用户名: 密码: 验证码:
水电站厂房结构的非线性和耦联振动分析与模态参数识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会与经济的发展,水力发电作为一种可再生的清洁能源日益得到重视和开发。水电机组的单机容量和引用水头急剧提高,厂房振动问题日益突出。大型复杂水电站厂房结构的动力学问题一直是国内外研究的热点和难点。目前,水电厂房结构在非线性动力学、抗震、流固耦合振动、模态参数识别方法等方面略显不足。因此,该文致力于水电站厂房结构从工程中提炼出的动力学正、反问题的解决方案和结构原型振动观测等方面的研究。主要研究成果如下:
     ⑴传统的水电站厂房结构抗震研究思路主要是基于反应谱方法对结构进行线性分析。本文提出一种新的抗震分析方法,即用地震时程法并考虑材料的非线性因素对水电站厂房结构进行抗震研究,地震时程分析法具有全过程仿真的特点,它使得位移场(应力应变场)描述更细致,包括变形、应力、损伤形态等动力特性,它能准确的反应厂房结构的地震响应;而考虑非线性因素则能够展现裂缝出现的位置及其数量,能够精确细致地暴露结构的薄弱层和薄弱部位。这种方法的提出,对大体积混凝土结构进行基于性能的抗震研究及安全评估具有重要的意义。
     ⑵本文利用强耦合法把有限元理论和声场理论结合起来,建立了流固耦合场下厂房结构与流场的有限元动力学方程,为分析水电站厂房结构动力学特性提供了理论基础,计算了坝后式水电站厂房的流固耦合振动特性,并与河床式水电站流固耦合特性进行比较,阐述了流体-结构两者之间的耦联振动特点,为水电站厂房结构防止共振的产生、确保安全发电奠定基础。
     ⑶水电站厂房结构振动主要是水力、机械和电磁三大类振源引起的,厂房结构与机组之间存在明显的耦联作用,厂房结构和机组振动系统呈明显的动态耦合效应和非线性特征,用传统的力学方法预测厂房结构振动响应较为困难。本文提出的神经网络预测方法是基于实测数据而不考虑结构精确的数学力学模型的前提条件下,能够非线性的映射出研究对象的振动特性,即通过机组的振动和尾水脉动的监测数据预测厂房结构的振动,该方法简单、实用并具有一定预测精度,可以用于大型水电站厂房结构的健康监测与振动控制中。
     ⑷水电站厂房的振动是机械力、电磁力、水力脉动共同作用的结果,其动荷载很难测得,结构模态参数识别的难度不言自明。为解决以上困难,本文提出一种新的水电站厂房结构模态参数时域识别方法:RDT+ARMA方法,即采用随机减量法提取停机过程中的结构振动信号,并用ARMA模型识别方法实现厂房结构模态参数的识别;进而提出一种基于环境激励的厂房结构模态参数识别法:EMD+RDT+ARMA方法,即EMD法对环境激励信号进行分解,随机减量法提取IMFs的随机减量特征后,用ARMA模型方法实现结构模态参数的识别。上述两种方法实用,并具有一定的精度,尤其适应于结构低阶模态参数识别。
     ⑸水电站厂房现场振动测试是监测厂房结构动力安全与否的重要途径。本文分析了三峡水电站厂房结构振动原型观测数据,研究了水电站厂房结构振动位移随负荷变化规律,并引入了水电站厂房结构振动控制标准,评价了某发电负荷工况下厂房结构的振动状况。从理论上分析了厂房结构的各种动荷载,计算了结构在动荷载作用下的振动响应,对实测数据和理论计算数据进行了对比,得到一些有价值的内容。
With the development of the society and economy, the waterpower, as a regenerated energy source, is increasingly regarded and rapidly developed. By the increase of the capacity and size of the hydro-generator units,the vibration problems of power house structure are catching people eyes, The dynamics problems are the focus, which the domestic and overseas scholars are studying on. Presently, the non-linear dynamics, the fluid-solid interaction, the anti-seism problem and the modal parameters identification method of power house structure should be improvement.
     Thus this paper studies on the solution of both the positive and negative problem extracted from the projects and the analysis of vibration detection. The principal achievements of this dissertation are as follows:
     ⑴The conventional method for anti-seism study of power station structure is the linear analyses which bases on the response spectrum method. A new anti-seism analyzing method is proposed, which is using the non-linear method and the seism time series method to study the anti-seism problem of power station structure. With the complete process simulation method, it makes displacement field, deformation, stress, cracking field more precise than the conventional method, which can describe the real response of structure. Also, it can shows the time, position and quantity of cracks and weakness of structure with the method. The analysis is of high value on the anti-seism study based on the capability and the damaging estimation of large scale power house structure.
     ⑵The paper combines FEM with acoustic theory with strong interaction method, finite element dynamic equations are built, which provides the basis for analyzing characteristics of power house structure. Vibration characteristics of power house structure at dam toe are calculated with the method and the comparison of characteristics of power house structure at dam toe and in river channel is done to describe the FSI features, and it makes a foundation for safe production and avoiding resonance.
     ⑶The excitation sources of powerhouse structural vibration in hydropower station includes: hydrodynamic forces, mechanical forces and electromagnetic forces. The coupled dynamic action between powerhouse structure and generating units is strong. Because of the vibration system is distinctly non-linear and of dynamic characteristics, it is difficult for conventional methods to solve vibration response of power house induced by internal fluid, but nerve network technology based on test data can highly and non-linearly reflect integrated characteristics of study objectives, regardless of mathematical and mechanical model and various complicated condition. The vibration response of hydropower station can be predicted. The method is simple, effective and of high precision. It is used in health monitor and vibration control fields.
     ⑷The mechanical forces, magnetic forces and current pulse have a big effect on the vibration of power house, it is very difficult to identify model parameters of the structure. To work out a correct solution to identify model parameters and improve the precision, a new method in time domain is proposed: RDT+ARMA method. The method is that it abstracts free-decay signal contents from the signal with random decrement method, when dynamic load released. Model parameters are identified with ARMA method from the signals. And then an important method on identifying mode parameters is proposed. The method (EMD+RDT+ARMA) is based on environmental excitation, which decomposes original signal, the free decay signals of IMFs are abstracted with RDT method, and then model parameters are identified with ARMA method. The methods are simple, effective and of high precision, it is specially fit for the first modes parameters of a powerhouse structure.
     ⑸The vibration test of powerhouse structure is an important path for detecting structure safety. The test data and vibration response changes under various loads of Three Gorges Powerhouse structure are analyzed. The vibration controlling standard is introduced in this paper. The vibration situation of the structure is evaluated. Various dynamic loads are analyzed theoretically and the structure response is calculated under the loads, and the test data is compared with theoretical data. That gets some valuable contents.
引文
[1]http://www.cstam.org.cn/cbw/wenxianjijin/mechanics/chapter2-1.htm
    [2]潘家铮,中国水利建设的成就、问题和展望[J],中国工程科学,2002,4(2):42-51
    [3]王树人,董毓新等,水电站建筑物[M],北京:清华大学出版社,1990
    [4]董毓新,李彦硕,水电站建筑物结构分析[M],大连:大连理工大学出版社,1995
    [5]陆宗馨,中国水电站厂房设计和展望[J],水利水电工程设计,2000,19(4):1-3
    [6]沈可,水电站厂房结构振动研究:[博士学位论文],广西:广西大学,2002
    [7]唐卫平,五强溪水电站机组的振动状况及初步实验结果,华中电力,1999,12(5):42-44
    [8]谷兆祺,国外五座特大型水电站介绍[M],北京:清华大学出版社,1996
    [9]Gastao Rocha, Ailton Sillo, Power Swing Produced by Hydropower Unit[C],Proceedings of IAHR 11th Symposium,Amesterdam,1982
    [10]Erikkson.S,Erikkson.K, Advanced systems detect turbine vibrations[J],Modern Power System,1991
    [11]马震岳,董毓新,水电站机组及厂房振动的研究与治理[M],北京:中国水利水电出版社,2004
    [12]舒扬启,王日宣,水电站厂房动力分析[M],北京:水利电力出版社,1987
    [13]董毓新,周永平,王济,水轮发电机钢筋混凝土支撑结构的动力特性分析[J],大连工学院学报,1984(3):22-26
    [14]周永平,董毓新,水电站双列式机组支撑结构的动力分析[J],水力发电学报,1987(4):8-12
    [15]董毓新,李伟仁,刘锐,刘家峡 5 号机支撑结构的动力分析[J],东北水力发电学报,1986(1):7-12
    [16]董毓新,周永平,水轮发电机组的钢筋混凝土结构[J],水力发电,1988(1):15-20
    [17]欧阳金惠,陈厚群,李德玉,三峡电站发电厂房动力特性与低水头振动问题研究[J],中国水利水电科学研究院学报,2004,2(3):215-220
    [18]马振岳,陈婧等,三峡水电站主厂房振动分析[J],三峡大学学报(自然科学版),2004,26(2):111-115
    [19]中华人民共和国水利部,水电站厂房设计规范(SL266-2001),北京:中国水利水电出版社,2001
    [20]练继建,胡志刚等,大型水电站地下厂房机组支撑结构动力特性研究[J],水力发电学报,2004,23(2):49-54
    [21]练继建,秦亮等,双排机水电站厂房结构动力特性研究[J],水力发电学报,2004,23(2):55-60
    [22]李振富,赵晓娜,万家寨水电站机墩组合结构动力分析[J],水力发电学报,2004,23(2):61-64
    [23]彭新民,胡杰,水电站厂房技术改造前后共振校核比较研究,南昌大学学报,2004,26(4):64-67
    [24]邱家俊,同步发电机组轴系扭振参、强联合共振[R],全国振动理论及应用学术会议文集,1993
    [25]邱家俊,同步发电机机电藕联的非线性振动[R],全国振动理论及应用学术会议论文集,1993
    [26]邱家俊,机电分析动力学[M],北京:科学出版社,1992
    [27]邱家俊,机电系统耦合动力学问题论文集,河海大学出版社,1993
    [28]邱加俊,机电系统藕联的非线性振动问题[R],全国振动理论及应用学术会议文集,1993,10
    [29]邱家俊,电机转子系统机电耦合动力学的研究进展[R],全国转子动力学学术会议文集,1995,10
    [30]邱家俊,弹性体非线性振动多重共振的能量法[J],力学学报,1990,22(6)
    [31]邱家俊,发电机空载稳态不对称运行扭振参数共振[R],北京:科学技术出版社,1995
    [32]邱家俊,邱宇,考虑电磁非线性机电藕联的动力学问题[R],一般力学会议论文集,北京大学出版社,1994
    [33]王日宣,水电站与水工建筑物振动和抗振理论论文集[M],天津:天津大学出版社,1991
    [34]毛汉领,熊焕庭,沈炜良,偏向干分析在水电站振动传递路径识别中的应用[J],广西大学学报,1998,(5):6-9
    [35]沈可,张仲卿,梁政,岩滩水电站厂房水力振动计算[J],水电能源科学,2003,21(1):71-73
    [36]王桂平,肖宁,周宁水电站地下厂房结构振动与结构形式研究[J],长江科学院院报,2004,21(1):36-39
    [37]沈可,张仲卿,水电站厂房楼板振动分析[J],人民长江,2003,34(1):52-54
    [38]骆德昌,邓隐北,水轮机组水力振动的分析与防治[M],1996,4
    [39]Masri S F, Chassiakos A G,Caughey T K,Identification of nonlinear dynamic systems using neural networks[J],Journal of Applied Mechanics,1993,60(1):123-133
    [40]Chassiakos A G,Masri S F,Modeling unknown structural systems through the use of neural networks[J],Earthquake Engineering And Structural Dynamics,1996,25(2):117-128
    [41]Liang Yanchun,Zhou Chunguang,Wang Zaishen, Identification of Restoring Forces In Non-linear Vibration Systems Based On Neural Networks[J],Journal Of Sound and Vibration,1997,206(1):103-108
    [42]杨建刚,戴德成等,利用结构化神经网络识别振动系统非线性特性[J],振动工程学报,1995,8(1):62-66
    [43]张方等,基于神经网络模型的动荷载识别[J],振动工程学报,1997,10(2):156-162
    [44]何玉敖,吴建军,应用自递归神经网络(SRNN)预测结构响应[J],土木工程学报,1998,31(2):46-51
    [45]韩卫华,宁佐贵,崔蔚,神经网络在结构响应预测中的应用研究[J],信息技术,2004,28(5):51-53
    [46]杨建刚,戴德成,高叠,曹祖庆,利用结构化神经网络识别振动系统非线性特性[J],振动工程学报,1995,8(1):63-66
    [47]苑希民,刘树坤,崔广涛,动态系统的神经网络仿真研究[J],水利水电技术,1998,29(3):38-42
    [48]Liang Yanchun, Wang Zheng, Yang Xiaowei,Identification of non-linearity In cushioning packaging using neural networks with fuzzy adaptive control[J], Mechanics research communications,1997,24(4):447-455
    [49]Li Songyin,Zheng Junli,The fuzzy adaptive algorithm for feed-forward multilayered neural network[J],Chinese journal of electronics,1994,3(4):28-33
    [50]翟东武等,基于神经网络的结构振动响应预测控制[J].清华大学学报,2000,40(S1):61-65
    [51]王建中等,结构动力特性的神经网络预测[J],武汉工业大学学报,2000,22(4):33-36
    [52]孙作玉,基于动态递归神经网络的半主动控制结构响应预测[J],振动工程学报,2000,13(3):443-448
    [53]黄道平等,带中间状态反馈的多变量非线性预测控制[J],华南理工大学学报,1998,26(5):44-50
    [54]朱长春等,基于振动传递特性的振动环境试验响应预测[J],西南交通大学学报,2002,37(1):1-4
    [55]李建平,吴传志,基于小波变换的非平稳随机信号处理[J],工程数学学报,2001,18(5):99-105
    [56]邢敬华,赵新泽,离散小波包分析在非平稳信号处理中的应用[J],三峡大学学报,2005,27(1):52-54
    [57]吴传生,梁劲松,振动测试信号处理的小波变换方法[J],武汉理工大学学报,2002,24(12):69-73
    [58]张民,丁常富,韩中合,小波分析在振动信号处理领域中的应用[J],电力情报,2001,(3):5-7
    [59]李舜酩,赵玉成,非平稳机械振动信号的小波包分析[J],应用力学学报,1997,14(3):24-29
    [60]朱学锋,肖旭东,应用小波分析方法处理非平稳信号的研究[J],强度与环境,2002,29(3):53-57
    [61]秦叶,陈新度,冯文贤,小波基的选择与振动信号分析[J],广东工业大学学报,1997,14(4):57-60
    [62]Newland D E, Wavelet Analysis of Vibration.Part 1:Theory[J].J.Vib, Acoust,Trans.ASME,1994,(116):409-416
    [63]Newland D E , Wavelet Analysis of Vibration , Part 2:Wavelet Map[J].J.vib,Acoust, Trans. ASME,1994,(116):417-425
    [64]Iyama J,Kuwamura H,Application of Wavelets to Analysis and Simulation of Earthquake Motions[J],Earthquake Engng.Struct.Dyn.,1999,28(3):255-272
    [65]段雪平,来宏平,地震作用下结构动力响应的小波分析[J],华中理工大学学报,2000,28(11):75-78
    [66]肖梅玲,叶燎原,连续小波变换用于结构地震反应分析[J],世界地震工程,2001,17(4):79-83
    [67]赵永辉,利用 ARMAX 模型识别结构模态参数[J],振动与冲击,2000,19(1):34-36
    [68]姚志远,汪凤泉,基于连续模型的大型结构模态参数识别[J],东南大学学报,2003,33(5):617-620
    [69]余慧杰,颜肖龙,基于 ARMAV 模型的结构参数辨识[J],电子机械工程,2003,19(6):47-50
    [70]李金果,王修信,基于 ARMA 模型的结构动力模态参数识别[J],山西建筑,2004,30(24):20-21
    [71]Huang C S,Structural identification from ambient vibration measurement using the multivariate AR model[J],Journal of Sound and Vibration,2001,241(3):337-359.
    [72]Luz E,Wallasehek J. Experiment modal analysis using ambient vibration[J].The International Journal of Analytical and Experimental Modal Analysis,1999,7(1):29-39
    [73]James G H,Garne T G.The natural excitation technique(NExT)for modal parameter extraction from ambient operating structure[J],International Journal of Analytical and Experimental Modal Analysis,1995,10(4):260-277
    [74]Yukio Tamura,Lingmi Zhang,Ambient vibration testing and modal identification of an office building with CFT columns [A],20th International Mod al Analysis Conference,2002:141-146
    [75]Loh CH,Wu TS,Identification of Fei-Tsui arch dam from both ambient and seismic response data[J],Soil Dynamics and Earthquake Engineering 1996,15:465–483.
    [76]王彤,张令弥,计及随机噪声的频域多输入多输出模态参数识别[J],航空学报,2004,25(6):560-564
    [77]李臣,马爱军,冯雪梅,一种高效的频域模态参数识别法[J],振动与冲击,2004,23(3):128-131
    [78]张亚林,胡用生,随机减量法在机车车辆轮对系统模态参数识别中的应用[J],铁道学报,2002,24(2):35-38
    [79]张亚林,胡用生,应用随机减量和模态分析方法辨识机车轮对模态和物理参数[J],内燃机车,2002,(8):9-12
    [80]刘齐茂,用随机减量技术及 ITD 法识别工作模态参数[J],广西工学院学报,2002,13(4):23-26
    [81]淳庆,邱洪义,基于环境激励下钢桁梁桥的模态识别[J],特种结构,2005,22(2):62-65
    [82]欧进萍,何 林,肖仪清,基于 ARMA 模型和自由振动提取技术的海洋平台结构参数识别[J],应用数学和力学,2003,24(4):398-404
    [83]庞世伟,于开平,邹经湘,识别时变结构模态参数的改进子空间方法[J],应用力学学报,2005,22(2):184-188
    [84]孙万泉,马震岳,基于一种免疫算法的结构动态参数识别[J],计算力学学报,2005,22(2):155-158
    [85] Huang N E ,Shen Z,Long S.R.,et al,The empirical mode decomposition andthe Hiblert spectrum for non-linear and non-stationary time series analysis[J],Proc.R.Soc.Lond.A ,1998,454:903-995
    [86]陈隽,徐幼麟,HHT 方法在结构模态参数识别中的应用[J],振动工程学报,2003,16(3):383-388
    [87]Yang J N ,Lei Y,Identification of natural frequencies and damping ratios of linear structures via Hilbert transform and empirical mode decomposition[J],Proc.of International Conference on Intelligent Systems and Control,IASTED/Acta press,Anaheim,CA,1999:310-315
    [88]Yang J N ,Lei Y.Identification of tall building using noisy wind vibration data[J],Proc.of the International Conference on Advances in Structural Dynamics t Hong Kong,2000,2:1093-1100
    [89]王学敏,黄方林,陈政清,Hilbert-Huang 变换在桥梁振动分析中的应用[J],铁道学报,2005,27(2):80-84
    [90]刘绍奎,闫桂荣,基于 Gauss 滤波和 Hilbert 变换的模态参数辨识算法[J],机械工程学报,2005,41(5):161-164
    [91]郭淑卿,梁建文,张郁山,用 HHT 方法识别强迫振动下线性双自由度体系的模态参数[J],自然科学进展,2006,16(3):375-379
    [92]王水林,葛修润,流形元方法在模拟裂缝扩展中的应用[J],岩石力学与工程学报,1997,16(5):405-410
    [93]Bazant Z P,Mechanics of geo-materials rock,concrete,soils[M],Norwich:John Wiley&Sons lad,1985
    [94]孙秦,微裂缝扩展中的分形现象及其计算机仿真[J],应用力学学报,1994,11(4):39-42
    [95]孙风丽.分形几何法模拟混凝土材料的裂缝扩展[J].青岛建筑工程学院学报,1998,19(2):5-7
    [96]Belytsehko T, J Y Y,Gu L,Element-free Galerkin metIlods[J],International Journal for Numerical Methods in Engineering,1994,37(2):229-256
    [97]周元德,张楚汉,金峰等,混凝土开裂的三维非线性数值模拟[J],清华大学学报,2003,43(11):1542-1545
    [98]苏凯,伍鹤皋,水工隧洞钢筋混凝土衬砌非线性有限元分析[J],岩土力学,2005,26(9):1585-1490
    [99]徐世烺,赵艳华,混凝土Ⅱ型断裂与破坏过程的三维非线性有限元数值模拟[J],水力发电学报,2004,23(5):16-21
    [100]张媛媛,郭东,令狐可,动载作用下钢筋混凝土梁非线性有限元分析[J],四川建筑科学研究,2003,29(4):19-22
    [101]刘招,苗隆德,基于 APDL 的混凝土面板堆石坝三维非线形有限元分析[J],西北水力发电,2004,20(4):17-20
    [102]汪冬生,吴铁君,ANSYS 中的钢筋混凝土单元[J],武汉理工大学学报,2004,28(4):526-529
    [103]江传良,冼巧玲,钢筋混凝土结构非线性有限元分析[J],科学技术与工程,2005,5(17):1323-1328
    [104]汪梦甫,周锡元,黄立忠,钢筋混凝土开洞剪力墙结构抗震非线性有限元分析[J],地震工程与工程振动,2005,25(3):48-54
    [105]王强,吕西林,雷淑忠,离散单元法在钢筋混凝土构件非线性分析的应用[J],沈阳建筑大学学报,2005,21(2):91-95
    [106]裘民川,水电站厂房的抗震设计问题[J],工程抗震,1997,6:42-46
    [107]吕西林等,钢筋混凝土结构非线性有限元理论与应用[M],上海:同济大学出版社,1997,5
    [108]史庆轩,钢盘混凝土结构基于性能的抗震研究及破坏评估:[博士学位论文],西安:西安建筑科技大学,2002,10
    [109]朱伯芳,有限单元法原理与应用[M],北京:水利水电出版社,2000
    [110]朱镜清,结构抗震分析原理[M],北京:地震出版社,2001
    [111]夏宁,任青文.混凝土中钢筋不均匀锈胀的数值模拟及锈蚀产物量的预测[J].水利学报,2006,37(1):70-74
    [112] ANSYS Release 8.0 Documentation.
    [113]刑景棠,周盛,崔尔杰,流固耦合力学概述[J],力学进展,1997,27(1):19-38
    [114]Zienkiewicz O C,Coupled problems and their numerical solution in:Lewis R W,Bettess P,Hinton E eds,Numerical Methods in Coupled Systems[J],John Wiley and Sons Ltd,New York(1984)
    [115]Feng Weiming,Cheng Delin,The Model Synthesis Method of Fluid-structure Coupling Vibration for Circular Symmetric Structure , Proceeding of The International Conference on Vibration Problems in Engineering,Vol.2,Wuhan: International Academic Publishers,1990
    [116]《振动与冲击》编委会,振动与冲击手册第一卷[M],北京:国防工业出版社,1989
    [117]王基盛,杨庆山,流体环境中结构附加质量的计算[J],北方交通大学学报,2003,27(1):40-43
    [118]唐宏芬,杨建明,吴玉林,水轮机尾水管内周期性湍流计算[J],水力发电学报,2001,3(1):75-84.
    [119]李德堡等,流体激发结构振动响应预测模型及激振力的识别[J],振动与冲击,1991,1:6-13.
    [120]姜袁,结构动力响应预测的神经网络技术[J],三峡大学学报,2004,26(2):147-150
    [121]何祚镛,赵玉芳,声学理论基础[M],长沙:国防工业出版社,1981
    [122]居荣初,曾心传,弹性结构与液体的耦联振动理论[M],地震出版社,1983
    [123]李言俊,张科,系统辨识理论及应用[M],北京:国防工业出版社,2003,5
    [124]练继建等,三峡电站初期运行厂房结构振动观测分析与运行优化研究[A],天津大学,2005
    [125]续秀忠,华宏星,陈兆能,基于环境激励的模态参数辨识方法综述[J],振动与冲击,2002(3):1-6
    [126]应怀樵,波形和频谱分折与随机数据处理[M],北京:中国铁道出版社,1983
    [127]吴正毅,测试技术与测试信号处理[M],北京:清华大学出版社,1991
    [128]张贤达,现代信号处理[M],北京:清华大学出版社,2002
    [129]吴望一,流体力学[M],北京:北京大学出版灶,l982
    [130]A.haar,Zur Theorie der Orthogonalen Funktionen Systeme[J], Math.Ann,1910(69):331-371
    [131]J.E.Littlewood , R.E.A.C.Paley,Theorems on Fourier Series and Power Series, (I)[J],1931(6):230-233, (II), 1936(42):52-89 (III),1937(43):105-126
    [132]J.Stromberg,A Modified Haar System and Higher Order Spline on R" as Unconditional Bases for Hardy Space,In: Conference inharmonic analysis in honor of Antoni Zygmund II, W.Becher et al (eds.), Belmont, California,1981:475-493
    [133]A.Grosses , J.Morlet, Decomposition of Hardy Functions into Square Wavelets of Constant Shape[J],SIAM J Math. Anal, 1984(15):723-726
    [134]L.Daubechies,A.Grossmann,Y,Meyer,Painless non-orthogonal expansions[J],J.Math,Phy, 1986,27(5):1271-1283
    [135]S.Mallat, A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation[J],IEEE Trans. Pattern Analysis and Machine Intelligence,1989,11(7):674-693
    [136]王海军,水电站厂房组合结构分析与动态识别 [D],天津:天津大学,2006
    [137]秦亮,双排机水电站厂房结构动力分析与识别 [D],天津:天津大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700