用户名: 密码: 验证码:
用于风电叶片的分级竹层积材和杉木层积材的制造与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数百年来,人类使用的能源由木材、焦炭、煤炭、石油和天然气,以及铀矿(核能)提供。由于所有这些能源的来源都受到了限制,而且在同一时间里,这些能源的使用还带来了环境污染的问题。优化利用能源和减少环境污染的要求使我们把能源发展的重点放在可持续清洁能源的供应上,这就是风能能够解决全球能源问题的关键所在。风力发电是利用风能来推动风力发电机发电。风力发电机叶片起着非常重要的作用,风力发电机的发电效率,取决于风力发电机叶片的材料、形状和角度。因此,风力发电机叶片的材料起着至关重要的作用,叶片材料应具备高刚度,低密度和长期的疲劳寿命。
     目前风力发电机叶片在用材料主要是玻璃纤维增强塑料(GFRP)、碳纤维增强塑料(CFRP)和木/环氧复合材料,它们都存在各自的优缺点。众所周知:风力发电机叶片由于长期处于旋转(受力)的状态中,对材料的稳定性、均匀性、强度、刚度和密度等性能要求很高。作为风力发电机叶片材料性能中最重要的还是材料必须具有高的抗疲劳强度性能,其次很重要的一点是作为风力发电机叶片的材料,还必须具有原材料来源广泛、价格低廉的优势才行。由于碳纤维增强塑料价格昂贵,导致成品风力发电机叶片制造成本高,且玻璃纤维增强塑料(GFRP)和碳纤维增强塑料(CFRP)这两种材料回收处理困难;木/环氧叶片使用大径级天然林木材(如花旗松等),原材料来源困难。本论文选择我国资源丰富、性能优良的毛竹(Phyllostachys pubescens)和杉木(Cunninghamia lanceolata)做为原材料,研制可用于制造风力发电机叶片的分级杉木薄板层积材和分级竹青薄板层积材。
     与玻璃钢等人造工程材料相比,杉木边材径切板相关物理力学性能数值受树木的不同立地条件、生长环境等相关因素影响呈明显的无规律的变化,要生产物理力学性能优良且性能稳定的风力发电机叶片复合材料,就必须对全部加工的杉木边材径切板进行检测,并按检测数值的大小对杉木边材径切板进行分级,只有这样才能生产出物理力学性能优良且性能稳定的风力发电机叶片复合材料来。
     采用传统的通过测定杉木边材径切板弯曲弹性模量的机械分级标准,虽然具有较高的准确性,但此种方法费时费力,难以进行工业化批量生产。
     与机械分级相比,目测分级的准确性高,而使用的时间不足原有机械分级耗用时间的1/10,大大降低杉木分级所需要的时间和劳动强度,同时,随着工人目测分级工作的进行及熟练程度的进一步提高,其分级的准确性也将进一步提高,其分级所需要的时间也将进一步降低,这使得风力发电叶片复合材料的大批量生产成为可能。
     在杉木重组的过程中,最佳涂胶量定为170g/m2(单面),最佳的斜接角度定为3.81°(斜率1/15);在分级杉木层积材和分级竹青层积材的加工过程中,环氧树脂浸渍量的大小与环氧混合浸渍树脂固含量的大小成正比关系;在浸渍时间或浸渍胶的固含量一定的情况下,采用加压浸渍的杉木薄板和竹青薄板的树脂浸渍量明显高于未加压浸渍的杉木薄板和竹青薄板的树脂浸渍量。
     运用经典层合板理论,建立分级杉木薄板层积材和分级竹青层积材的弹性模量预测模型,通过MOE1、MOE2的预测值与实测值的比对,证明建立的分级杉木薄板层积材和分级竹青层积材的弹性模量预测模型具有比较高的准确性;运用单向复合材料的串联模型,建立了分级杉木薄板层积材和分级竹青层积材的顺纹抗拉强度和顺纹抗压强度的预测模型,通过分级杉木薄板层积材和分级竹青层积材的顺纹抗拉强度和顺纹抗压强度的预测值与实测值的比对,证明建立的分级杉木薄板层积材和分级竹青层积材的顺纹抗拉强度和顺纹抗压强度预测模型具有比较高的准确性。
     利用动态热机械分析仪检测不同竹龄的毛竹,实验证明:随着毛竹竹龄的增加,毛竹竹青试件的常温存储模量值也相应的增加,也就是说,在常温条件下,毛竹竹青的刚性随毛竹竹龄的增加而增加,但是毛竹到了一定竹龄后,其竹青的刚性渐渐趋于稳定,甚至有开始下降的趋势。一般5-6年生的成熟毛竹的竹青部份的常温存储模量位于1010Pa(10GPa)数量级以上,一般能满足做为风力发电叶片复合材料中增强相材料的使用,它们的损耗模量位于108Pa数量级左右。因此,最佳的风力发电叶片复合材料增强相材料是5-6年生的成熟毛竹。
     由此制备的满足风力发电叶片复合材料要求的分级杉木薄板层积材的顺纹拉伸强度达到132 MPa,顺纹压缩强度超过82 MPa,顺纹拉伸模量达到17.9 GPa,横纹拉伸模量达到5.3 GPa,剪切强度15.67 MPa,而杉木薄板层积材的密度一般在0.75-0.85g/cm3左右。由于杉木薄板层积材具有相对较低的密度和较高的物理力学性能,其压缩强度质量比达到104 MPa.cm3/g,比刚度达到22.8 GPa,壁板稳定性参数达到2.68(1/ MPa),各项指标均高于目前国外在用的木/环氧层积材物理力学性能指标。
     由此制备的满足风力发电叶片复合材料要求的分级竹青薄板层积材的顺纹拉伸强度达到254 MPa,顺纹压缩强度超过180 MPa,顺纹拉伸模量达到26 GPa,横纹拉伸模量达到5.5 GPa,剪切强度21.65 MPa,而分级竹青层积材的密度一般在1.00-1.10g/cm3左右。由于分级竹青薄板层积材具有相对较低的密度和较高的物理力学性能,其压缩强度质量比达到174MPa.cm3/g,比刚度达到25.2 GPa,各项指标均高于目前国外在用的木/环氧层积材物理力学性能指标。
     对于制备的风力发电叶片复合材料来说,疲劳强度是衡量材料性能的重要指标。分级杉木薄板层积材在106次疲劳循环测试下,还保持60%的静载强度,高于优质木/环氧层积材保持55%的静载强度,也比玻璃钢(保持40%以下的静载强度)的疲劳性能好;分级竹青薄板层积材在106次疲劳循环测试下,还保持50%的静载强度,与优质木/环氧层积材保持55%的静载强度基本持平,比玻璃钢(保持40%以下的静载强度)的疲劳性能好。
Over the centuries, energy has been supplied by wood, coke, coal, oil and natural gas, as well as by uranium (nuclear energy). All these energy sources are limited and at the same time these energy sources create pollution problems. This has led to the focus on a sustainable energy supply, which implies optimized use of energy, minimized pollution. That is why wind energy is prominent and it is the solution to the global energy problem. The wind energy is generated by using wind turbines. The turbine blades plays very important role in the wind turbines. The efficiency of the wind turbine depends on the material of the blade, shape of the blade and angle of the blade. So, the material of the turbine blade plays a vital role in the wind turbines. The material of the blade should possess the high stiffness, low density and long fatigue life.
     Currently, the materials used for wind turbine blades are mainly glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), and wood-based composites (Wood/Epoxy), etc. However, these materials have their own merits and defects. It is commonly known that turbine blades work by rotation in service, which demands uniformity and low variability in the properties of the materials used. More importantly, the strength and stiffness of the materials must be high with a low density. The fatigue properties of materials must be superior as well. It is also important that the materials used must be widely available with a low cost. Because of the high cost of CFRP materials, the manufacture of the wind turbine blades products is subsequently expensive. Furthermore, the GFRP products and CFRP products are difficult to be disposed of when out of service. On the other hand, the raw materials used for Wood / epoxy laminated composites, which are made from the large diameter natural forest wood ( such as Douglas Fir,) are difficult to be available. In this dissertation, Moso bamboo (Phyllostachys pubescens) and Chinese fir (Cunninghamia lanceolata) were selected as raw material to manufacture wood and bamboo laminated composites from their grading elements used for wind turbine blades, since they are abundant in China with low cost and excellent properties, and are easily to be decomposed of.
     Compared with engineering materials such as glass fiber reinforced plastic, the physical and mechanical properties of Chinese fir sapwood showed great variability, which is largely dependent on various factors such as the growing environment, site conditions and silviculture treatments. In order to produce wind turbine blades composite material with excellent physical and mechanical properties, all quartersawn boards made from the Chinese fir sapwood must be tested and then graded based on the wood properties determined. Only in this way may the wind turbine blades composite material with excellent physical and mechanical properties be produced.
     The conventional wood grading method is the machine grading which is based on the modulus of elasticity in static bending of wood. This grading method is characterized by higher accuracy, but it is time-expensive and is difficult to be applied in industrial production. Compared with the machine grading, visual grading has higher accuracy, and may take only 1/10 time used for machine grading, greatly reducing working time and labor intensity. It can be expected that, with the visual grading skills being increasingly improved, the accuracy of visual grading will also be further improved, and the visual grading time needed will also be further reduced, which appear to make the massive production of wind turbine blades composite material in industrial scale possible.
     For the process of reconstituted wood composites, the optimum adhesive spread is 170 g/m2 (single surface), the optimum slip joint angle is 3.81°(slope 1/15). In the manufacture process of the wood and bamboo laminated composites from their grading elements, there was a positive relationship between the solid content of the epoxy resin and the resin content impregnated. With the impregnation time and resin solid content being constant, impregnation under pressure resulted in more impregnated resin within the wood and bamboo laminas compared with the situation with no pressure applied.
     On the other hand, based on the classical lamination theory, the modulus of elasticity (MOE) of the wood and bamboo laminated composites was computed and predicted, Comparison between the predicted and measured MOE1 and MOE2 indicated that the prediction model had fairly high accuracy. According to the Serial model of composite material theory, the prediction model of tensile strength parallel to grain and compressive strength parallel to grain of the wood and bamboo laminated composites were established, respectively. Comparison between the predicted and measured values indicated again that the prediction model have relatively high accuracy in predicting the tensile and compressive strength of the laminated composites.
     The bamboo samples of various ages were tested by a Q800 dynamic mechanical thermal analysis (DMA) instrument. The results showed that storage modulus of the outer layer of bamboo under air-temperature conditions increased with aging of bamboo. In other words, the stiffness of bamboo increased with the increasing age of bamboo. However, up to a certain age, the stiffness of the outer layer of bamboo gradually remains constant, or even shows a decrease trend. General speaking, the outer layer of bamboo of 5-6 year old has a storage modulus on the order of 1010Pa(10GPa)under air- temperature conditions, which is definitely qualified as the reinforcement material for the wind turbine blades composites, with the loss modulus under air temperature conditions on the order of 108Pa. Therefore, the out layers of bamboo of 5-6 year old showed great potential to be used as the reinforcement materials of the wind turbine blades composite.
     For the wood laminated composites made from the grading Chinese fir wood lamellas, tensile strength parallel to grain exceeded 132 MPa,compressive strength parallel to grain exceeded 82 MPa,tensile modulus of elasticity parallel to grain exceeded 17.9 GPa,tensile modulus of elasticity perpendicular to grain exceeded 5.3 GPa,and shear strength exceeded 15.67 MPa. Besides, the specific gravity of this composite ranged from 0.75 to 0.85g/cm3. In other word, the manufactured wood laminated composites in this study have a relatively low density and high physical and mechanical properties, with the compression strength/density ratio being 104 Mpa.cm3/g,the modulus/density ratio being 22.8 GPa,and the modulus/ (compression strength)2 ratio being 2.68(1/ Mpa). It is concluded that the physical and mechanical properties of the wood laminated composites were superior compared with those of wood / epoxy laminated composites currently used abroad.
     For the bamboo laminated composites made from the grading outer layer portion of bamboo culms, tensile strength parallel to grain exceeded 254 MPa,compressive strength parallel to grain exceeded 180 MPa,tensile modulus of elasticity parallel to grain exceeded 26 GPa,tensile modulus of elasticity perpendicular to grain exceeded 5.5 GPa,and shear strength exceeded 21.65 Mpa. Besides, the specific gravity of this composite ranged from 1.00 g/cm3 to 1.10g/cm3. In other word, the bamboo laminated composites in this study have a relatively low density and high physical and mechanical properties, with the compression strength/density ratio being 174 MPa.cm3/g,and the modulus/density ratio being 25.2 GPa. It is concluded that the physical and mechanical properties of the bamboo laminated composites were superior compared with those of wood / epoxy laminated composites currently used abroad.
     Finally, for the wood and bamboo laminated composites developed for wind turbine blades products, the fatigue property is another important indicator of the material. Following the static loading experiments, the fatigue properties of the wood laminated composites were tested. The results showed that 60% of maximum loading strength of this material remained after 106 times of fatigue test, which is superior to the corresponding value of 55% for the high-quality wood/epoxy laminated, and 40% for GFRP under the same testing conditions. The fatigue properties of the bamboo laminated composites were tested as well. The results showed that 50% of maximum loading strength of this material remained after 106 times of fatigue test, which was comparable to the corresponding value of 55% for the high-quality wood/epoxy laminated remained, and was superior to 40% for GFRP under the same testing conditions.
引文
[1]江泽慧,孙正军,任海青.先进生物质复合材料在风电叶片中的应用[J].复合材料学报,2006, 26(3):127-129
    [2]翟秀静,刘奎仁,韩庆编著.新能源技术[M].北京:化学工业出版社,2005
    [3]何祚庥,王亦楠.风力发电“救济”电荒(上)—风力发电是我国能源和电力可持续发展战略的最现实选择[J].物理教学, 2005,27(1):2-5
    [4]何祚庥,王亦楠.风力发电“救济”电荒(下)—风力发电是我国能源和电力可持续发展战略的最现实选择[J].物理教学, 2005,27(2):2-7
    [5]史立山.我国可再生能源现状及展望[J].财经界,2006,(3):57-59
    [6]世界银行支持中国利用可再生能源[J].中国能源, 2006(3):6
    [7]陈蕾.风力发电:在政策助推下快速起步[J].中国投资, 2005(12):45-47
    [8]都丽珍,严天鹏.世界(风能12%)蓝图(上).太阳能, 2003(4)
    [9]国家出台政策鼓励发展风力发电[J].农机市场, 2005(9):4
    [10]苏明军.风力发电—中国重要的后续能源[J].能源环境保护, 2005(6):12-14
    [11]新疆风能开发居我国首位[J].电力设备,2006(5):88
    [12]何祚庥,王亦楠.风力发电:我国能源可持续发展的现实选择[J].中国三峡建设,2005(5):24-27
    [13]中国风能面临跨越式发展的机遇—中国风能产业发展高峰论坛发言摘要[J].科技中国,2006(5):37-39
    [14] Fengxian Resort Has A New View——Shanghai New Energy Environmental Protection and Engineering Co, Ltd[J].上海节能.2006(B01):19,21
    [15] Introduction of Wind Mills in Chongming and Nanhui Districts—Shanghai Wind Power Generation CO, LTD [J].上海节能.2006(B01):20,22
    [16]江泽慧.中国现代林业(M).北京:中国林业出版社,2000
    [17]彭镇华.中国杉树(M).北京:中国林业出版社,1999
    [18]余新妥.中国杉木九十年代的研究进展2-杉木造林和经营综述[J].福建林学院学报,2000, 20(2):12-16
    [19]彭镇华.中国城市乔木(M).北京:中国林业出版社,2002
    [20]郑睿贤.毛竹工业利用分析[J].竹子研究汇刊,1998,17(3):1-9
    [21]张齐生.中国的竹材人造板工业[C].中国热带地区竹藤的发展(M)(论文集第6卷).北京:中国林业出版社,2001
    [22]华毓坤.中国竹质复合材料的发展[J].人造板通讯,2001,(10):3-5
    [23]成俊卿.木材学(M).北京:中国林业出版社,1985:984-1011
    [24]江泽慧.世界竹藤(M).辽宁:辽宁科学技术出版社,2002:3-6
    [25]江泽慧.中国林业工程(M).济南:济南出版社,2002:189-196
    [26]雷加富.中国竹资源和竹产业的可持续发展战略[C].中国热带地区竹藤的发展(论文集第6卷).北京:中国林业出版社,2001
    [27]张齐生,孙丰文.竹木复合结构是科学合理利用竹材资源的有效途径[J].林产工业,1995, 22(6):4-6
    [28]李世东,许传德.中国竹业发展历程与21世纪发展战略[J].竹子研究汇刊,1998,19(1):1-5
    [29]周芳纯.20世纪竹业回顾和21世纪的展望[J].林业科技开发,1999,(1):7-9
    [30]唐永裕.中国竹材加工利用的现状及发展[C].中国热带地区竹藤的发展(论文集第6卷).北京:中国林业出版社,2001
    [31] GEORGE MARSH.预测如何可信[J].Reinforced plastics,2003,47(5):23
    [32] GEORGE MARSH.复合材料一风能的首次实现者[J].Reinforced plastics,2003,47(5):52-57
    [33]风力涡轮趋于大型化[J].Reinforced plastics,2003,47(3):10
    [34]风能有助于减少目前天然气供应的紧缺[J].Composites Brief, 2003,27(13):4
    [35]供应160台风力涡轮电机的合同.Composites Brief,2003,27(15):6
    [36] CFRP在风力发电叶片的应用.日本合成纤维新闻,2003,(2306):7
    [37] Testing blade integrity[J].Reinforced plastics,2003,47(5):44
    [38] Gougeon M and Zuteck, M: The Use of Wood for Wind Turbine Blade Construction. Large Wind Turbine Design Characteristics and R&D Requirements[R]. S. Lieblein,Ed., NASA CP-2106, CONF- 7904111, 1979, pp. 293-308.
    [39] LiebleinS, Gougeon M,Thomas G. and Zuteck M: Design and Evaluation of Low-Cost Laminated Wood Composite Blades for Intermediate Size Wind Turbines: Blade Design, Fabrication Concept,and Cost Analysis[R].DOE/NASA/OI01-1,NASA CR-165463,December1982.
    [40] R.F. Lark , M. Gougeon,G Thlomasand M. Zuteck Gougeon Brothers, Inc,: Fabrication of Low-Cost Mod- 0A Wood composite Wind Turbine Blades[R]. DOE/NASA/20320-45, NASA TM-83323, February 1983.
    [41] Faddoul, J : Test Evaluation of a Laminated WoodWind Turbine Blade Concept[R]. DOE/NASA/ 20320-30, NASATM-81719, May 1981,
    [42] Bankattls, H.: Evaluation of Lightning Accomodatlon Systems for Wind Driven Turbine Rotors[R]. DOE/NASA/20320-37, NASATM-82784, Mar. 1982.
    [43] Wood handbook-Wood as an Engineering Material[R]. Forest Products Laboratory, Forest Service, U. S. Dept of Agriculture, Agriculture Handbook NO. 72, Aug. 1974.
    [44] Linscott,B. S.; Shaltens;R. K.; and Eggers,A. G.: Test Experience with Aluminum Blades on the Mod- OA 200-kWWind Turbine at Clayton, New Mexico[R]. DOE/NASA/20370-21, NASA TM-82595,Dec. 1981.
    [45] K.Suresh Babu,N.V.Subba Raju.THE MATERIAL SELECTION FOR TYPICAL WIND TURBINE BLADES USING A MADM APPROACH& ANALYSIS OF BLADES[R]. MCDM 2006, Chania, Greece, June 19-23, 2006
    [46] Kunesh R H.“Strength Properties of Rotary Peeled Douglas Fir Veneer Composite Material for Use in Large Wind Turbine Blades”[R], K Consulting Company, Phase A-2 Report for Project MOD 5-A, GOUGEON BROTHERS, INC., October. 1982.
    [47] Bertelsen, W. D., and Zuteck, M. D.,“Investigation of Fatigue Failure Initiation and Propagation in Wind-Turbine-Grade Wood/Epoxy Laminate Containing Several Veneer Joint Styles”[R], Phase 2 Report, U.S.Department of Energy Contract No. DE-AC02-86ER80385, December, 1990.
    [48] Detailed Test Plan, Blade Manufacturing Project AN-0166, Section 2.2.2- Replace Old-Growth Veneer, Section 3.1.7 Specimen Edge Sealing Procedure, Advance Wind Turbines[R], Inc., Seattle, WA, June, 1997.
    [49] GEORGE MARSH.复合材料—风能的首次实现者[J].Reinforced plastics,2003,47(5):29
    [50]杨正位.丹麦风力发电的成功经验[J].建筑装饰材料世界, 2006(5):46-49
    [51]彭荣才.美国刮起风力发电新风[J].农村电工, 2006(6):50
    [52]景兴宇,秦海岩.淘金千亿风电市场[J].新财富, 2006(5):194-199
    [53] Testing blade integrity[J].Reinforced plastics,2003,47(5):44
    [54]国产风力发电机FRP叶片一瞥[J].风力发电,2001(4) :23-27
    [55]董永棋.国外风力发电机FRP叶片近况[J].纤维复合材料, 2001,(3):46—49
    [56]“河北1.3MW风力发电机组风轮叶片研制”列入国家国际科技合作重点项目[J].广西电力建设科技信息, 2005(3):66-67
    [57]丹麦维斯塔斯[J].节能与环保, 2006(5):7
    [58]威斯塔斯公司在中国设风机叶片生产厂[J].机电工程技术, 2005(11):2
    [59]李娜,荣振威.我国风电设备制造业的现状和发展前景[J].电力技术经济,2005,17(5):5-10
    [60]晓菲.我国被列为13个未来最大风电市场[J].军民两用技术与产品,2005(8):25
    [61]苑国良.中航惠腾:自主创新推进风力发电叶国产化[J].中国电子商情:基础电子,2006(4):71-72
    [62]邱冠雄,刘良森,姜亚明.纺织复合材料与风力发电[J].纺织导报,2006,(5):56-61
    [63]叶枝全,黄继雄,陈严等.风力机新系列翼型的气动性能研究[J].太阳能学报,2002(2)
    [64]宋础,刘汉中.海上风力发电场开发现状及发展趋势[J].太阳能, 2006(2):17
    [65]风电产业自主创新能力不断提高[J].企业技术进步, 2006,(3):45
    [66]何洵.加快我国风力发电规模开发和利用势在必行[J].广东电力.2005(7):18-19, 54
    [67]王超,张怀宇.风力发电技术及其发展方向[J].电站系统工程.2006(2):11-13
    [68] Linscott B S and Shaltens R K and EggersAG: Aluminum Blade Developmentfor the Mod- OA 200-kWWind Turbine[R]. DOE/NASA/20370-20, NASA TM-82594,Dec. 1981.
    [69] Detailed Test Plan, Blade Manufacturing Project AN-0166, Section 2.2.2- Replace Old-Growth Veneer, Section 3.1.7 Specimen Edge Sealing Procedure, Advance Wind Turbines[R], Inc., Seattle, WA, June, 1997.
    [70] Spera D A , Esgar J B, Gougeon M A and Zuteck M D.“Structural Properties of Laminated Douglas Fir/ Epoxy Composite Material”(R), NASA reference Publication 1236, DOE NASA/20320-76, 1990.
    [71] Robert Z. Poore. Advanced Blade Manufacturing Project Final Report(R).SAND99-2017Unlimited Release Printed August 1999. Sandia Contract– AN-0166
    [72] Michael Sch?larth Koefoed. Modeling and Simulation of the VARTM Process for Wind Turbine Blades(D). Institute of Mechanical Engineering Aalborg University. Industrial Ph.D. Dissertation. JANUARY 2003, ISSN 0905-2305.LM Glasfiber A/S.
    [73] ICBO Evaluation Service[R], Inc .5360 Workman Mill Road, Whittier, California 90601.ER-4979, Reissued April 1,2002
    [74] Standard Test Methods for Small Clear Specimens of Timber(R).Designation:D143-94 (Reapproved 2000)
    [75] Standard Test Methods of Static Tests of Lumber in Structural Sizes(R).Designation:D198-02
    [76] Standard Test Methods for Structural Panels in Planar Shear (Rolling Shear)(R).Designation:D2718-00
    [77] Bertelsen W D and Zuteck M D.“Investigation of Fatigue Failure Initiation and Propagation in Wind- Turbine-Grade Wood/Epoxy Laminate Containing Several Veneer Joint Styles”[J], Phase 2 Report, U.S.Department of Energy Contract No. DE-AC02-86ER80385, December, 1990.
    [78] Standard Test Methods for Structural Panels in Shear Through-the-Thickness(R). Designation: D2719-89 (Reapproved 2001)
    [79] Standard Test Methods for Structural Panels in Tension(R).Designation:D3500 -90 (Reapproved 2003)
    [80] Standard Test Methods for Mechanical Properties of Lumber and Wood-Base Structural Material(R). Designation: D 4761– 02
    [81] Standard Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I- Joists(R).Designation: D 5055– 04
    [82] Standard Specification for Evaluation of Structural Composite Lumber Products (R).Designation: D 5456– 03
    [83] Guidelines for Design of Wind Turbines(R), 2nd Edition, 2002.
    [84] ISO 9001 Quality systems– Model for quality assurance in design, development, production, installation and servicing(R).
    [85] International Accreditation Service, Inc.CERTIFICATE OF ACCREDITATION.WOOD MATERIALSAND ENGINEERING LABORATORY WASHINGTON STATE UNIVERSITY[R].Testing Laboratory TL-246
    [86] Wind Turbine Testing and Certification (R).Wind Turbine Blade Workshop February 24-35, 2004. Sheraton Uptown, Albuquerque, NM
    [87] Bertelsen W D and Zuteck M D.“Static and Fatigue Tension Tests of Small-Blade Load- Transfer Studs Optimized for Cost Effectiveness”[R], GOUGEON BROTHERS, INC., October, 1994.
    [88] Pedersen,M.U, and C.O.Clorius. The Strength of Glued-in Bolts after 9 years in Situ Loading(R). Technical University of Denmark, DK9601314,NEI-DK-2303,1995.
    [89] Jamieson,P“.The Design of Wood Epoxy Wind Turbine Blades”.Eighth ASME Wind Energy Symposium(R). D.E.Berg and P.C.Klimas, eds, SED-Vol.7,ASME,1989,p.147.
    [90] Stipe CW, Musial M Jenksand S Hughes,Static Ramp and Compression-Compression Fatigue Testing of Sitka Spruce Specimens(R). National Renewable Energy Laboratory,Golden,1999.
    [91] Bonfield, P.W.I.P.Bond,C.L. Hacker and M.P.Ansell,“Fatigue Testing of Wood Composites for Aerogenerator Blades. Part VII,Alternative Wood Species and Joints”(R).Wind Energy Conversion, B.R.Clayton,ed, Mechanical Engineering Publications Ltd, 1992,p.243.
    [92]戴起勋,赵玉涛.材料设计教程(M).北京:化学工业出版社,2007:2-15.
    [93]熊家炯.材料设计(M).天津:天津大学出版社,2000:7-22.
    [94]冯端,师昌绪,刘制国.材料科学导论---融贯的论述(M).北京:化学工业出版社,2002:7-45
    [95]吕允文,李恒德.新材料开发与材料设计[J].材料导报,1993,3:1-4.
    [96] Elliott A S and Wright A D.“ADAMS/WT:An Industry-Specific Interactive Modeling Interface for Wind Turbine Analysis,”Wind Energy 1994, Eds. W.D. Musial, S. M. Hock and D. E. Berg. SED-Vol. 14. ASME; pp:111-122, January 1994.
    [97] Wilson R E, Freeman L N, Walker S N and Harman C R.“FAST Advanced Dynamics Code,Two- bladed Teetered Hub Version 2.4 User's Manual”Final Report(R): National Renewable Energy Laboratory Golden, CO, March 1996.
    [98] Dohrmann, C. R.,“Draft Users Manual for PESTDY”(R). Sandia National Laboratories internal memorandum, April 22,1996.
    [99]宋孝金.杉木间伐材的材性和工业化利用[J].木材工业,2000,14(2):27-29.
    [100]李坚等.人工林杉木幼龄材与成熟材的界定及材质早期预测[J].东北林业大学学报,1999, 27(4):24-28.
    [101]陈瑞英,吴初纯.福建杉木间伐材的物理力学性质[J].东北林业大学学报,2000,28(4):41-43.
    [102]邹双全,方钦兰,陈金明.杉木间伐材工业利用问题研究[J].建筑人造板,2000,(3):18-20.
    [103]陈雷,徐咏兰.人工林杉木单板层积材制造工艺的研究[J].木材工业,2000,14(6):3-5.
    [104]吴纯初,宋孝金,许若璇.杉木间伐材生产胶压木工艺的初步研究[J].木材工业,1993,7(3):13-17.
    [105]钱俊,叶良明,张文标.速生杉木为基材的水曲柳薄木贴面初步研究[J].浙江林业科技,1999,19(4):14-17
    [106]胡育辉.南方人工速生杉木间伐材在定向结构刨花板中应用[J].木材加工机械,1999, (4):18-19.
    [107]钱俊.速生杉木的改性研究[J].木材工业,2001,15(2):14-16.
    [108]中华人民共和国林业部科技司.林业标准汇编(五)(M).北京:中国标准出版社,1996:168-171.
    [109]中华人民共和国林业部科技司.林业标准汇编(五)(M).北京:中国标准出版社,1996:181-184.
    [110]中华人民共和国林业部科技司.林业标准汇编(五)(M).北京:中国标准出版社,1996:188-192.
    [111]中华人民共和国林业部科技司.林业标准汇编(五)(M).北京:中国标准出版社,1996:199-201.
    [112]中华人民共和国林业部科技司.林业标准汇编(五)(M).北京:中国标准出版社,1996:205-208.
    [113]中华人民共和国林业部科技司.林业标准汇编(五)(M).北京:中国标准出版社,1996:213-216.
    [114]王习术.材料力学行为试验与分析(M).北京:清华大学出版社,2007:85-106.
    [115]沈观林.复合材料力学(M).北京:清华大学出版社,1994:11-17.
    [116] Franco C,Victor M, Aguilar G, Maria A, Suleman A,et al. Modeling and design of adaptive composite structures[J].Computer Methods in Applied Mechanics and Engineering, 2000,185(2-4):325-346.
    [117] Ladeveze P,Guitard L, Champaney L, Aubard X.Debond modeling for multidirectional composites[J]. Computer Methods in Applied Mechanics and Engineering,2000,185(2-4):109-122.
    [118] Akbar A K,Glyn L,Lin Y,Mai Y W.On the fracture mechanical behaviour of fibre reinforced metal laminates(FRMLs) [J].Computer Methods in Applied Mechanics and Engineering, 2000, 185(2-4): 173-190.
    [119] KaKadaY, Egusa T. Vibration of the fuel assembly of a marine reactors[J]. Nuclear Engineering and Design,1968,8:578-584.
    [120]周美玲,谢建新,朱宝全.材料工程基础(M).北京:北京工业大学出版社,2006:376-443.
    [121]黄晓东,江泽慧,任海青等.风力发电叶片材料的发展概况和趋势[J].《风力发电》,2007,(3):26-34.
    [122]黄晓东,江泽慧,陈玲.风电叶片复合材料杉木斜接工艺研究[J].《林业科技开发》,2008,22(2):77-79.
    [123]黄晓东,江泽慧,陈玲,任海青.斜接角度对风电叶片复合材料性能影响研究[C].“林木机械装备与循环经济论坛”论文集.2008.3.7-10北京国际展览中心技术报告厅. P:121-123.
    [124]黄晓东,江泽慧,孙正军.风机叶片的发展概况和趋势[J].《太阳能》,2007,(4):37-39.
    [125]盖晓玲,田德,王海宽等.风力发电机叶片技术的发展慨况与趋势[J].《农村牧区机械化》,2006, (4):53-56.
    [126]中华人民共和国林业部科技司.林业标准汇编(六)(M).北京:中国标准出版社,1996:163-164.
    [127]中华人民共和国林业部科技司.林业标准汇编(六)(M).北京:中国标准出版社,1996:155-156.
    [128]王耀先.复合材料结构设计(M).北京:化学工业出版社,2001:126-165.
    [129]张钧林,严彪,王德平等.材料科学基础(M).北京:化学工业出版社,2006:285-306.
    [130] Drzal L T, Rich M J, Lioyd P E. Adhesion of fibers to epoxy matrices, 1. The role of fiber surface treatment[J].Journal of Adhesion, 1982, (16):1
    [131]曹海琳,黄玉东,张志谦等.碳纤维三维立体织物中纤维表面改性的均一化研究[J].复合材料学报,2000,17(3):20
    [132] Huang Y D, Zhang Z Q,Tong Z. Interfacial monoitoring During the processing of carbon- fiber/ PMR- 15 polyimide composites[J]. Journal of Materials Processing Technology,1993, (37):559.
    [133] Donnet J B, Guilpain G. Surface characterization of carbon fibers[J]. Composites,1991(22):59.
    [134]龙军,张志谦,魏月贞等.接枝偶联剂对F-12纤维/环氧复合材料界面改性的研究[J].复合材料学报,2000,17(3):15
    [135] Chiao C C, Moore R I. Measurement of shear properties of fiber composites[J]. Journal of Composites, 1976, 8(3):161.
    [136] Liu L, Huang Y D, Zhang Z Q. Ultrasonic modification of aramid fiber-epoxy interface[J]. Journal of Applied Polymer Science, 2001, 81(11):2764.
    [137] Broutman L J. Glass-resin joint strengths and their effect on failure mechanisms in reinforced pities[J]. Polymer England Science, 1966 (7):263.
    [138] M E Tuttle and H F Brinson. Resistance-foil strain-gage technology as applied to composite materials[J]. Journal of Experimenal Mechanics,1984,24(1):54-62.
    [139] S T Burr, P G Ifju and D H Morris. A method for determining critical strain gage size in anisotropic materials with large repeating unit cells[J]. Experimenal Techniques,1995 September/ October,25-27.
    [140]雷加富.中国竹资源和竹产业的可持续发展战略[M].中国热带地区竹藤的发展(论文集第6卷).北京:中国林业出版社,2001
    [141]张齐生,孙丰文.竹木复合结构是科学合理利用竹材资源的有效途径[J].林产工业,1995,22(6):4-6.
    [142]李世东,许传德.中国竹业发展历程与21世纪发展战略[J].竹子研究汇刊,1998,19(1):1-5.
    [143]周芳纯.20世纪竹业回顾和21世纪的展望[J].林业科技开发,1999,(1):7-9.
    [144]唐永裕.中国竹材加工利用的现状及发展[M].中国热带地区竹藤的发展(论文集第6卷).北京:中国林业出版社,2001.
    [145]赵仁杰,喻云水.我国竹材加工利用的现状与发展建议[C].面向二十一世纪我国人造板工业发展问题研讨会论文集.北京,1995.
    [146]朱石麟,李卫东.日本的竹类资源及其开发利用[J].世界林业研究,1994,(1):59-62.
    [147]王松永.硬化积层竹材之性质[J].林産工業(台湾),1990,9(1):134-149.
    [148]陈周宏,欧信斌.竹青化妆板之开发研究[J].林産工業(台湾),2001,20(1):29-38.
    [149]张齐生孙丰文.我国竹材工业的发展展望[C].面向二十一世纪中国木材工业发展问题研讨会论文集.福建,1995.
    [150]叶克林.竹材特性及竹材的工业利用[J].木材工业, 1993,7(2):33-36.
    [151]张齐生,孙丰文.竹木复合集装箱底板的研究[J].林业科学,1997,33(6):546-553.
    [152]张齐生,孙丰文,李燕文.竹木复合集装箱底板使用性能的研究[J].南京林业大学学报, 1997,21(1):27-32.
    [153]鲍逸培.竹木复合集装箱底板开发与研究[J].建筑人造板,1997,(3):13-16.
    [154]何翠花.竹木胶合板的试制报告[J].木材工业,1991,5(4):50-51.
    [155]钱俊,叶良明,金永明.速生杉木与竹黄篾复合板的研究[J].建筑人造板,1999,(2):35-37.
    [156]钱俊,叶良明,金永明.速生杉木与竹黄篾复合板的研究[J].建筑人造板,1999,(2):35-37.
    [157]王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能的研究[J].木材工业,1991,5(3):6-10
    [158]王思群,华毓坤.改善竹木胶合的研究[J].林产工业,1992,19(6):6.
    [159]许斌,蒋身学.竹木复合层积材橫纹静摩擦系数的研究[J].林业科技开发,2000,14(6):22-23.
    [160]殷苏州,李北冈,胡德彪.竹材覆面定向刨花板性能的研究[J].木材工业,1997,11(4):8-11.
    [161]吴章康,张宏健,黄素永等.竹木复合中密度纤维板工艺条件的研究[J].木材工业,2000, 14(3):7-10
    [162]范毛仔,许若璇,杨爱和.碎单板竹片平行胶合材的研究[J].木材工业,1995,9(1):10-13.
    [163]郑忠福.单板贴面竹编竹材层积材的生产工艺研究[J].建筑人造板,1995,(1):13-15.
    [164]糜嘉平.我国竹胶合板模板的应用现状及发展前景[J].人造板通讯,2001,(9):6-8.
    [165]马灵飞,马乃训.毛竹材材性变异的研究[J].林业科学,1997,33(4):356-364.
    [166]于文吉,江泽慧,叶克林.竹材特性研究及其发展[J].世界林业研究,2002,15(2):50-55.
    [167]郑睿贤.毛竹工业利用分析[J].竹子研究汇刊,1998,17 (3):1-9.
    [168]华毓坤.中国竹质复合材料的发展[J].人造板通讯,2001, (10):3-5.
    [169]向士龙,蒋远舟.非木材植物人造板[M].北京:中国林业出版社,2001.
    [170]张齐生.中国竹材工业化利用[M].北京:中国林业出版社,1995.
    [171]陈双林,袁亚平,朱文胜.竹林定向培育与综合利用技术开发-国家星火计划项目实施总结(J).竹子研究汇刊,2001,20 (1):10-13.
    [172]辉朝茂,杜凡,杨宇明.竹类培育与利用(M).北京:中国林业出版社,1996.
    [173]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化.南京林业大学学报,2002,26 (2):7-10
    [174]张精一.浅论竹材开发利用现状与发展前景(R).中南林业调查规划,1997,16(1):49-52.
    [175]关明节,张齐生.竹材学专题文献分析(J).竹子研究会刊,2001,20 (3):69-72.
    [176] Walter Liese. Structural research on Bamboo and Rattan for their wider utilization(J).Journal of Bamboo Research, 1996,15(2):1-14.
    [177]李源哲,张寿槐,白同仁等.中国七种竹材的物理力学性质(R).中国林业科学院木材工业研究所研究报告,1986.
    [178]王朝晖.竹材材性变异规律与加工利用研究(D).中国林业科学院博士研究论文,2000,北京
    [179]腰希申,梁景森,马乃训等.中国主要竹材的微观构造(M).大连:大连出版社,1992.
    [180]蓉配瑞.毛竹及其几个变种变形的竹材解剖形态获得比较观察(J).竹子研究会刊,1985,4(2):89-97.
    [181]江泽慧,邹惠渝,阮锡根等.应用X射线衍射技术研究竹材超微结构---竹材纤丝角(J).林业科学,2000,36(3):122-125.
    [182]曾其蕴,李世红.竹节对竹材力学强度影响研究(J).林业科学,1992,28(3):247-251.
    [183]王宝金.竹材弦面纵向切削阻力的研究(J).竹子研究汇刊,1994,13(4):30-36.
    [184]夏经国.竹材的电阻率、导热系数的研究(J).竹类研究,1990(1):18-26.
    [185]腰希申,梁景森,马乃训.竹秆表面的微形态扫描电镜观察(J).1990,9(1):21-26.
    [186]温太辉,周文伟.中国竹类维管束解剖研究初报(之一)(J).竹子研究汇刊,1984,3(1):1-21.
    [187]温太辉,周文伟.中国竹类维管束解剖研究初报(之二)(J).竹子研究汇刊,1985,4(1):28-41.
    [188] Water Liese.竹子结构与其性质和利用的关系(C).国际竹类工业利用研讨会论文集.北京,1992,83-86.
    [189]冼杏娟,冼定国,叶颖薇.竹纤维增强树脂复合材料及其微观形貌(M).北京:科学出版社,1995
    [190]傅福机.化学处理对竹材炭化的影响试验(J).江苏林业科技,2001,28 (6):24-25.
    [191]腰希申,梁景森,马乃训等.中国主要竹材的微观构造(M).大连:大连出版社,1992
    [192]蓉配瑞.毛竹及其几个变种变形的竹材解剖形态获得比较观察(J).竹子研究会刊,1985, 4(2):89-97
    [193]房桂干,王菊华,任维羡等.毛竹的形态学特性、超微结构及木素分布(J).中国造纸学报,1989,4(1):41-49
    [194]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化(J).南京林业大学学报(自然科学版),2002,26(2):7-10
    [195]王戈.毛竹/杉木层积复合材料及其性能(D).中国林业科学院博士研究论文,2003,北京
    [196]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002,1-7
    [197]郝立新,潘炯玺.高分子化学与物理教程[M].北京:化学工业出版社,1997,58-81
    [198]张留成,瞿雄伟,丁会利.高分子材料基础[M].北京:化学工业出版社,2002:322
    [199] B.E.瑞德,G.D.丹恩著.过梅丽,刘士昕译.聚合物和复合材料的动态性能测试[M].上海:上海科学技术文献出版社,1986,1-3
    [200]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,1990,343-366
    [201] (美)Tony Burton .风能技术[M].北京:科学出版社,2007:245-250
    [202]程强.风轮叶片用竹质复合材料制备及性能评价的研究.中国林业科学院博士研究论文,2007,北京
    [203] H J Sutherland.“On the Fatigue Analysis of Wind Turbines”(R). Report SAND99-089, Sandia National Laboratories, Albuquerque, NM (1998)
    [204] J F Mandell and DD Samborsky.“DOE/MSU Composite Material Fatigue Database: Test Methods, Materials, and Analysis”(R). Report SAND97-3002, Sandia National Laboratories, Albuquerque, NM (1997).
    [205] J F Mandell, D D Samborsky and D S Cairns.“Fatigue of Composite Materials and Substructures for Wind Turbine Blade”(R). Contractor Report SAND2002-077, Sandia National Laboratories, Albuquerque, NM (2002).
    [206] J F Mandell, D D Samborsky, D W Combs, M E Scott and D S Cairns.“Fatigue of Composite Material Beam Elements Representative of Wind Turbine Blade Substructure”(R). Report NREL/SR-500- 24374, National Renewable Energy Laboratory, Golden, Co (1998).
    [207] N K Wahl, J F Mandell, D D Samborsky.“Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates”(R). Report SAND2002-0546, Sandia National Laboratories, Albuquerque, NM (2002).
    [208] Wang Xishu, Li Yongqing. Characterization of the fatigue surface microcrack growth in vicinal inclusion for powder metallurgy alloys. ACTA Mechanica Solida Sinica, 2003,16(4):327-333
    [209] Wang Xishu, Zhang Lina,Zeng Yanping, Xie Xishan. SEM in-situ investigation on fatigue cracking behavior of P/M Rene95 alloy with surface inclusions. Journal of University of Science and Technology Beijing, 2006,13(3):244-249
    [210]兰州大学强度韧性组.低周疲劳和高周疲劳da/dN的研究.机械强度,1980,10:84-89
    [211] Basquin O H .The circular diagram of stress and its application to the theory of internal froction. Journal of the Western Society of Engineering,1912,11:1-7
    [212]国家质量技术监督局.GB/T17657-1999人造板及饰面人造板理化性能测试方法。中国标准出版社,1999
    [213] ASTM Designation:D3500-1990(Reapproved 2003) Standard Test Methods for Structural Panels in Tension(R).
    [214] ASTM Designation :D 4761-2002 Standard Test MethodsFor Mechanical Properties of Lumber and Wood-Based Structural Material(R).
    [215] Markwardt L J and W G Loungquist . "Tension T e s t Methods f o r Wood, Wood-Base Materials and Sandwich Construction . "Forest Products Laboratory Report (R). N o . 2055, June 1956
    [216] Chamis C C and J H Sinclair , "Ten-Degree Off-Axis Test for Shear Properties i n Fiber Composites." Experimental Mechanics(R), September 1977
    [217] Bertelsen W D ."Fatigue Strength Testing of Scarf Jointed Douglas Fir/Epoxy Laminates Containing High and Low Levels of Moisture. " Gougeon Brothers Inc. Bay City , Michigan, Report (R).NO. GB-12, May 1984
    [218] Kensche C W . Fatigue of Materials and Components for Wind Turbine Rotor Blades(R).EUR 16684, European Commission. Luxembourg, 1996
    [219] Spera D A, J B Esgar, M. Gougeon and M.D Zuteclq .Structural Properties of Laminated Douglas FirLEpoxy Composite Material(R). DOWNASA Reference Publication 1236, DOE/NASA/20320-76, Cleveland 1990
    [220] Handbook of Fatigue Testing(M), S.R Swanson, ed., ASTM STP 566, Philadelphia 1974
    [221] Wood Handbook: Wood as an Engineering Material(R). Forest Product Laboratory, US Dept of Agriculture, Agriculture Handbook 72, Washington, 1987
    [222] Jamieson P.“The Design of Wood Epoxy Wind Turbine Blades”(R).Eighth ASUE Wind Energy symposium, D E Berg and PC Klhnas, eds, SED-VO1.7, ASME, 1989, p. 147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700