrated, autonomous, modem-based underwater observatories,Oceans '04 MTS/IEEE,2004,4:1995~1999
    51. Hagen P. E.,Storkersen N.,Marthinsen B. E.,et al,Military operations with HUGIN AUVs: lessons learned and the way ahead,Oceans 2005 - Europe,2005,2:810~813
    52. Pan-mook L.,Bong-hwan J.,Chong-moo L.,A docking and control system for an autonomous underwater vehicle,Oceans '02 MTS/IEEE,2002,1609~1614
    53. Allen B. , Vorus W. S. , Prestero T. , Propulsion system performance enhancements on REMUS AUVs,OCEANS 2000 MTS/IEEE Conference and Exhibition,2000,3:1869~1873
    54. Ura T.,Development of autonomous underwater vehicles in Japan,Advanced Robotics,2002,16(1):3~15
    55. Stokey R. P.,Roup A.,Von A. C.,Allen B.,et al,Development of the REMUS 600 autonomous underwater vehicle , OCEANS 2005 Proceedings of MTS/IEEE,2005,2:1301~1304
    56. Dreiling A.,Djapic V.,Hong G.,et al,A modular approach for sensor integration on the REMUS vehicle,OCEANS 2003 Proceedings,2003,3:1731
    57. Healey A. J.,Good M. R.,NPS AUV II autonomous underwater vehicle testbed: design and experimental verification,Naval Engineers Journal,1992, 104(3):191~202
    58. Marco D. B.,Command, control, and navigation experimental results with the NPS ARIES AUV,IEEE Journal of Oceanic Engineering,2001,26(4):466~476
    59. Glegg S. A. L.,Olivieri M. P.,Coulson R. K.,et al,A passive sonar system based on an autonomous underwater vehicle,IEEE Journal of Oceanic Engineering,2001,26(4):700~710
    60. Evans J.,Nahon M.,Dynamics modeling and performance evaluation of an autonomous underwater vehicle,Ocean Engineering,2004, 31(14~15):1835~1858
    61. 苏兴翘,高士奇等,船舶操纵性,北京:国防工业出版社,1989,165~166
    62. 张宇文,鱼雷弹道与弹道设计,西安:西北工业大学出版社,2000
    63. 小川阳弘等,操纵运动数学模型的基础,日本造船学会第三届操纵性讨论会论文集,1981
    64. 令狐选霞,徐德民,唐大军,水下航行器机动性优化设计的模型研究,西北工业大学学报,2003,21(2):222~225
    65. 令狐选霞,自主水下航行器操纵性优化设计及分离运动研究,博士学位论文,西北工业大学,2002
    66. 吴旭光,徐德民,水下自主航行器动力学模型-建模和参数估计,西安:西北工业大学出版社,1998
    67. Rentschler M. E.,Hover F. S.,Chryssostomidis C.,System identification of open-loop maneuvers leads to improved AUV flight performance,IEEE Journal of Oceanic Engineering,2006,31(1):200~208
    68. Sayyaadi H.,Ura T.,Multi Input-Multi Output system identification of AUV systems by neural network,Proceedings of the OCEANS '99 MTS/IEEE— Riding the Crest into the 21st Century,1999,201~208
    69. Bossley K. M.,Brown M.,Harris C. J.,Neurofuzzy identification of an autonomous underwater vehicle,International Journal of Systems Science,1999,30(9):901~913
    70. 休斯顿,刘又午,多体系统动力学(上、下册),天津:天津大学出版社,1991
    71. 李天森,鱼雷操纵性,北京:国防工业出版社,1999
    72. 施生达,潜艇操纵性,北京:国防工业出版社,1995
    73. 陈厚泰,潜艇操纵性,北京:国防工业出版社,1981
    74. 徐德民等,鱼雷自动控制系统,西安:西北工业大学出版社,2000
    75. Henry C.,On optimum turning configurations,Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology,1994,426~433
    76. Henry C.,On optimum turning configurations with fixed-fin stabilization,IEEE Journal of Oceanic Engineering,1995,20(4):268~275
    77. Encarnacao P.,Pascoal A.,Healey A.,Optimal AUV control surface sizing using convex optimization methods,Proceedings 4th IFAC Conference on Manoeuvering and Control of Marine Craft,1997,13~18
    78. Humphreys D. E.,Improvement of the low-speed control authority of an AUV through hull shaping,Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology,1994,434~438
    79. Nickell C. L.,Woolsey C. A.,Stilwell D. J.,A low-speed control module for a streamlined AUV,OCEANS 2005 Conference Proceedings,2005,1680~1685
    80. Aage C.,Wagner S. L,Hydrodynamic manoeuvrability data of a flatfish type AUV,OCEANS 94 Conference Proceedings,1994,425~430
    81. Lauder G. V.,Drucker E. G.,Morphology and experimental hydrodynamics offish fin control surfaces,IEEE Journal of Oceanic Engineering,2004,29(3):556~571
    82. Mojarrad M.,AUV biomimetic propulsion,Oceans Conference Record of IEEE,2000,2141~2146
    83. 梁建宏,王田苗,水下仿生机器鱼的研究进展Ⅰ—鱼类推进机理,机器人,2002,24(2):107~111
    84. 刘祖源,程细得,何汉保,许建,水下航行体近海底运动操纵性研究,中国舰船研究,2006,1(2):7~12
    85. 吴宝山,邢福,匡晓峰等,潜艇近海底运动水动力数值计算分析研究,船舶力学,2005,9(3):19~28
    86. Ananthakrishnan P.,Zhang K.,AUV motion in a wave field,OCEANS'98 Conference Proceedings,1998,1059~1063
    87. Huston R. L.,Multibody dynamics-model and analysis methods,Appl. Mech. Rev,1991,44(3):109~117
    88. Hooker W. W.,Wargulies G.,The dynamical attitude equation for an n~body satellite,J. Astron. SCI.,1965,12:123~128
    89. Hooker W. W.,A set of r dynamical attitude equation for an arbitrary n~Body satellite having r rotational degree of freedom,AIAA J.,1970,8:1205~1207
    90. Roberson R. E.,Wittenburg W.,A dynamical formulation for an arbitrary number of interconnected rigid bodies with reference to the problem of satellite attitude control,3rd IFAC Congress,London1966,45D.2~46D.9
    91. Wittenburg J.,Dynamics of system of rigid bodies,Teubner, Stuttgart,1977
    92. Maguns K. E.,Dynamics of multibody systems,IUTAM Symposium,Berlin:Springer-Verlag,1978
    93. Kane T. R.,Levinson D. A.,Formulation of equation of motion for complex spacecraft,Journal of Guidance, Control and Dynamics,1980,3(2):99~112
    94. 刘延柱,洪嘉振,杨海兴,多刚体系统动力学,上海:高等教育出版社,1989,265~271
    95. Eberhard P.,W. Schiehlen,Computational dynamics of multibody systems: History, formalisms, and applications,Journal of Computational and Nonlinear Dynamics,2006,1(1):3~12
    96. Shabana A. A.,Computer methods for the analysis of large deformations inmulti-body system dynamics , Multi-Body Dynamics: Monitoring and Simulation Techniques-III,2004,15~30
    97. 于清,洪嘉振,柔性多体系统动力学的若干热点问题,力学进展,1999,29(2):145~154
    98. Henrik M.,Analysis and optimization for fluid-structure interaction problems:[PhD Thesis],Aalborg University,2002
    99. 陈建平,周儒荣,虞伟建,充液系统液体-多体耦合动力响应分析,力学学报,2004,36(6):724~731
    100. Kwatny H. G.,Salter E.,Ammeen E. S.,et al,A computer algebra approach to undersea vehicle dynamics,Proceedings of the 1999 IEEE,1999,1:640~645
    101. 常宗瑜,陈秉聪,水下机器人-机械手系统的动力学分析,机械,2006,33(4):4~6
    102. Shen J.,Mclamroch N. H.,Bloch A. M.,Local equilibrium controllability of multibody systems controlled via shape change , IEEE Transactions on Automatic Control,2004,49(4):506~520
    103. 温秉权,小型浅水域水下自航行器系统设计与实验研究,博士学位论文,天津大学,2005
    104. 侯巍,具有着陆坐底功能的水下自航行器系统控制与实验研究,博士学位论文,天津大学,2006
    105. 洪嘉振,计算多体系统动力学,北京:高等教育出版社,1999
    106. 李晓平,多体系统动力学建模方法及在水下缆索中的应用研究,博士学位论文,天津大学,2004
    107. 李殿璞,船舶运动与建模,哈尔滨:哈尔滨工程大学出版社,1999,214~254
    108. Thor I. F.,Mogens B.,Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity,IEEE Journal of Oceanic Engineering,2000,25(2):241~255
    109. 张佐厚,胡志安,船舶推进,北京:国防工业出版社,1980
    110. 熊洪允,曾绍标,毛云英,应用数学基础(下册),天津:天津大学出版社,1998
    111. 野本謙作等,新しぃ操縱性模型試驗法,日本造船協會論文集,1969
    112. 沈宏良,刘昶,飞机平衡状态的优化计算方法,飞行力学,2001,19(4):15~18
    113. 沈宏良,陶矩等,航天飞机自动着陆轨迹优化设计,飞行力学,2004,22(1):10~13
    114. 张军,杨一栋,曹东,航天飞机自动着陆技术概念研究,航天控制,2004,22(2):2~5
    115. 齐照辉,王中伟,张为华,无人机自动回收方案研究,飞行试验, 2003,19(2):2~5
    116. 张宇文,鱼雷总体设计原理与方法,西安:西北工业大学出版社,1998
    117. Yamaguchi S.,Kawanami T.,Koterayama W.,A study on shape optimization for an underwater vehicle based on numerical simulation,Proceedings of ISOPE Pacific/Asia Offshore Mechanics Symposium,2002,1:43~48
    118. Arabshahi A.,Gibeling H. J.,Numerical simulation of viscous flows about underwater vehicles,OCEANS 2000 MTS/IEEE Conference and Exhibition,2000,2185~2195
    119. Fuglestad A. l.,Grahl-madsen M.,Computational fluid dynamics applied on an autonomous underwater vehicle,Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,Vancouver 2004,447~451
    120. 徐宣志等,鱼雷力学,北京:国防工业出版社,1992
    121. Tyagi A.,Sen D.,Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach,Ocean Engineering,2006,33(5~6):798~809
    122. 王基盛,杨庆山,流体环境中结构附加质量的计算,北方交通大学学报,2003,27(1):40~43
    123. 吴宝山,潜艇艉水平翼加端板的操纵性设计预报研究,船舶力学,3(6):12~17
    124. 严卫生,鱼雷航行力学,西安:西北工业大学出版社,2005
    125. Kim S. E.,Rhee S. H.,Cokljat D.,High-incidence and dynamic pitch-up maneuvering characteristics of a prolate spheroid-CFD validation , 24th Symposium on Naval Hydrodynamics,2002
    126. Wu B. S.,Pan Z. Y.,Investigation of the hydrodynamic charateristics of body of revolution with stern ring-wing,Journal of ship mechanics,2003,7(6):37~42
    127. Milne L. M.,Theoretical hydrodynamics of acoustics,London:MacMillan Co.Ltd,1968,200~240
    128. Cimbala J. M.,A new method for calculating added mass using CFD, Bulletin of the American Physical Society,2003,48(10):202-203
    129. 康涛,胡克,胡志强,林扬,CFX与USAERO的水下机器人操纵性仿真计算研究,机器人,2005,27(6):535-538
    130. Jeans T. L.,A critical review of classical force estimation methods for streamlined underwater vehicles using experimental and CFD data ,Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, 2005,479~488
    131. Sarkar T.,Sayer P. G.,Fraser S. M.,Study of autonomous underwater vehicle hull forms using computational fluid dynamics,International Journal for Numerical Methods in Fluids,1997,25(11):1301~1313
    132. David A. S.,Louis L. W.,Model-based dynamic positioning of underwater robotic vehicles: theory and experiment , IEEE Journal of Oceanic Engineering,2004,29(1):169~186
    133. Potter I. J.,A systematic experimental and analytical investigation of the autonomous underwater vehicle design process with particular regard to power system integration:[PhD Thesis],University of Calgary,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700