用户名: 密码: 验证码:
基于损伤识别和模型修正的井架钢结构评定方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确分析含有损伤缺陷的井架钢结构的静动态力学行为,定量评价井架钢结构的承载能力,能够提高石油天然气开采过程中的安全性,充分利用现有资源的使用价值和提高生产效率。课题在此背景下,深入研究了井架钢结构的损伤缺陷识别方法和有限元模型修正理论,确定了对井架钢结构损伤缺陷敏感的参数及损伤缺陷与物理参数之间的定量关系,建立了井架钢结构的有限元模型直接修正数学模型和模型局部反演修正数学模型,提出了一套定量评价大型复杂井架钢结构的安全性和极限承载力的新方法。
     应用有限元法对井架钢结构的线弹性、几何非线性、材料非线性、双重非线性、动力特性和稳定性进行了分析,得到了位移、应力、固有频率、振型以及动力响应等力学参数和行为特征,为开展井架钢结构损伤识别、模型修正、安全评价和极限承载力预测奠定了理论基础。
     开展了井架钢结构损伤缺陷的识别研究。针对井架钢结构的特点和形式,应用当量损伤系数作为判别损伤缺陷是否存在与程度大小的统一量化指标。基于该指标和静/动力测试技术,提出了当量损伤系数直接识别法、基于应变应力的识别法、基于频率变化比或频率平方变化比的识别法和基于单位载荷变形差值曲率的识别法。通过数值算例验证了这几种方法的正确性和可行性。
     研究了井架钢结构有限元模型的修正理论。提出了两种修正方法:直接修正法和模型局部反演修正法。对井架钢结构普遍存在的几种损伤缺陷情况,如截面锈蚀、杆件初弯曲、整体初弯曲、载荷偏心、节点刚性降低以及支座沉陷,用直接修正法,直接建立相应的损伤修正数学模型;以灵敏度分析技术为基础,以静/动力测试获得的应变、应力、频率和振型等为参考指标,以主要承载杆件的设计参数为修正对象,建立井架钢结构模型局部修正数学模型,应用直接解析或迭代求解的方法求得修正参数。用这种方法解决了井架钢结构测试数据不完备的问题。
     对井架钢结构测试理论及模型实验进行了研究。根据井架钢结构的激振特点,推导了在有量测输入和输入未知条件下的模态参数识别公式;制作了井架钢结构相似比例模型,进行了逐级动载实验、安全与极限承载实验,验证了模型局部修正理论和直接修正理论的正确可行性,得出了可以依据在安全承载内的修正的数值模型对极限承载性能进行预测的结论;进行了井架钢结构简易模型的载荷与动力特性关系实验,得到了载荷与动力特性的关系,为探讨以动力特性为基准的评价理论提供了参考。
     在上述研究的基础上,构建了基于静力和动力测试数据的井架钢结构安全和极限承载力评价的新体系。基于静力测试的评定理论主要是以可靠性理论和API Spec 4F规范为基准。基于动力测试的评定理论则是以振动频率为基准直接预测或依据动力测试参数建立的动力有限元模型综合评定。在现场井架钢结构上的成功应用表明该评价新体系能实现安全承载力的评价和极限承载力的预测。
To correctly analyze the static and dynamic mechanical behavior and quantitatively evaluate the load-capacity of derrick steel structures with damage and deficiencies can improve the security and production efficiency in the process of extraction of oil and gas, and make available resources being full use of. In the background, this paper has reseached the methods of damage identification and the updated theory of finite element model. The sensitive parameters and quantitative relations between physical parameters and damage have been determined. The direct updating and patial model updating mathematical model of the finite element model for derrick steel structures are established. Then, a novel approach is proposed to quantitatively evaluate the safety and ultimate load-carrying capacity.
     The linear elastic mechanics, geometric nonlinearity, material nonlinearity, double nonlinearity, dynamic characteristics and stability of derrick steel structures are analyzed using finite element method. The mechanical characteristics as displacement, stress, natural frequency, modal shapes and dynamic response are acquired. The results offers foundation for damage identification, model updating and forecast of safety and ultimate loading-capacity.
     Damage identification for derrick steel structures has been researched. According to the feature and character of the structure, equivalent damage coefficient is taken as the unite index to identify the existence and degree of damage. Based on the index and static and dynamic test technology, four approaches of damage identification methods are proposed. The first is named as direct identification method, and the other three methods are presented respectively combined with strain or stress, frequency variation ratio or the square of frequency variation ratio, deformation difference curvature in unit load. The four theoretical methods are proved to be correct and effective by simulation analysis.
     Finite element updating theories of derrick steel structures have been studied. Two kinds of updating methods are proposed. One is direct updating method, and the other is partial model updating method. Applying the former method, the revising mathematical models of corresponding damage are constructed according to the general existing damage and deficiencies such as corrosion of section, initial flexural deformation of member bars, initial flexural deformation of integral structure, eccentric acting load, the decrease of rigidity of knock-off joints, and base sinkage. Based on sensitivity analysis, partial model updating mathematical models are constructed, in which, strain, stress, frequency, mode shapes obtained from static and dynamic measurement are taken as the key referenced indicators, while the relevant design parameters as the input updating objects. The updating parameters are acquired by direct analytic or iterative approach. The problem of incomplete testing data is solved by using the latter method.
     Testing theory and model experiment of derrick steel structures have been studied. According to the shock exciation mode, the formulas are deduced for identifying modal parameters in the condition of measuring input and unknown input. The similar scale models of derrick steel structures were made, and dynamic grading load test, safety load test and detruction test were performed on them. The experimental results are compared with the simulative values and an agreement between both is very satisfactory, which proved the correctness and feasibility of patial model updating theory and direct updating theory. From the above analysis, it can be concluded that the the ultimate bearing capacity can be obtained by analyzing the updating simulation model from safety load test. In addition, the relations between load and dynamic characteristics of simple model are achieved from dynamic test with load fluctuation. The experimental results also offer the reference for the evaluation theory based on dynamic characteristics.
     On the foundation of previous research, a novel evaluation system for forcasting safety and ultimate load-carrying capacity of derrick steel structures is established on the basis of static test data and dynamic parameters. The former is constructed on the reliability theory and the criterion of API Spec 4F, while the latter is based on natural frequency to forecast directly, or relies on the updated finite element model which is obtained according to dynamic measurement parameters to evaluate synthetically. The novel evaluation system is applied successfully in forcasting the safety load-capacity and ultimate bearing capacity of in-service derrick steel structures.
引文
1薛继军.非线性有限元和小波有限元理论研究及其在钻机井架中的应用[D]. [西安交通大学博士学位论文]. 2003: 4-7.
    2 Han Dongying, Zhou Guoqiang, Li Zifeng. Ultimate bearing capacity analysis of oil field drilling masts [J]. Petroleum Science, 2005, 2(3): 33-36.
    3刘金梅.在用石油井架结构分析、测试及评定理论[D]. [大庆石油学院硕士学位论文]. 2001: 1-6.
    4赵庆梅.石油井架的动态测试研究[D]. [大庆石油学院硕士学位论文]. 2006: 1-3.
    5 Chance J, Tomlinson G R, Worden K. A simplified approach to the numerical and experimental modeling of the dynamics of a cracked beam [C]. Proceedings of the 12th International Modal Analysis Conference, 1994: 778-785.
    6 Sheena Z, Unger A, Zalmanovich A. Theoretical stiffness matrix correction by using static test results [J]. Isarel Journal of Technology, 1982, 20(5): 245-253.
    7 Sanayei M, Scampoli S F. Structural element stiffness identification from static test data [J]. Journal of Engineering Mechanics, 1991, 117(5): 1021-1036.
    8 Sanayei M, Onipede O. Assessment of structures using static test data [J]. AIAA Journal, 1991, 29(7): 1156-1179.
    9 Hajela P, Soeiro F J. Recent development in damage detection based on system identification methods [J]. Structural Optimization, 1990, 2(6): 1-10.
    10 Banan M R, Hjelmstad K D. Parameter estimation of structures from static response,Ⅰ: computational aspects [J]. Journal of Structural Engineering, 1994, 120(11): 3243-3258.
    11 Banan M R, Hjelmstad K D. Parameter estimation of structures from static response,Ⅱ: computational aspects [J]. Journal of Structural Engineering, 1994, 120(11): 3259-3283.
    12 Hjelmstad K D, Wood S L, Clark S J. Mutual residual energy method for parameter estimation in structures [J]. Journal of Engineering Mechanics, 1992, 118(1): 223-242.
    13 Hjelmstad K D, Shin S. Damage detection and assessment of structures from static response [J]. Journal of Structural Engineering, 1997, 123(11): 568-576.
    14 Wang X, Hu N, Fukunaga H, Yao Z H. Structural damage identification using static test data andchanges in frequencies [J]. Engineering Structure, 2001, 23(5): 610-621.
    15王茂龙.结构损伤识别与模型更新方法研究[D]. [东南大学博士学位论文]. 2003: 11-18.
    16袁旭东.基于不完备信息土木工程结构损伤识别方法研究[D]. [大连理工大学博士学位论文]. 2005: 71-89.
    17袁旭东,周晶,黄梅.基于静力位移及频率的结构损伤识别神经网络方法[J].哈尔滨工业大学学报, 2005, 37(4): 488-490.
    18崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别算法[J].同济大学学报(自然科学版), 2001, 28(1): 5-8.
    19李秀梅,崔飞,林春姣,等.基于振动与静载试验的桥梁结构损伤识别法[J].中南公路工程, 2005, 30(2): 23-26.
    20蒋华.基于静力测试数据的桥梁结构损伤识别与评定理论研究[D]. [西南交通大学博士学位论文]. 2005: 2-11.
    21 Ni Y Q, Zhou X T, Ko J M. Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks [J]. Journal of Sound and Vibration, 2006, (290): 242-263.
    22 Wu J R, Li Q S. Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method [J]. Journal of Constructional Steel Research, 2006, (62): 231-239.
    23 Wang J F, Lin C C, Yen S M, et al. A story damage index of seismically-excited buildings based on modal frequency and mode shape [J]. Engineering Structures, 2006, 28(10): 1-15.
    24韩大建,王文东.基于振动的结构损伤识别方法的近期研究进展[J].华南理工大学学报(自然科学版), 2003, 31(1): 91-96.
    25高维成,刘伟,邹经湘.基于结构振动参数变化的损伤探测方法综述[J].振动与冲击, 2004, 23(4): 1-7.
    26 Li G Q, Hao K C, Lu Y, etal. A flexibility approach for damage identification of cantilever-type structures with bending and shear deformation [J]. Computers & Structures, 1999, (73): 565-572.
    27 Bijaya J, Ren W X. Damage detection by finite element model updating using modal flexibility residual [J]. Journal of Sound and Vibration, 2006, (290): 369-387.
    28 Kim J T, Ryu Y S. Damage identification in beam-type structures: frequency-based method vs. mode-shape-based method [J]. Engineering Structures, 2003, 25(1): 57-67.
    29 Hajela P, Soeiro F J. Structural damage detection based on static and modal analysis [J]. AIAA Journal, 1990, 28(6): 1110-1115.
    30 Hajela P, Soeiro F J. Recent developments in damage detection based on system identification methods [J]. Structural Optimization, 1990, 2(6): 1-10.
    31 Lu Z R, Law S S. Features of dynamic response sensitivity and its application in damage detection [J]. Journal of Sound and Vibration, 2007, (303): 305-329.
    32 Ricles J M, Kamaika J R. Damage detection in elastic structures using vibratory residual forces and weighted sensitivity [J]. AIAA Journal, 1992, 30(9): 2310-2316.
    33 Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structure [J]. AIAA Journal. 1974, 12(2): 185-190.
    34 Lam H F, Kom J, Wong C W. Localization of damaged structural connections based on experimental modal and sensitivity analysis [J]. Journal of Sound and Vibration, 1998, (210): 791-808.
    35 Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies [J]. Journal of Strain Analysis, 1979, 4(2): 49-57.
    36 Hearn G, Testa R B. Modal analysis for damage detection in structural [J]. Journal of Structural Engineering, 1991, 117(10): 3036-3042.
    37 Scott W D. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification [J]. AIAA Journal, 1996, 34(12): 2615-2621.
    38 Wu D, Law S S. Anisotropic damage model for an inclined crack in thick plate and sensitivity study for its detection [J]. Solids and Structures, 2004, 41(4): 4321-4336.
    39 Wu D, Law S S. Eigen-parameter decomposition of element matrices for structural damage detection [J]. Engineering Structures, 2007, 29(7): 519-528.
    40 Zhao J, Dewolf J T. Sensitive study for vibrational parameters used in damage detection. Journal of Engineering Mechanics, 2000, 126(6): 656-660.
    41 Shi Z Y, Law S S, Zhang L M. Structural damaged detection from modal strain energy changes [J]. Journal of Engineering Mechanics, 2000, 126(12): 1216-1223.
    42 Messina A, Williams E J. Structural damage detection by a sensitivity and statical-based method [J]. Journal of Sound and Vibration, 1998, (216): 791-808.
    43 Kosmatka J B, Ricles J M. Damage detection iron structures by modal vibration characterization[J]. Journal of Structure Engineering, ASCE, 1999, 125(12): 1384-1392.
    44 Sohn H, Law K H. A bayesian probabilistic approach for structure damage detection [J]. Earthquake Engineering and Structural Dynamics, 1997(26): 1259-1281.
    45 Salawu O S. Detection of structural damage through changes in frequency [J]: a Review. Engineering Structures, 1997, 19(9): 718-723.
    46 Wu X, Ghaboussi J, Garrett J H. Use of neural networks in detection of structural damage [J]. Comput Struct., 1992, 42(4): 649-59.
    47 Kamimski P C. The approximate location of damage through the analysis of natural frequencies with artificial neural networks [J]. Journal of Process Mechanical Engineering, 1995, (209): 117-123.
    48 Rhim J, Lee S W. A neural network approach for damage detection and identification of structures [J]. Computational Mechanics, 1995, 16(6): 437-443.
    49 Pandy P C, Barais S V. Multiplayer perceptron in damage detection of bridge structures [J]. Computers and Structures, 1995, 54(4): 597-608.
    50 Yeung W T, Smith J W. Damage detection in bridges using neural networks for pattern recognition of vibration signatures [J]. Engineering Structures, 2005, 27(3): 685-698.
    51徐宜桂,史铁林,杨叔子.基于神经网络的结构模型修改和破损诊断研究[J].振动工程学报, 1997, 10(l): 8-12.
    52陆秋海,李德葆,张维.利用模态试验参数识别结构损伤的神经网络法[J].工程力学, 1999, 16(1): 35-42.
    53杨晓楠,姜绍飞,王金鱼.基于能量特征的小波概率神经网络损伤识别方法[J].兰州理工大学学报, 2005, 31(3): 123-126.
    54王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定[J].振动工程学报, 2000, 13( l): 138-141.
    55王柏生,丁皓江,倪一清,等.模型参数误差对用神经网络进行结构损伤识别的影响[J].土木工程学报, 2000, 33(l): 50-55.
    56焦莉,李宏男.结构损伤识别的耦合神经网络方法[J].沈阳建筑大学学报(自然科学版), 2006, 22(l): 73-76.
    57 Waszczyszyn Z. Neural networks in mechanics of structures and materials - new results and prospects of applications [J]. Computers & Structures, 2001, 79(26): 1335-1353.
    58 Yun C B. Substructural identification using neural networks [J]. Computers & Structures, 2001, 79(14): 1335-1353.
    59梁艳春.计算智能与力学反问题中的若干问题[J].力学进展, 2000, 30(3): 321-331.
    60 Mares C, Surace C. An application of genetic algorithms to identifu damage in elastic structures [J]. Sound and Vibration, 1996, (195): 195-215.
    61 Friswell M L, Penny J E T, Garvey S D. A combined genetic and eigensensitivity algorithm for the location of damage in structures [J]. Computers and Structures, 1998, (69): 547-556.
    62邹大力,屈福政.基于修正模态的混合遗传算法结构损伤识别[J].大连理工大学学报, 2005, 45(3): 362-365.
    63程远胜,区达光,谭国焕,等.基于分级遗传算法的结构损伤识别方法[J].华中理工大学学报(自然科学版), 2002, 38(8): 73-75.
    64 Topple K G, Stubbs N. Nondestructive damage evaluation in complex structures from a minimum of model parameters [J]. The International Journal of Analytical and Experimental Modal Analysis, 1995, 10(2): 95-103.
    65 Stubbs N, Osegueda R. Global no-destructive damage evaluation in solids [J]. The International Journal of Analytical and Experimental Modal Analysis, 1996, 5(2): 67-79.
    66 Chen J C, Garba J A. On-orbit damage assessment for large space structure [J]. AIAA Journal, 1988, 26(9): 1119-1126.
    67 Hassiots S, Jeong G D. Identification of stiffness reductions using natural frequencies [J]. Journal of Engineering Mechanics, 1995, 121(10): 1106-1113.
    68李国强,郝坤超,陆烨.弯剪型悬臂结构损伤识别的柔度法[J].地震工程与工程振动, 1999, 19(1): 31-37.
    69李杰,陈隽.结构参数未知条件下的地震动反演研究[J].地震工程与工程振动, 1997, 17(3): 122-128.
    70 Zhang D W, Zhang L M. Matrix transformation method for updating dynamic model [J]. AIAA Journal, 1992, 30(5): 1440-1443.
    71彭晓洪,丁锡洪.用模态参数识别结果对实际结构有限元动力模型的修正[J].振动与冲击, 1984, 3(1): 8-15.
    72 Kabe A M. Stiffness matrix adjustment using mode data [J]. AIAA Journal, 1985, 23(9): 1431-1436.
    73 Kammer D C. Optimum approximation for residual stiffness in linear system identfication [J]. AIAA Journal, 1988, 26(9): 104-112.
    74 Smith S W, Beaffic C A. Secant-method matrix adjustment for structural models [J]. AIAA Journal, 1991, 29(1): 119-126.
    75 Lim T W. Submatrix approach to stiffness matrix correction using modal test data [J]. AIAA Journal, 1990, 28(6): 1123-1130.
    76 Lim T W. Analytical model improvement using measured modes and submatrix [J]. AIAA Journal, 1991, 29(6): 1015-1020.
    77 Zhang O Q, Zerval A, Zhang D W. Stiffness matrix adjustment using incomplete measured modes [J]. AIAA Journal, 1996, 25(5): 917-919.
    78 Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors [J]. AIAA Journal, 1968, 6(12): 2426-2429.
    79 Nelson R B. Simplified calculation of eigenvector derivatives [J]. AIAA Journal, 1976, 14(9): 1201-1205.
    80 Sutter T R, Camarda C J, Walsh J L, et al. Comparison of several methods for calculating vibration mode shape derivatives [J]. AIAA Journal, 1998, 26(12): 1506-1511.
    81 Tan S C E, Chu Y. Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors [J]. AIAA Journal, 1975, 13(6): 834-837.
    82 Tan S C E, Andrew A L. Computing derivatives of eigenvalues and eigenvetors: institute of mathematics and its applications [J]. Journal of Numerical Analysis, 1989, 9(1): 111-122.
    83 Dailey R L. Eigenvector derivatives with repeated eigenvalues [J]. AIAA Journal, 1989, 27(4): 486-491.
    84 Lim K B, Juang J, Ghaemmaghami P. Eigenvector derivatives of repeated eigenvalues using singular value decomposition [J]. Journal of Guidance, Control and Dynamics, 1989, 12(2): 282-283.
    85 Smith M J, Hutton S G. Frequency modification using newton's method and inverse iteration eigenvector up-dating [J]. AIAA Journal, 1992, 30(7): 1886-1891.
    86 Farhat C, Hemez F M. Updating finite element dynamic models using an element-by-element sensitivity methodology [J]. AIAA Journal, 1993, 31(9): 1702-1711.
    87 Doebling S W. Minimum-rank optimal update of elemental stiffness parameters for structuraldamage identification [J]. AIAA Journal, 1996, 34(12): 2615-2621.
    88 Balmes E. A finite element updating procedure using frequency response functions applications to the MIT/SERC interferometer tested [C]// In: Bethel C T Ed. Proceedings of the 11th International Modal Analysis Conference, Society for Experimental Mechanics, Inc., 1993: 176-182.
    89 Dennis G. Automatic updating of large aircraft models using experimental data from ground vibration testing [J]. Aerospace Science and Technology, 2003(7): 33-45.
    90张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报, 2002, 15(1): 74-78.
    91李瑞礼,曹志远.结构工程施工分析的材料时变效应[J].同济大学学报, 2003, 31(8): 926-930.
    92 Zimmerman D C, Widengren M. Correcting finite element models using a symmetric eigen-structure assignment technique [J]. AIAA Journal, 1990, 28(9): l670-1676.
    93 Rao S S, Pan T, Venlcayya V B. Robustness improvement of actively controlled structures through structural modifications [J]. AIAA Journal, 1990, 28(2): 353-361.
    94夏益霖.结构有限元模型修正的频响函数方法[C]//第五届全国振动理论及应用学术议论文集.屯溪, 1993: 94-101.
    95 Chen J C, Wada B K. Matrix perturbation for structural dynamic analysis [J]. AIAA Journal, 1977, 15(8): 1095-1100.
    96 Alvin K F. Finite element model update via bayesian estimation and minimization of dynamic residuals [C]// In: Bethel C T ed. Proceedings of the 14th International Modal Analysis Conference, Society for Experimental Mechanics, Inc., 1996: 561-567.
    97 Hemez F M, Farhat C, Bacher E, etal. On the efficiency of updating via genetic algorithm for structural damage detection [C]// In: AIAA/AMSE/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 36th, New Orleans, LA. Technical paper. Washington, DC, American Institute of Aeronautics and Astronautics, 1995: 2792-2801.
    98 Chou J H. Genetic algorithm in structural damage detection [J]. Computers & Structure, 2001, 79(14): 1335-1353.
    99 API Spec 4F钻井和修井井架、底座规范(第三版)[M].兰州:兰州石油机械研究所, 1988: 36-55.
    100 Recommended practice for use and procedures for inspections, maintenance, and repair of drilling and well servicing structures [S]. API RP 4G, 2002.
    101 Non-destructive industrial condition test process for drilling derricks [J]. USSR 1716075-Al.
    102 Testing loaded derrick of rotary drilling [J]. USSR 1698415.
    103王惠德,周国强.用概率方法确定井架安全度[J].石油矿场机械, 1987, 16(3): 14-18.
    104周国强,郭奕珊.考虑初始缺陷时井架的设计与验算[J].石油矿场机械, 1990, 19(4): 26-29.
    105田晓光.井架弯曲变形后的稳定校核及承载能力计算法[J].天然气工业, 1996, 16(4): 40-42.
    106常玉连,杨敬源.由单位载荷变形判定钻机井架的承载能力[J].石油机械, 1995, 23(2): 24-28.
    107李学彤,周国强.在用7000m钻机井架可靠性评定[J].石油矿场机械, 1992, 21(6): 19-23.
    108周国强,郭奕珊.在用井架剩余承载能力极限状态评定方法[J].石油机械, 1998, 26(11): 15-17.
    109韩树江.在用钻机井架可靠性评定[J].钻采工艺, 1995, 18(2): 53-56.
    110段明成,郑勇,万夫. A型井架使用可靠性分析[J].钻采工艺, 1995, 18(2): 57-59.
    111万夫,段成明,郑勇.现役井架可靠性测评分析系统[J].天然气工业, 1999, 19(5): 57-60.
    112裴峻峰,杨其俊.评估石油井架工作寿命及可靠性的新方法[J].石油机械, 1997, 25(5): 17-18, 44.
    113刘扬松,李文方.井架构件的模糊可靠度评定方法[J].石油机械, 1998, 26(9): 28-29.
    114张爱林,王光远.服役塔形井架承载力的二级模糊综合评判[J].石油机械, 1995, 23(4): 31-35.
    115张爱林,王光远,赵国藩.现役石油井架结构体系的模糊动态可靠性评定[J].工业建筑, 1998, 28(6): 30-33, 47.
    116张爱林,赵国藩,王光远.现役塔型井架结构的模糊动态可靠度评定[J].石油工业技术监督, 1997, 13(6): 1-5.
    117崔晓华.用结构模态迁移法评定井架的安全承载能力[J].石油机械, 2001, 29(12): 16-17.
    118周国强,李学彤,郭奕珊.石油钻机用井架承载能力检测评定方法SY/T 6326-1997[S].北京:石油工业出版社, 1997:1-11.
    119郭奕珊,周国强.井架临界载荷与振动参数的关系[J].石油机械, 1995, 23(12): 18-21, 26.
    120周国强,郭奕珊.钻井井架结构承载能力的振动诊断方法[C]//中国机械工程学会设备维修分会设备诊断技术委员会主编.全国设备诊断技术学术会议论文集.北京:兵器工业出版社, 1997: 133-138.
    121周国强,郭奕珊.动力法取代静力法进行井架结构试验探讨[J].石油矿场机械, 1999, 28(1): 22-24.
    122周国强,刘金梅.在用井架计算机模拟试验[J].石油机械, 2001, 29(1): 8-10.
    123周国强,刘金梅.考虑初始缺陷的塔型井架结构分析[J].石油矿场机械, 2000, 29(5): 10-12.
    124 Li Zifeng, Han Dongying, Zhou Guoqiang. Ultimate load-carrying capacity forecast of derrick steel structures [J].仪器仪表学报, 2007, 28(4)s4: 636-637.
    125 Wang Yuanqing, Yuan Yingzhan, Zhou Guoqiang. Double nonlinear analysis of the loading capacity of drilling derrick steel structure with defects and defacements[C]. Proceedings of 1st International Conference on Structural Engineering, Kunming of China, Beijing: Tsinghua University Press, 1999: 403-410.
    126王元清,袁英战,周国强.含损伤缺陷采油井架钢结构双重非线性承载性能分析[J].建筑结构学报, 2000, 21(6): 62-67.
    127 Guo Y L, Fukumoto Y. Theretical study of ultimate load of locally buckled stub columns loaded eccentrically [J]. Journal of Constructional Steel Research, 1996, 38(3): 239-255.
    128 Brauns J. Ultimate strength analysis of base fixed steel frame by plastic method [J]. Journal of Constructional Steel Research, 1998, 46(3): 119-121.
    129 Barsan G M, Chiorean C G. Computer program for large deflection elasto-plastic analysis of semi-rigid steel frameworks [J]. Comput Struct., 1999, 72(5): 699-711.
    130舒兴平,沈蒲生.空间钢框架结构的非线性全过程分析[J].工程力学, 1997, 14(3): 36-44.
    131 Yang Y B, Yang C T, Chang T P, etal. Effects of member buckling and yielding on ultimate strengths of space trusses [J]. Engineering Structures, 1997, 19(2): 179-191.
    132袁英战,王元清,周国强.采油井架钢结构非线性力学行为分析[J].工程力学, 2000, 17(6): 104-109.
    133 Cheng Jin, Jiang JianJing, Xiao RuCheng, etal. Ultimate load carrying capacity of the lu pu steel arch bridge under static wind loads [J]. Comput Struct., 2003, 81(2): 61-73.
    134吴建光,舒兴平.高耸结构极限承载力研究[J].湖南大学学报(自然科学版), 2003, 30(3): 112-115.
    135 Han Qinghua, Liu Xiliang. Ultimate bearing capacity of the welded hollow spherical joints in spatial reticulated structures [J]. Engineering Structures, 2004, 26(1): 73-82.
    136程进,江见鲸,肖汝诚,等.大跨度钢拱桥结构极限承载力分析[J].工程力学, 2003, 20(2): 7-10.
    137朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社, 1998: 304-398.
    138韩东颖,周国强.基于ANSYS6.0钻机井架几何非线性分析[J].石油矿场机械, 2004, 33(1): 12-14.
    139 Kitipornchai S, Chan S L. Nonlinear finite element analysis of angle and tee beamcolumns [J]. Journal of Structural Engineering. ASCE, 1987, 113(4): 721-739.
    140 Albermani F G A, Kitipornchai S. Nonlinear analysis of thin-walled structures using least element/member [J]. Journal of Structural Engineering. ASCE, 1990, 116(1): 215-234.
    141韩东颖.石油井架极限承载力研究[D]. [大庆石油学院硕士学位论文]. 2004: 7-11.
    142韩东颖,李子丰,周国强.在役石油钻机井架极限承载仿真模型研究[J].石油学报, 2007, 28(2): 120-123, 128.
    143李瑞礼.历史建筑损伤检测与寿命预测的数值仿真[M].上海:上海科学技术文献出版社, 2005: 22-28.
    144韩东颖,周国强,李子丰.基于应力和当量损伤系数的石油井架损伤识别[J].石油钻采工艺, 2008, 30(1):
    145 George H B. Modal analysis for demage detection in structures [J]. Journal of Structural Engineering, 1991, 117(10): 3042-3063.
    146吴瑾.钢筋混凝土结构锈蚀损伤检测与评估[M].北京:科学出版社, 2005: 65-66.
    147 Zhao J, Dewolf J T. Sensitivity study for vibrational parameters used in damage detection [J]. Journal of Structural Engineering. 1999, 125(4): 410-416.
    148 Pandey A K, Biswas M. Damage detection in structure using changing in flexibility [J]. Journal of Sound and Vibration, 1994, (169): 3-17.
    149唐小兵,沈成武,陈定方.结构损伤识别的柔度曲率法[J].武汉理工大学学报, 2001, 23(8): 18-20.
    150刘晖,瞿伟廉,袁润章.基于有限测点信息的结构损伤识别柔度法[J].计算力学学报, 2005, 22(3): 379-383.
    151孙国,顾元宪.连续梁结构损伤识别的改进柔度阵方法[J].工程力学, 2003, 20(4): 50-54.
    152曹水东,李传习,徐飞鸿,等.基于结构柔度矩阵损伤识别的柔度曲率比法[J].长沙电力学院学报(自然科学版), 2006, 21(1): 85-88.
    153韩东颖,李子丰,周国强.基于单位载荷变形差值曲率的复杂结构损伤识别法[J].振动、测试与诊断, 2007, 27(9)s: 254-256.
    154韩东颖,周国强,李子丰.含损伤缺陷的大型钢结构架极限承载预测方法研究[J].计量学报, 2007, 28(4): 370-374.
    155韩东颖,周国强,李子丰.含损伤缺陷的钻机井架安全承载能力评定方法研究[J].天然气工业, 2007, 27(1): 81-84.
    156张爱林,田汝珉.考虑初始缺陷的服役井架承载力分析[J].石油矿场机械, 1994, 23(1): 9-12.
    157刘志,刘东升,邹龙庆,等.有初始变形井架结构分析的简便方法[J].石油机械, 2001, 29(10): 17-18.
    158张徳文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社, 1999: 64-82.
    159荣见华.结构动力修改及优化设计[M].北京:人民交通出版社, 2002: 115-134.
    160韩东颖,李子丰,周国强.基于模型局部修正的井架钢结构极限承载力分析[J].工程力学, 2007, 24(10): 175-179, 185.
    161刘继承,周传荣.一个基于优化的有限元模型修正方法[J].振动与冲击, 2003, 22(2): 33-35.
    162秦树人.机械工程测试原理与技术[M].重庆:重庆大学出版社, 2002: 1-6.
    163薛继军,郭谊民,爨莹,等. CAE技术在井架设计中的应用[J].应用力学学报, 2005, 22(4): 572-578.
    164廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用:建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社, 2004: 332-351.
    165 Sutter T R, Camarda C J, Walsh J L, et al. Comparison of several methods for calculating vibration mode shape derivatives [J]. AIAA Journal, 1998, 26(12): 1506-1511.
    166 Dennis G. Automatic Updating of large aircraft models using experimental data from ground vibration testing [J]. Aerospace Science and Technology, 2003, 24(7): 33-45.
    167郭勤涛,张令弥.结构动力学有限元模型确认方法研究[J].应用力学学报, 2005, 22(4): 572-578.
    168李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社, 2002: 33-36.
    169陈志鹏,张天申,邱法维.结构试验与工程检测[M].北京:中国水利水电出版社, 2005: 57-62.
    170李子丰,韩东颖,周国强.复杂承载钢结构模态参数识别与综合性能评价[J].应用力学学报, 2008, 25(1):
    171李国强,陆烨,陈素文.量测噪声对输入未知条件下结构频率及振型识别的影响[J].振动、测试与诊断, 2000, 20(1): 34-40.
    172周国强,韩东颖.井架模型极限承载性能分析[J].大庆石油学院学报, 2005, 29(3): 50-52.
    173周国强,韩东颖,郭奕珊.井架模型极限载荷试验[J].石油机械, 2005, 33(9): 9-11.
    174张爱林,王光远,王惠德.服役井架结构可靠性评定的几个问题[J].石油机械, 1994, 22(6):29-33.
    175张爱林,王玲.修井机井架结构可靠性研究[J].特种钢结构, 2001, 16(4): 48-50.
    176秦权,林道锦,梅刚.结构可靠度随机有限元理论及工程应用[M].北京:清华大学出版社, 2006: 1-11.
    177屈维德.机械振动手册[M].北京:机械工业出版社, 1992: 148-150.
    178韩东颖,李子丰,周国强.基于振动参数的钻井井架安全承载力评定[J].石油钻探技术, 2006, 34(6): 48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700