用户名: 密码: 验证码:
不同细度煤粉燃烧特性及粉煤灰酸浸处理中硫酸铝铵循环利用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火力发电在我国的发电结构中占有主导地位,而燃煤火力发电在火力发电中占有绝对的比例,特别是煤粉燃烧火力发电。在能源日益紧张的今天,节能降耗要求越来越迫切。了解煤粉颗粒的燃烧特性特别是煤粉细度对燃烧特性的影响,不管是对于常规煤粉燃烧,还是对于开发新的燃烧技术和降低污染物NOx排放的炉内燃烧技术来说,具有重要的研究和现实意义。本文针对煤粉细度对煤粉燃烧特性的影响机理,进行了一系列探索性的研究。
     本文首先从煤粉燃烧效果的角度出发,通过研究不同粒径尺寸飞灰的可燃物特征,讨论了粒径尺寸对煤粉燃烧的作用规律。研究发现煤粉炉飞灰可燃物与粒径之间并不完全符合以前所获取的飞灰可燃物随飞灰细度减小单纯下降的线性关系认识,在一定条件下,存在拐点,典型的变化趋势为:随着粒径尺寸的减小,飞灰可燃物先减小后增加。特别是对于20μm以下的飞灰,其可燃物有升高趋势。
     应用热重分析法对不同颗粒直径煤粉样品的燃烧特性进行了研究,在分析煤粉主要着火与燃尽特征的基础上,进一步开展了煤粉热解和焦炭燃烧受颗粒直径影响的热重实验。根据煤粉热重试验结果,利用着火温度、燃尽温度、着火稳定性指标、可燃性指标和稳燃判别指数、平均燃烧速度和综合燃烧特性指数等煤粉燃烧特性参量对煤粉燃烧特性进行进行表征。研究结果表明,对于烟煤、贫煤和无烟煤,随着颗粒直径的减小,各项燃烧性能基本呈现增强的趋势。对于超细煤粉,特别是直径小于20μm的煤粉来说,颗粒直径的变化对煤粉燃烧特性的影响不大。无烟煤的着火和燃尽特性特别是燃尽特性受煤粉颗粒直径的影响较烟煤和贫煤更为明显。随着煤粉颗粒直径的减小,挥发份析出的速度加快,烟煤挥发份大量析出的时间更为集中。焦炭燃烧热重试验结果表明,焦炭燃烧受煤粉尺寸的影响更为显著。
     利用图像处理和分形理论,对颗粒直径对煤粉的形状特征和分形特征的影响展开了研究。研究的结果初步表明,颗粒尺度对煤粉的形状特征和分形特征的影响不明显。工业分析和元素分析的结果表明,不同细度煤粉的工业分析和元素分析结果差别不大,变化幅度一般不超过10%。表观活化能的测试结果表明,在低温段,随着颗粒直径的增加,煤粉的表观活化能逐渐增加,亦即细煤粉的燃烧性能优于粗煤粉。在高温段,贫煤和无烟煤随煤粉粒径增加,表观活化能升高;烟煤随煤粉粒径增大,表观活化能反而降低。煤种对表观活化能的影响更明显。
     本文借助大型CFD软件Fluent对不同细度煤粉在炉内燃烧过程进行了数值模拟研究。计算结果显示,随着煤粉颗粒直径的的增加,煤粉在炉内停留时间延长。停留时间变化的幅度可达30%以上。不同高度喷入的不同细度煤粉在炉内停留时间变化趋势并不完全一致。较细的煤粉在炉内在炉内较短的时间即达到比较高的燃尽度,而后焦炭燃尽率变化缓慢,而粗煤粉的燃尽率变化相对缓和。采用CBK模型模拟焦炭燃烧,煤粉随粒径增大,焦炭燃尽率升高。但超细煤粉特别是粒径10μm以下煤粉随粒径减小,焦炭燃尽率反而有升高的趋势。
     本文对酸浸处理粉煤灰工艺副产品进行了试验研究。提出了分步处理逐级利用的技术方案,即利用流化干燥技术脱除结晶水,然后对剩余物质氨解、硫解,回收硫酸氨和硫酸,返回酸浸工艺循环,最终剩余物氧化铝作为冶金原料。分步处理逐级利用大大降低了系统的能耗,提高了硫酸氨和硫酸的回收利用率。并对技术方案进行了试验研究,试验结果硫酸回收率达到90%以上,硫酸铵回收率达到70%以上。每吨硫酸铝氨热解后可回收得到0.2156吨硫酸、0.093吨硫酸铵和0.097吨的三氧化二铝。
     本文对宽粒径范围的煤粉燃烧特性进行了系统研究,为新燃烧技术和炉内污染物控制技术的开发提供了大量的基础数据,可以为技术开发和工程应用提供参考和指导。硫酸铝铵的循环利用工艺对粉煤灰酸浸提钒提铝等技术降低硫酸和硫酸氨耗量具有重要意义,并可有效防止新污染物的产生。
Thermal power generation is a dominant part of power generation structure in China, in which, coal-fired thermal power generation is definitely the most common one, especially the coal powder burning thermal power generation. At present, energy saving and reduction of power consumption is more demanding with increasingly short energy resources. Finding out combustion characteristics of pulverized coal particles, especially the effect of coal powder fineness to combustion characteristics is theoretically and practically important to conventional coal powder burning technology, newly developed burning technology as well as in-furnace burning technology which is aiming at reducing emission of pollutant NOx. In this thesis, a series of exploring research is carried out to find out how coal powder fineness to influence the coal powder combustion characteristics.
     This thesis starts with analyzing coal powder burning effect. By analyzing characteristics of combustibles in fly ash with different size, the thesis discusses the influence of coal particle size on burning performance. The research finds out that relationship between combustibles in fly ash and diameter of coal particles is not completely conform with the linear relation we have made out that combustibles in fly ash is decreasing with fly ash fineness decreasing. As the research finds out that in certain circumstances, there is an inflection point and the typical changing tendency is as follows: with diameter of coal particles decreasing, combustibles in fly ash decreases first and then increases, especially to fly ash below 20μm , there is a tend for combustibles to increase.
     By applying TGA researching method, this thesis has analyzed combustion property of coal powder samples in different diameter. On the basis of analysis in ignition and burnout of coal powder, the thesis moves on to carry out the thermal-gravimetry study of effect of coal particles diameter on pyrolysis of pulverized coal and combustion of coke coal. Then the thesis uses parameters of coal powder burning characteristic such as ignition temperature, burnout temperature, ignition stability index, combustible index, combustion stability judging index, average combustion speed and comprehensive combustion property, etc to prove the study. The study shows that with coal particles diameter decreasing, soft coal, lean coal and blind coal takes on increasing trend in burning behavior; while to superfine pulverized coal powder, especially coal powder below 20μm , change of diameter of coal particles has little influence on coal powder combustion property; compared with lean coal and blind coal, the ignition and burnout characteristic, especially the burnout characteristic of soft coal is more easily influenced by diameter of coal particles; with coal particles diameter decreasing, release of volatile matters is speeded up and large amount of volatile matters in soft coal is released in s short time. Thermal-gravimetry study in coke coal burning shows that coke coal burning is more easily influenced by coal powder size.
     By using image processing and fractal theory, the thesis studies the effect of coal particle diameter on coal powder shape features and fractal characteristics. The preliminary result shows that coal particle diameter has little effect on coal powder shape features and fractal characteristics. The result also shows that the fineness of coal powder has little effect on the difference between the results of either industrial analysis or element analysis, the difference variation of results provided by industrial analysis and by element analysis is ranged with 10%. The test of apparent activation energy shows that in low temperature part, with diameter of coal particles increasing, apparent activation energy of coal powder is increasing gradually, i.e. combustion characteristics of fine coal powder is better than that of coarse coal powder; in high temperature part, with diameter of coal particles increasing, apparent activation energy of lean coal and blind coal increases, while apparent activation energy of soft coal is decreasing with increasing in diameter of coal particles. The above study result shows that type of coal powder has more obvious influence on corresponding apparent activation energy.
     By making use of CFD software FLUENT, the thesis has made numerical simulation study to combustion process of coal powder with different fineness in furnace. The result shows that with diameter of coal particles increasing, resident time for coal powder in furnace extends, and resident time variation extent can be up to and even more than 30%. In addition to that, resident time varies for coal powder injected from different highness. Finer coal powder burns quickly in a comparatively shorter time inside furnace, then the remained char burns out slowly; while the combustion rate of coarse coal powder changes more slowly. By applying CBK model to simulate coke coal burning, the study finds out that with diameter of coal powder increasing, burn-out rate of coke coal increases too, while to superfine coal powder especially the ones whose diameter is below 10μm, with diameter decreasing, burn-out degree of coke coal increases on the contrary.
     The thesis has also studied technological by-product of fly ash treated by acid and brought forward technical plan of processing step-by-step and utilizing level by level, i.e. using fluidized drying technology to remove crystal water, then by carrying out ammonolysis and thiolysis to the residue to get ammonium sulfate and sulphuric acid to get back to technological circulation of acid treatment, finally the residue aluminium oxide will be used as metallurgy material. Processing step-by-step and utilizing level by level has greatly reduced energy consumption, increased reclamation rate of ammonium sulfate and sulphuric acid. Through experimental study of technological plan, the result shows that reclamation rate of sulphuric acid is above 90% and ammonium sulfate is above 70%. 0.21t ammonium sulfate, 0.1t sulphuric acid and 0.114t Al_2O_3 can be reclaimed from 1 ton aluminum ammonium sulfate by pyrogenation.
     The thesis has carried out systematic study on combustion characteristics of wide sized distribution coal particles, which provided large amounts of basic statistics for new combustion technology and in-furnace pollutant controlling technology research and development, which can also be reference and informative to relevant technology development and project application. Circulation utilization technology of aluminum ammonium sulfate can be important to technology of treating fly ash by acid to extract vanadium and aluminium so as to reduce consumption of sulphuric acid and ammonium sulfate and effectively avoid producing new pollutants.
引文
[1]国家自然科学基金委员会,工程与材料科学部.工程热物理与能源利用[M].北京:科学出版社,2006.10:2
    [2]王大中.21世纪中国能源科技发展展望[M].北京:清华大学出版社,2007.11:1
    [3]国际能源署.世界能源展望-2004[M].北京:中国石化出版社,2006:87
    [4]中国科学技术协会,中国能源研究会.能源科学技术学科发展报告:2007-2008[M].北京:中国科学技术出版社,2008.2:45
    [5]M.Nakamura,K.Takashi,M.Kuwahara,et al.Demonstration test and practical studies on combustion technologies of micro-pulverized coal[A].International Conference on Power Engineering[C].1997,Tokyo:453-458
    [6]斯东波,池作和,阮涛等.采用圆筒形撞击分离器分离超细煤粉的试验研究[J].热力发电,2005,34(10):41-44
    [7]刘转年,金奇庭.超细煤粉的制备及性质研究[J].煤化工,2005,98(1):19-21
    [8]刘转年,周安宁,金奇庭.煤超细粉碎过程中的影响因素及形态分析[J].煤炭科学技术,2002,30(1):46-48
    [9]董平,单忠健,李哲.超细煤粉表面润湿性的研究[J].煤炭学报,2004,29(3):346-349
    [10]吴淑虹,斯东波,池作和等.中储式制粉系统分离超细煤粉试验研究[J].电站系统工程,2004,20(2):11-13
    [11]严海,周国民,蒋啸等.细粉分离试验研究[J].电站系统工程,2005,21(1):33-35
    [12]李桂春,纪守峰.超细煤粉的静电分散研究[J].中国粉体技术,2005,??(1):23-25
    [13]陈杰.测试超细煤粉粒度的实验研究[J].岩矿测试,2004,23(3):183-186
    [14]张立岩,岳恒,张君等.基于最小二乘-支持向量机的制粉过程煤粉细度软测量模型[J].清华大学学报(自然科学版),2007,47(S2):1932-1935
    [15]姜秀民,杨海平,李彦等.煤粉颗粒粒度分形分析[J].煤炭学报,2003, 28(4):414-418
    [16]D B.Anthony.Rapid devolatilization and hydrogasification of pulverized coal[J].So.D.thesis,Chemical Engineering,M.I.T.,USA,1974
    [17]P C.Lewellen.Product decomposition effects in coal pyrolysis[J].MS.thesis,Chemical Engineering,M.I.T.,USA,1975
    [18]G.R.Gavalas.Coal Pyrolysis[M].Amsterdam,Oxford,New York:Elsevier Scientific publishing company,1982
    [19]W.H.Chen,S.W.Du,T.H.Yang.Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces[J].Energy Conersion and Management,2007,48:2025-2033
    [20]陈鸿,曾羽健,陈建原.粉煤热解过程的温度相关模型[J].华中理工大学学报,1994,22(3):42-46
    [21]樊俊杰,金晶,张建民等.超细煤粉热解时轻质烃的析出规律[J].工程热物理学报,2006,27(S2):231-233
    [22]樊俊杰,金晶,张建民等.超细煤粉热解时轻质烃的析出规律[J].燃烧科学与技术,2006,12(4):308-311
    [23]卢平,徐生荣,祝秀明等.再燃烧条件下煤粉热解过程中C、H、N释放特性[J].热能动力工程,2005,20(3):284-287
    [24]T.Reichelt,T.Joutsenoja,H.Spliethoff,et al.Characterization of burning char particles under pressurized conditions by simultaneous in situ measurement of surface temperature and size[A].Twenty-Seventh Symposium(International) on Combustion /The Combustion Institute[C].1998:2025-2033
    [25]尚庆,张健,周力行.气流温度脉动对煤粉颗粒瞬时热解挥发速率的影响[J].燃烧科学与技术,2006,12(1):65-70
    [26]P.Lu,S.Du,X.Zhu.Pyrolysis property of pulverized coal in an entrained flow reactor during coal reburning[J].Chemical Engineering and Processing:Process Intensification,2008(available online)
    [27]Said M.A.Ibrahim.Pyrolysis of Egyptian Maghara pulverized coal particles[J].Fuel Processing Technology,1997,50:1-17
    [28]S.P.Bhattacharya.Development of emittance of coal particles during devolatilisation and burnoff[J].Fuel,1999,78:511-519
    [29]C.Zhang,X.Jiang,L.Wei,et al.Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal[J].Energy Conversion and Management,2007,48:797-802
    [30]于敦喜,徐明厚,刘小伟.粒径及加热速率对烟煤膨胀特性的影响[J].燃料化学学报,2006,34(1):1-4
    [31]于敦喜,徐明厚,刘小伟等.粒径及加热速率对烟煤膨胀特性的影响[J].华中科技大学学报(自然科学版),2006,34(2):101-104
    [32]J.P.Mathews,P.G.Hatcher,A.W.Scaroni.Particle size dependence of coal volatile matter:is there a non-maceral-related effect?[J].Fuel,1997,76:359-362
    [33]J.B.Howard.Fundamentals of coal pyrolysis and hydropyrolysis[M].In:Elliott MA,editor.Chemistry of coal utilization.New York:Willey,1981
    [34]S.Badzioch,PGW.Hawksley.Kinetics of Thermal Decomposition of Pulverized Coal Particles[J].Ind Eng Chem,Process Des Dev 1970,9:521-530
    [35]薛永强,来蔚鹏,王志忠.粒度对煤粒燃烧和热解影响的理论分析[J].煤炭转化,2005,28(3):19-21
    [36]岑可法,姚强,骆仲泱等.高等燃烧学[M].杭州:浙江大学出版社,2002,12:280-283
    [37]S.Wang,H.Lu,Y.Zhao,et al.Numerical study of coal particle cluster combustion under quiescent conditions[J].Chemical Engineering Science,2007,62:4336-4347
    [38]J.R.Fan,X.D.Zha,K.F.Cen.Study on coal combustion characteristics in a W-shaped boiler furnace[J].Fuel,2001,80:373-381
    [39]Y.Zhao,H.Y.Kim,S.S.Yoon,et al.Transient group combustion of the pulverized coal particles in spherical cloud[J].Fuel,2007,86:1102-1111
    [40]L.Chen,M.Y.Zhang.Ignition of Coal Particles at High Pressure in a Thermogravimetric Analyzer[J].Combustion and Flame,1998,115:267-274
    [41]S.W.Back,K.Y.Ahn,J.U.Kim.Ignition and explosion of carbon particle clouds in a confined geometry[J].Combustion and Flame,1994,96:121-129
    [42]张超群,于立军,崔志刚等.超细与常规煤粉燃烧动力学特性及计算分析[J].化工学报,2005,56(11):2189-2194
    [43]姜秀民,杨海平,刘辉等.粉煤颗粒粒度对燃烧特性影响热分析[J].中国电机工程学报,2002,22(12):142-145,160
    [44]鄢晓忠,陈冬林,刘亮等.煤粉细度对燃烧特性影响的实验研究[J].动力工程,2007,27(5):682-686
    [45]樊越胜,邹峥,高巨宝等.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,24(12):118-121
    [46]W.Nimmo,S.Singh,B.M.Gibbs.The evaluation of waste tyre pulverised fuel for NOx reduction by rebuming[J].Fuel,2008,87:2893-2900
    [47]A.A.Malik,D.Pehlivan,C.R.Howarth.The effect of agitation on the char combustion characteristics of large coal particles[J].Fuel,1996,75:379-383
    [48]D.Vamvuka,G.Schwanekamp,H.W.Gudenau.Combustion of pulverized coal with additives under conditions simulating blast furnace injection[J].Fuel,1996,75:1145-1150
    [49]S.Niksa,G.Liu,R.H.Hurt.Coal conversion sub-models for design applications at elevated pressures.Part Ⅰ:devolatilization and char oxidation[J].Progress in Energy and Combustion Science,2003,29:425-477
    [50]顾中铸,张永廉,蔡崧.影响加福煤粉燃尽度的因素分析[J].锅炉技术,2005,36(2):50-53
    [51]周昊,邱坤赞,王智化等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响[J].燃料化学学报,2004,32(2):146-150
    [52]冯俊小,乐恺,刘应书等.粉煤粒度对其燃烧特性的影响[J].北京科技大学学报,2001,23(5):460-462
    [53]X.Jiang,C.Zheng,Y.Che,et al.Physical structure and combustion properties of super fine pulverized coal particle[J].Fuel,2002,81:793-797
    [54]A.B.Ayling,I.W.Smith.Measured temperature of burning pulverized fuel particles,and nature of the primary reaction product[J].Combustion and Flame,1972,18:173-184
    [55]顾明言,章明川,于娟等.碳粒燃烧能量分配系数的数值计算[J].燃烧科学与技术,2006,12(1):35-40
    [56]K.Okazaki,H.Shishido,T.Nishikawa,et al.Separation of basic factors affecting NO formation in pulverized coal combustion[A].20th Symposium(international)on Combustion,The Combustion Institute[C].1984,pp:1381-1390
    [57]K.C.Midkiff,R.A.Altenkirch.Particle size effects on the distribution of fuel nitrogen in one-dimensional coal-dust flame[A].21th Symposium(international)on Combustion,The Combustion Institute[C].1986,pp:1189-1198
    [58]J.C.Kramlich,W.R.Seeker,G.S.Samuelsen.Observations of chemical effectsaccompanying pulverized coal thermal decomposition[J].Fuel,1988,67:1182-1189
    [59]D.J.Barratt,P.T.Roberts.The suitability of ultrafine coal as an industrial boiler fuel[J].Combustion and Flame,1989,67:51-68
    [60]T.Abbas,P.Costen,F.C.Lockwood,C.A.Romo-Millares.The effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace:Measurements and modeling[J].Combustion and Flame,1993,93:316-326
    [61]R.P.van der Lans,P.Glargorg,K.Dam-Johansen.Influence of process parameters on nitrogen oxide formation in pulverized coal burners[J].Progress in Energy and Combustion Science,1997,23:347-377
    [62]S.Li,T.Xu,Q.Zhou,H.Tan.Optimization of coal reburning in a 1 MW tangentially fired furnace[J].Fuel,2007,86:1169-1175
    [63]刘忠,阎维平,高正阳等.超细煤粉的细度对再燃还原NO的影响[J].中国电机工程学报,2003,23(10):204-208
    [64]刘忠,赵莉,胡满银等.超细煤粉颗粒的升温速率及其对再燃还原NO的影响[J].华北电力大学学报,2005,32(3):95-98
    [65]刘忠,阎维平,赵莉等.超细煤焦的细度对再燃还原NO的影响[J].中国电机工程学报,2007,27(8):22-25
    [66]徐璋,邓涛,李戈等.超细煤粉再燃降低NOx排放的试验研究[J].热力发电,2004,33(2):34-37
    [67]吕建漱,李定凯.不同粒径煤粉燃烧后一次颗粒物的特性研究[J].热能动力工程,2005,20(5):513-516
    [68]隋建才,徐明厚,丘纪华等.煤燃烧中可吸入颗粒物的形成及其控制研究现状[J].热力发电,2004,33(12):9-12
    [69]赵莉,刘忠,阎维平.微细化煤粉灰中化学成分及其对燃煤NOx、SOx的影响[J].华北电力大学学报,2005,32(4):101-104
    [70]H.Yi,J.Hao,L.Duan,et al.Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J].Fuel,2008,87:2050-2057
    [71]M.Balthasar,M.Kraft.A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames[J].Combustion and Flame,2003,133:289-298
    [72]I.Harima.Practical studies on combustion technologies of micro-pulverized coal [J].Engineering Review,1995,35:301-305
    [73]钟海卿,金晶,陈占军.超细煤粉再燃技术的探讨[J].锅炉技术,2003,34(6):5-7,43
    [74]H.Yang,J.Lu,H.Zhang,et al.Coal ignition characteristics in CFB boiler[J].Fuel,2005,84:1849-1853
    [75]何宏舟,骆仲泱,杨翔翔等.粒径对无烟煤颗粒在循环流化床锅炉中燃尽影响的研究[J].动力工程,2004,24(3):331-335
    [76]何宏舟,骆仲泱,岑可法.细颗粒无烟煤焦在CFB锅炉燃烧室内的燃尽特性研究[J].中国电机工程学报,2006,29(19):97-102
    [77]王智微,孙宝洪,王立双.循环流化床燃烧室内细焦碳颗粒的燃尽特性分析[J].动力工程,2002,22(3):1697-1699,1667
    [78]Y.H.Khraisha.Batch combustion of oil shale particles in a fluidized bed reactor [J].Fuel Processing Technology,2005,86:691-706
    [79]K.Svoboda,M.Pohorely.Influence of operating conditions and coal properties on NOx and N_2O emissions in pressurized fluidized bed combustion of subbituminous coals[J].Fuel,2004,83:1095-1103
    [80]米子德,王丰,张清峰.300MW大型循环流化床锅炉特性综述[J].华北电力技术,2007,7:1-6
    [81]R.I.Backreedy,L.M.Fletcher,J.M.Jones,et al.Co-firing pulverised coal and biomass a modeling approach[J].Proceedings of the Combustion Institute,2005,30:2955-2964
    [82]B.Moghtaderi.A study on the char burnout characteristics of coal and biomass blends[J].Fuel,2007,86:2431-2438
    [83]S.Paulrud,C.Nilsson.The effects of particle characteristics on emissions from burning wood fuel powder[J].Fuel,2004,83:813-821
    [84]A.Atal,Y.A.Levendis.Comparison of the combustion behaviour of pulverized waste tyres and coal[J].Fuel,1995,74:1570-1581
    [85]D.Kim,S.Shim,S.Sohn,et al.Waste plastics as supplemental fuel in the blast furnace process improving combustion efficiencies[J].Journal of Hazardous Materials,2002,B94:213-222
    [86]张战军,从高铝粉煤灰中提取氧化铝等有用资源的研究.2007,西北大学:西安
    [87]张佰永 周凤禄.粉煤灰石灰石烧结法生产氧化铝的机理探讨.轻金属,2007(6):p.17-18,27.
    [88]王文静,韩作振,程建光,房建国,王爱云 颜蕊.酸法提取粉煤灰中氧化铝的条件选择.能源环境保护,2003.17(4):p.17-19,47.
    [89]李来时,翟玉春,吴艳,刘瑛瑛 王佳东.硫酸浸取法提取粉煤灰中氧化铝.轻金属,2006(12):p.9-12.
    [90]张晓云,马鸿文王军玲.利用高铝粉煤灰制备氧化铝的实验研究.中国非金属矿工业导刊,2005(4):p.27-30.
    [91]吴艳,翟玉春,李来时,王佳东 牟文宁.新酸碱联合法以粉煤灰制备高纯氧化铝和超细二氧化硅.轻金属,2007(9):24-27.
    [92]尹中林,范伟东,赵卓.一种从粉煤灰中提取氧化铝的方法.发明专利,2008.
    [93]李禹.火电厂胺法脱硫产出的硫酸铵和粉煤灰的综合利用方法.发明专利,2007
    [94]Lucid M F,Robertson W J,Bowerman P D.Simultaneous extraction and recovery of uranium and vanadium from wet process acid:USA,4,212,849[P].1976-09-07.
    [95]鲁兆伶.用酸法从石煤中提取V_2O_5的试验研究与工业实践[J].湿法冶金,2002,21(4):175-183.
    [96]张云,范必威.从酸浸石煤的萃取液中沉淀偏钒酸铵[J].稀有金属,2001,25(2):157-160.
    [97]戴文灿.石煤提钒综合利用新工艺的研究[J].有色金属(选矿部分),2000,(3):15-17.
    [98]沈喜恩.上饶八部石煤直接酸浸提钒工艺研究[J].江西煤炭科技,1997,(3):57-59.
    [99]刘世森.石煤提钒工艺评述[J].工程设计与研究.1995,(4):4-11.
    [100]BACHELARD R;BARREL R.High purity alumina mfr.from ammonium alum - which is dehydrated by heating,and then calcined while gas or air stream removes gaseous reaction prods[P].1980,Patent Number(s):FR2486058-A1;EP43751-A1;EP43751-A;FR2486058-A;BR8104170-A;JP57051118-A;ZA8104431-A;US4377566-A;CA1162030-A;EP43751-B;DE3162876-G.
    [101]Tanev P.,Koruderlieva S.,Leach C.,etc.Kinetics of sintering of α-aluminium oxide derived from aluminium-ammonium alum[J].Journal of Materials Science Letters,1995,14,(9):668-669.
    [102]谢玉群.超细氧化铝粉末的制备[J].杭州大学学报(自然科学版),1998,25(3):67-70
    [103]Pacewska B.,Pysiak J..Thermal decomposition of basic aluminum-ammonium sulfate(BAAS) in hydrogen atmosphere.Journal of Thermal Analysis,1991,37(8):1665-1672.
    [104]Pysiak J.,Pacewska Barbara.Thermal Dissociation of Basic Aluminium Ammonium Sulfite in Vacuum-1.Stages of Decomposition[J].J THERM ANAL,1980,19(1):79-88.
    [105]Pysiak J.,Pacewska Barbara.Thermal Dissociation of Basic Aluminum Ammonium Sulfate in Vacuum-2.Kinetics of the Process[J].J THERM ANAL, 1980,19(1):89-97.
    [106]Zmijewski,T.,Pacewska,B.Thermal dissociation of basic aluminum-ammonium sulfate in an atmosphere of hydrogen and carbon monoxide[J].Journal of Thermal Analysis,1997,49(3):1187-1195.
    [107]GEBR GIULINI GMBH.Calcination of alum - esp ammonium alum in powder form in direct contact with burner.1972,Patent Number(s):DE2215594-A;FR2245575-A;GB1419439-A;DE2215594-B.
    [108]BACHELARD R;BARREL R.High purity alumina mfr.from ammonium alum - which is dehydrated by heating,and then calcined while gas or air stream removes gaseous reaction prods[P].1980,Patent Number(s):FR2486058-A1;EP43751-A1;EP43751-A;FR2486058-A;BR8104170-A;JP57051118-A;ZA8104431-A;US4377566-A;CA1162030-A;EP43751-B;DE3162876-G.
    [109]蒋敏波,王惠芬,张传志.高纯超细氧化铝生产工艺及装置.发明专利,1997
    [110]付高峰,毕诗文,孙旭东等.超细氧化铝粉体制备技术[J].有色矿冶,2000,1:39-41.
    [111]刘粤惠,苏雪筠,陈楷.喷雾热解法制备高纯氧化铝粉[J].中国陶瓷,1996,32(4):7-9.
    [112]E.Papin,P.Grosscao,B.Guilhot.Influence of the calcining conditions on the thermoluminescence of pure and doped alpha-alumina powders[J].Radiation Protection Doimestry,1996(1-4):243-246.
    [113]H.C.Park,Y.J.Park,R.Stevens.Synthesis of alumina from high purity alum derived from coal fly ash[J].Materials Science and Engineering A,2004,367:166-170.
    [114]B.J.Marshall,D.O.Pederson,and W.E.Bailey.Ultrasonic Attenuation in Aluminum Ammonium Alum and Aluminum Patassium Alum[J].Journal of Applied Physics,1967,38(5):2116-2120.
    [115]J.O.Fossum,B.O.Fimland,and I.Svare.Anomalous Ultrasonic attenuation in Ammonium aluminum alum[J].Physical Review B,33(2):1434-1435.
    [116]殷永泉.高纯超细氧化铝的清洁生产[J].化工环保,2001,1:18-19
    [117]柴诚敬,冯亚云,冯朝伍,胡瑞杰.固体物料流化干燥特性[J].天津大学学报,1997,30(1):91-98.
    [118]杨阿三,郑燕萍,程榕,孙勤.泛酸钙流化床干燥系统的优化设计[J].干燥技术与设备,2005,3(1):36-39.
    [119]贺春宝.沸腾流化床在一水硫酸镁生产中的应用[J].化工技术与开发,2008,1(1):44-45.
    [120]李胜,张忠,李选友,张莲.搅拌流化床在含结晶水盐化产品干燥生产中的应用[J].山东能源,1995,(3):6-9.
    [121].M.Maroto-Valer,D.N.Taulbee,J.C.Hower.Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation [J].Energy Fuels,1999,13:947-953
    [122]M.L.Hall,W.R.Livingston.Fly ash quality,past,present and future,and effect of ash on the development of novel products[J].Journal of Chemical Technology and Biotechnology,2002,77:243-249
    [123]B.Walairat.Utilization of processed fly ash in mortar[D].Newark:New Jersey Institute of Technology,1999,pp:9
    [124]K.Styszko-Grochowiak,J.Golas,H.Jankowski.Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content[J].Fuel,2004,83:1847-1853
    [125]T.Ha,S.Muralidharan,J.H.Bae,et al.Effect of unburnt carbon on the corrosion performance of fly ash cement mortar[J].Construction and Building Materials,2005,19:509-515
    [126]ASTM C618-05,Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete.[S].2005
    [127]EN 450-1,Fly ash for concrete-part 1:definition,specification and conformity criteria.[S].2005
    [128]DL/T 567.6,飞灰和炉渣可燃物测定方法[S].1995
    [129]ASTM C311-04,Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete.[S].2004
    [130]I.Kulaots,R.H.Hurt,E M.Suuberg.Size distribution of unburned carbon in coal fly ash and its implications[J].Fuel,2004,83:223-230
    [131]O.Senneca.Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant[J].Fuel,2008,87:1207-1216
    [132]Y.Soong,M.R.Schoffstall,M.L.Gray,et al.Dry beneficiation of high loss-on-ignition fly ash[J].Separation and Purification Technology,2002,26:177-184
    [133]A.Sarkar,Ruma Rano,K.K.Mishra,et al.Particle size distribution profile of some Indian fly ash-a comparative study to assess their possible uses[J].Fuel Processing Technology,2005,86:1221-1238
    [134]N.Koukouzas,J.Harnalainen,D.Papanikolaou,et al.Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite,bituminous coal,wood chips and their blends[J].Fuel,2007,86:2186-2193
    [135]F.Cangialosi,F.D.Canio,G.Intini,et al.Experimental and theoretical investigation on unburned coal char burnout in a pilot-scale rotary kiln[J].Fuel,2006,85:2294-2300
    [136]J.H.Pavlish,E.A.Sondreal,M.D.Mann,et al.Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,82:89-165
    [137]V.Sara,C.Jaturapitakkul,K.Kiattikomol,et al.Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete [J].Construction and Building Materials,2007,21:1589-1598
    [138]S.Wang,L.Lin,H.Wu,et al.Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater[J].Journal of Colloid and Interface Science,2005,292:336-343
    [139]马秀国,孙昭星.高灰分碳颗粒燃烧的数学求解[J].工程热物理学报,1991,12(3):324-327
    [140]徐旭常,周力行.燃烧技术手册[M].北京:化学工业出版社,2008
    [141]E.E.Berry,V.M.Maholtra.Fly ash for use in concrete - a critical review[J]. Journal of American Concrete Institute,1980,77:59-73
    [142]GB/T 19093,煤粉筛分试验方法[S].2003
    [143]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2001
    [144]王立刚,徐雪,王凡等.燃煤飞灰粒径分布函数的分形特征及其对吸附性能的影响[J].环境化学,2008,27(2):215-217
    [145]金晶,李瑞阳,张忠孝.超细煤粉还原NOx的试验研究[J].热能动力工程,2004,19(6):582-585
    [146]郭欣,郑楚光,孙涛.电厂煤飞灰颗粒物的物理化学特征[J].燃烧科学与技术,2005,11(2):192-195
    [147]王启民,杨海瑞,吕俊复等.外电场作用下R-R分布的荷电颗粒的凝聚[J].清华大学学报(自然科学版),2007,47(5):663-665
    [148]Herek L.Clack.Bimodal fly ash size distributions and their influence on gas-particle mass transfer during electrostatic precipitation[J].Fuel Processing Technology,2006,87:987-996
    [149]Joo-Hong Choi.Soon-Jong Ha,Hyuk-Jin Jang.Compression properties of dust cake of fine fly ashes from a fluidized bed coal combustor on a ceramic filter[J].Powder Technology,2004,140:106-115
    [150]Yuanzhi Chen,Naresh Shah,Frank E.Huggins,et al.Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy[J].Fuel Processing Technology,2004,85:743-761
    [151]Wang.Hongjie,Wang Yonglan,Jin Zhihao.SiC powders prepared from fly ash [J].Materials Processing Technology,2004,117:52-55
    [152]徐鸿,骆仲泱,王鹏等.石灰石对煤燃烧产生颗粒物及重金属影响实验研究[J].燃烧科学与技术,2004,25(5):871-874
    [153]王自亮.粉尘消光系数的确定方法[J].煤炭学报,2000,25(4):404-407
    [154]吴其胜,张少明,马振华.湿法分级超细粉过程初探[J].硅酸盐通报,1995,16(6):33-36
    [155]王自亮,赵恩标,吕银庄等.粉尘浓度光散射测量影响因素的分析[J].煤 炭学报,2007,32(6):604-607
    [156]Shuji Matsusaka,Mitsuhiro Oki,Hiroaki Masuda.Bipolar charge distribution of a mixture of particles with different electrostatic characteristics in gas-solids pipe flow[J].Powder Technology,2003,135-136:150-155
    [157]Shuji Matsusaka,Hiroaki Masuda,Matami Nishitani,et al.Electrostatic charge distribution of particles in gas-solids pipe flow[J].Journal of Electrostatics,2002,55:81-96
    [158]Changsui Zhao,YongWang Li,Xin Wu,et al.Experimental investigation on aggregation of coal-fired PM10 by magnetic seeding[J].Chemical Engineering Journal,2007,133:301-309
    [159]Chai.Jaturapitakkul,Kraiwood Kiattikomol,Vanchai Sata,et al.Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete[J].Cement and Concrete Research,2004,34:549-555
    [160]刘忠,阎维平,高正阳等.超细煤粉粒度对煤质分析特性的影响[J].华北电力大学学报,2004,31(4):63-65
    [161]赵莉,宋立民,刘忠等.煤粉挥发分及元素的释放特性研究[J].华北电力大学学报,2007,34(6):83-87
    [162]ISO 13320-1,Particle size analysis - part 1:General principles[S].1999
    [163]李金海.误差理论与测量不确定度评定[M].北京:中国计量出版社,2003.11
    [164]王莺歌.大型电站锅炉飞灰可燃物的调整与控制[J].东北电力技术,2007,11:24-28
    [165]周新刚,刘志超,路春美等.燃煤电厂锅炉飞灰可燃物影响因素分析及对策[J].节能,2005,9:45-47
    [166]俞海淼,赵翔,曹欣玉.水煤浆燃烧飞灰可燃物的影响因素及控制[J].华热能动力工程,2004,19(2):195-197
    [167]朱予东,王运泽,欧宗现等.应用局部投影网络预测燃料分级燃烧锅炉的飞灰可燃物[J].热能动力工程,2008,23(3):265-268
    [168]K.H.Pedersen,A.D.Jensen,M.S.Skjφth-Rasmussen,et.al.A review of the interference of carbon containing fly ash with air entrainment in concrete[J]. Progress in Energy and Combustion Science,2008,34:135-154
    [169]吕太,张墨,毕春丽等.循环流化床锅炉飞灰可燃物的测定方法探讨[J]粉煤灰综合利用,2004,1:17-19
    [170]李少华,王启民,肖显斌等.循环流化床锅炉飞灰残碳的生成及其处理[J]热能动力工程,2007,22(1):52-56
    [171]白旭东,冯兆兴,董建勋等.常压夹带流气化/燃烧模拟器下超细煤粉燃尽特性试验研究[J]热力发电,2006,35(10):40-45
    [172 刘振海,徐国华,张洪林.热分析仪器[M].北京:化学工业出版社,2005.12:151-152
    [173]Paul A.Morgan,Struan D.Robertson,John F.Unsworth.Combustion studies by thermogravimetdc analysis:1.Coal oxidation[J].Fuel,1986,65:1546-1551
    [174]Paul A.Morgan,Struan D.Robertson,John F.Unsworth.Combustion studies by thermogravimetric analysis:2.Char oxidation[J].Fuel,1987,66:210-215
    [175]周坤,杨建国,赵虹.BP神经网络对煤着火特性的预测[J].热力发电,2004,33(2):21-25
    [176]聂其红,孙绍增,李争起等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76
    [177]魏砾宏,姜秀民,张超群等.超细化煤粉在热解条件下氮的迁移特性试验研究[J].中国电机工程学报,2006,26(7):62-66
    [178]高梅衫,张建民,罗鸣等.褐煤在甲烷气氛下热解特性及硫析出规律研究[J].煤炭转化,2005,28(4):7-10
    [179]范晓雷,张薇,周志杰等.热解压力及气氛对神府煤焦气化反应活性的影响[J].燃料化学学报,2005,33(5):530-533
    [180]吕太,张翠珍,吴超.粒径和升温速率对煤热分解影响的研究[J].煤炭转化,2005,28(1):17-20
    [181]关多娇.采用热重法研究多煤种配制型煤的热解特性[J].洁净煤技术,2008,14(2):80-83
    [182 虞继舜.煤化学[M].北京:冶金工业出版社,2000:180-182
    [183]罗鸣,张建民,高梅衫等.程序升温热重法研究活性焦气化反应特性[J].洁净煤技术,2006,12(1):24,42-45
    [184]陈鸿,孙学信,曾羽健等.煤粉燃烧过程中挥发分的析出及残焦的反应性[J].华中理工大学学报,1994,22(3):47-51
    [185]张守玉,黎永,吕俊复等.煤焦反应活性影响因素的讨论[J].煤炭转化,2003,26(2):25-28,90
    [186]高顶,赵跃民.典型烟煤高温焦炭孔隙结构及其活性的研究[J].中国粉体技术,2007,6:9-11
    [187]张清宇,严建华,倪明江等.分形理论在火焰稳定性诊断中的应用[J].中国电机工程学报,2004,24(12):248-252
    [188]王建军,徐西鹏.花岗石抛光表面的粗糙度、分形维数及其关系研究[J].计量学报,2007,28(2):124-128
    [189]I.A.El-Sonbaty,U.A.Khashaba,A.I.Selmy and A.I.Ali.Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach[J].Journal of Materials Processing Technology,2008,200:271-278
    [190]Natalia.Maximova,Olli.Dalai.Environmental implications of aggregation phenomena Current understanding[J].Current Opinion in Colloid and Interface Science,2006,11:246-266
    [191]Hu Song,Li Min,Xiang Jun,et.al.Fractal characteristic of three Chinese coals [J].Fuel,2004,83:1307-1313
    [192]胡松,孙学信,邹祖桥等.煤焦外表面分形维数在燃烧过程中的变化[J].燃料化学学报,2002,30(2):136-140
    [193]胡松,孙学信,李敏等.煤燃烧过程中表面结构变化的SEM图像分析[J].燃料化学学报,2001,29(5):463-467
    [194]张济忠.分形[M].北京:清华大学出版社,1995,9:122-127
    [195]张佳丽,谌伦建,张如意等.热解温度与煤焦微结构及分形特征关系研究[J].煤炭转化,2004,27(2):26-29
    [196]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.10:43-57
    [197]GB 474煤样的制备方法[S].1996
    [198]GB 483煤质分析试验方法一般规定[S].1987
    [199]GB/T 212煤的工业分析方法[S].2001
    [200]GBT 476煤的元素分析方法[S].2001
    [201]秀民,李巨斌,邱健荣.煤粉颗粒粒度对煤质分析特性与燃烧特性的影响[J].煤炭学报,1999,24(6):643-647
    [202]张林仙,黄戒介,房倚天等.中国典型无烟煤焦水蒸气汽化活性及动力学研究[J].燃烧科学与技术,2005,11(3):202-207
    [203]Song Hu,Jun Xiang,Lushi Sun,et.al.Characterization of char from rapid pyrolysis of rice husk[J].Fuel Processing Technology,2008(online available)
    [204]H.-Y Cai,A.J.Guell,I.N.Chatzakis,et.al.Combustion reactivity and morphological change in coal chars Effect of pyrolysis temperature,heating rate and pressure[J].Fuel,1996,75:15-24
    [205]Changdong Sheng.Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J].Fuel,2007,86:2316-2324
    [206]N.V.Russell,T.J.Beeley,C.-K.Man,et.al.Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes[J].Fuel Processing Technology,1998,57:113-130
    [207]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001.6
    [208]刘辉,吴少华,赵广播等.煤粉粒度对元宝山褐煤燃烧特性的影响[J].哈尔滨工业大学学报,2008,40(3):419-422
    [209.J.G.Alonso,A.G.Borrego,D.Alvarez,et.al.A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics[J].Fuel Processing Technology,2001,69:257-272
    [210]周臻,刘亮,王艳玲等.煤粉粒径对燃烧特性影响的试验研究[J].热力发电,2007,36(3):35-38,47
    [211]ASTM E11-01,Standard Specification for Wire Cloth and Sieves for Testing Purposes.[S].2001-03-10
    [212]ASTM B214-99,Standard Test Method for Sieve Analysis of Metal Powders.[S].1999-04-10
    [213]范晓雷,周志杰,王辅臣等.热解条件对煤焦气化活性影响的研究进展[J].煤炭转化,2005,28(3):74-79
    [214]王明敏,张建胜,张守玉等.热解条件对煤焦结构及气化反应活性的影响[J].煤炭转化,2007,30(3):21-24
    [215]Miura K,Hashimoto K,Silveston P.L.Factors Affecting the Reactivity of Coal Chars During Gasification,and Indices Representing Reactivity.Fuel,1989,68(11):1461-1475
    [216]韩才元,徐明厚等,煤粉燃烧,科学出版社,北京,2001.5
    [217]徐江荣,气-固两相湍流模型的研究及煤粉浓淡旋流燃烧器两相流动的数值模拟,浙江大学博士学位论文,杭州,1999.5
    [218]张健.强旋湍流流动和煤粉燃烧的模拟,清华大学博士论文:1992
    [219]M.M.Gibson and B.E.Launder,Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer,J.Fluid Mech.,No.86,pp491-511,1978
    [220]岑可法,樊建人.工程气固多相流动的理论及计算,浙江大学出版社,1990
    [221]费祥麟主编,高等流体力学,西安交通大学出版社,1989.9
    [222]B.E.Launder and D.B.Spalding,Lectures in Mathematical Models of Turbulence,Academic Press,London,England,1972
    [223]Smoot L D,Smith P J.Coal Combustion and Gasification.New York:Plenum Press,1985
    [224]傅维标等,燃烧学,高等教育出版社,1992
    [225]王应时,范维澄,周力行等,燃烧过程数值计算,科学出版社,1986
    [226]周力行,湍流两相流动与燃烧的数值模拟,清华大学出版社,北京,1991.8
    [227]A.M.Eaton,L.D.Smoot,S.C.Hill,Components,formulations,solutions,evaluation,and application of comprehensive combustion models,Progress in Energy and Combustion Science,No.25,pp387-436,1999
    [228]R.W.Bilger,Turbulent Flows with Non-premixed Reactants.In Libby,P.A.and Williams,F.A.editors,Turbulent Reacting Flows,Springer-Verlag,Berlin,1980
    [229]W.P.Jones,J.H.Whitelaw,Calculation Methods for Reacting Turbulent Flows: A Review,Combust.Flame,Vol.48,No.26,1982
    [230]Robert Hurt,Jian-Kuan Sun,Melissa Lunden.Kinetic Model of Carbon Burnout in Pulverized Coal Combustion,Combustion and Flame,Volume 113,Issues 1-2,Pages 181-197,April 199
    [231]Jiankuan Sun,Numerical Simulation of the Carbon Burnout Process in Solid Fuel Combustion,Brown University Ph.D Thesis:2000
    [232]R.Siegel and J.R.Howell,Thermal Radiation Heat Transfer,Hemisphere Publishing Corporation,Washington D.C.,1992
    [233]潘维.超细煤粉再燃机理及改造方案的数值模拟研究,浙江大学博士论文:2005
    [234]徐璋.超细粉再燃降低NOx排放的热态试验研究与数值模拟,浙江大学博士论文:2003
    [235]马双忱,刘俊芳,王钟敏.国内外粉煤灰高技术利用研究近况.电力情报[J],1992(2):8-14
    [236]张战军,从高铝粉煤灰中提取氧化铝等有用资源的研究.2007,西北大学:西安
    [237]赵毅,赵英,陈颖敏.从粉煤灰中分离镓的实验研究[J],华北电力技术,1998(1):35-37
    [238]西村山冶.溶剂萃取法从工业废物中回收有价金属.湿法冶金,1994(2):52-58
    [239]Izurni Tsuboi.从燃烧煤飞灰中回收镓和钒.湿法冶金,1992(3):42-47
    [240]吴鹰.从煤灰中提取锗.今日科技,1991(7):13-14
    [241]丁宏娅,采用改进酸碱联合法从高铝粉煤灰中提取氧化铝的研究.2007,中国地质大学:北京.
    [242]Koukouzas N K,Zeng R,Perdikatsis V,Xu W Kakaras E K.Mineralogy and geochemistry of Greek and Chinese coal fly ash.Fuel,2006.85:p.2301-2309.
    [243]严家騄.工程热力学[M].北京:高等教育出版社,2001.1
    [244]陆建刚.重结晶法合成硫酸铝铵的研究[J].硫酸工业,1994,2:22-23
    [245]曾国清.利用轻烧铝土矿粉生产硫酸铝铵的生产工艺流程的研究[J].广东 化工,2007,34(6):56-57
    [246]赵海红,欧阳朝斌,刘有智.超细氧化铝粉体的制备工艺及其应用[J],化工科技,2003,11(1):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700