用户名: 密码: 验证码:
碳酸二苯酯相关合成体系高压相平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二苯酯是一种重要的有机碳酸酯。本课题选择合成碳酸二苯酯相关物系即选择一氧化碳、氧气、苯酚、碳酸二甲酯、甲醇、乙醇等物料作为研究对象,进行高压气液相平衡基础研究。
     利用一套测定高压气液相平衡的实验装置,采用循环法测定了一氧化碳和氧气在2.0~9.0 MPa压力范围内、在各种纯溶剂和混合溶剂中的溶解度数据。实验结果表明,一氧化碳和氧气在单一溶剂和混合溶剂中溶解度均随压力的升高而增大,而随温度的变化不大。
     用各种不同的立方型状态方程如SRK、PR和PRSV方程,加上几种不同形式的混合规则如传统的二次型混合规则、Wong-Sandler混合规则、MHV1混合规则、NRTL混合规则以及van Laar混合规则,对实验的三元体系进行了关联。计算了一氧化碳、氧气在单一溶剂和混合溶剂中的亨利系数。由一氧化碳-苯酚-乙醇、一氧化碳-碳酸二甲酯-甲醇、氧气-苯酚-乙醇、氧气-碳酸二甲酯-甲醇三元体系的实验溶解度数据,回归出相应的二元交互作用参数kij和二元交互作用能量参数Δgij。关联结果表明,改进的计算模型(方法八)与实验值有较好的吻合,平均误差小于2%。一氧化碳、氧气在溶剂中的逸度f? iL与压力呈线性关系。关联得到了恒温恒压条件下f? CLO与混合溶剂浓度xi的模型。
     进一步选用UNIFAC法对苯酚-乙醇、氧气-碳酸二甲酯等二元体系研究组分的活度系数。定义了新的基团-碳酸基团,利用实验数据关联出碳酸基团的UNIFAC参数,补充了文献中这个基团所缺少的数据。计算结果表明用活度系数法研究高压气液相平衡,对苯酚-乙醇、氧气-碳酸二甲酯二元体系的估算与实验值能很好地吻合。关联的平均误差为0.675 %。对氧气在碳酸二甲酯-甲醇、苯酚-乙醇混合溶剂溶解度的预测也有较好的结果。
     利用DA-505U型振动管密度仪测定了苯酚-乙醇体系在五个不同温度下的密度。通过对Redich-Kister方程进行修正,得出了过剩摩尔体积的计算模型,同时回归出苯酚-乙醇体系在298.15K~348.15K温度范围内的模型参数。为了能预测苯酚-乙醇体系的热力学性质,选用SRK方程和HVOS混合规则计算了该体系的AE,为进一步地研究该溶液的活度系数奠定了一些基础。
     总而言之,论文所测定的一氧化碳和氧气在高压下于纯溶剂和混合溶剂中的溶解度和提供的计算模型,是碳酸二苯酯的合成、分离等工程化应用所必需的数据。碳酸基团的定义及其回归的参数,将使得用基团贡献法的对该体系的计算更为可能。苯酚-乙醇体系过剩体积、过剩AE自由能研究以及活度系数的估算,也提供一批热力学数据。
Diphenyl carbonate is an important aromatic carbonate. Its related reactants such as carbonate monoxide, oxygen, phenol, dimethyl carbonate, methanol and ethanol and so on, were chosen as the systems that were studied on phase equilibrium at high pressure.
     The solubilities of CO and O2 in some above solvents and their mixed solvents were determined at the pressure range from 2.0 MPa to 9.0 MPa by a set of the experimental apparatus through cycle method for gas liquid equilibria systematically. The experimental results show that all the solubilities of CO and O2 in unitary solvents and their mixed solvents are increased along with the rise of pressure.
     The calculation of gas liquid equilibrium for the ternary systems can be figured up using various cubic equation of state, ie SRK, PR and PRSV EOS etc. At the same time, the diversity mixing rules, for example, the traditional quadratic form mixing rules, Wong-Sandler mixing rules, MHV1mixing rules, NRTL mixing rules and van Laar mixing rules, were coupled with the expression of the constant of EOS. Henry’s constants of CO and O2 in the single solvent and mixing solvents were fitted to the experimental data .The binary interaction parameters kij and the binary interaction energy parametersΔgij were regressed from the solubilities for the experimental systems for CO-C6H5OH-C2H5OH、CO-(CH3O)2CO-CH3OH、O2-C6H5OH-C2H5OH and O2-(CH3O)2CO-CH3OH, respectively. It is fairly obvious from the correlated results that the agreement between experimental data of solubility and calculated ones with the proposed model (method 8) was rather satisfactory. The mean error is less than 2 %. The fugacity f? iL for the components CO and O2 has a good linear function. At the constant temperature and pressure, the new model can be presented on the relationship between the fugacity f? iL and the mole fraction of component (1) x1 in the mixed solvents.
     Furthermore, the activity coefficientsγi for the component i in the binary systems such as phenol-ethanol, oxygen-dimethyl carbonate can be computed by employing UNIFAC method. A new group carbonate-group has been defined in dimethyl carbonate and its group volume parameter, group surface area parameter and group interaction energy parameters in the studied systems were derived from the experimental data. It should be noted that these parameters is a supplement because carbonate-group is lack in the UNIFAC method literatures. According to the calculated results, they have an approving agreement with the experimental solubilities. The mean error calculated is 0.675%。Besides, the prediction of solubility can be suitable for O2 in C6H5OH-C2H5OH and (CH3O)2CO-CH3OH mixed solvents, respectively. But the calculated accuracy for the gas liquid equilibrium at high pressure is inferior to one obtained from EOS method.
     On the other hand, the densities were measured by a vibrating densimeter and the excess molar volumes VE were calculated at five temperatures and atmospheric pressure for phenol-ethanol. By the improved Redlich-Kister equation, the model parameters of VE were fitted to the experimental density data at the temperature range from 298.15 K to 348.15 K.For prediction of the thermodynamic property for phenol-ethanol, the AE was discussed by SRK EOS coupled with HVOS mixing rules. It can be concluded that EOS method can be used for the calculated of the liquid solution by matching the mixing rules. Hence these works are an investigated basis of the activity coefficient.
     In a word, firstly the measured solubilities of CO and O2 in unity solvent and mixed solvents and its computed model may be an essential data provided for the synthesis technology and separation process of diphenyl carbonate. Secondly, the definition and the regressive parameters of new carbonate-group will make the calculation of group contribution more realiable. Finally, the excess molar volume and the excess Helmholtz free energy were studied, and a series of activity coefficient were first presented so that it makes the prediction of the thermodynamic property for phenol-ethanol becomes possible.
引文
[1] 梅付名, 李光兴, 莫婉玲, 碳酸二苯酯的合成工艺进展, 现代化工, 1999, 19(5):13~15
    [2] 柴国梁, 聚碳酸酯发展动向, 化工新型材料, 1999, 27(6): 9~12
    [3] Goyal M, Agahata R, Sugiyama I J et al, Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd-Cu based redox catalyst , J Mol Cat A: Chemical, 1999, 137:147~154
    [4] Hirotoshi I, Mistsuru U, Kazuhiko T et al, Oxidative carbonylation of phenol carbonate catalyzed by Pd-Sn complexes with redox catalyst, J Mol Cat A: Chemical, 1999, 138:311~313
    [5] 吴广文, 吴元欣, 马沛生等, 非均相氧化羰化合成碳酸二苯酯的研究, 第一届全国化学工程与生物化工年会论文集, 北京, 2004,176
    [6] 张光旭, 马沛生, 吴元欣, 氧化羰基化一步合成碳酸二苯酯的研究进展, 天然气化工,2002, 2: 23~29
    [7] Takagi W, Yoneyama T, Kujira K, Preparation of carbonates as materials for polycarbonates, JP 96 193850,1996
    [8] Ilya I M, Michael N V, Tatiana V et al, Catalysis with a palladium giant cluster:phenol oxidative carbonylation to diphenyl carbonate conjugated with reductive nitrobenzene conversion, J Mol Cat A: Chemical,1996,108:77~85
    [9] Zhang G X, Wu Y X, Ma. P S et al, Study on direct synthesis of diphenyl carbonate with heterogenous catalytic reactionⅤ: Screen of catalysts and optinum of synthesis condition, Chinese J of Chem Eng, 2003,11 (5):526~530
    [10] Zhang G X, Ma P S, Wu Y X et al, Study on direct synthesis of diphenyl carbonate with heterogenous catalytic reactionⅥ: Effect of methods loading Sn and its loading content on activity of Sn-Pd supported catalyst ,Chinese J of Chem Eng, 2004,12(2): 191~195
    [11] 张立庆, 丁江浩, 陈建刚, 碳酸二甲酯-甲醇-正丙烷三元体系的汽液平衡研究, 天然气化工, 2003, 28
    [12] 张光旭, 吴元欣, 马沛生等, 一氧化碳等气体在苯酚中的溶解度的测定及关联, 化工学报, 2005, 56(11): 2039~2045
    [13] Hirotoshi I, Meenakshi G, Misuru U et al, Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd dinuclear complex bridged with pyridylphosphine ligand, J Mol Cat A: Chemical, 1999, 148:289~293
    [14] Hayduk W, Buckley W D, Can J Chem. Eng, 1971,49: 667~671
    [15] Vavasovi A, Toniolo L, Multistep electron transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate, J of Mol Cat A: Chemical, 1999, 139:109~119
    [16] Ishii H, Takeuchi K, Asai M et al, Oxidative cabonylation of phenol to diphenylcarbonate catalyzed by Pd-pyidyl complexes tethered on polymer support, Catal Commun, 2001, 2(3):145~150
    [17] Sander B, Skjold J S, Rasmussen P., Gas solubility calculations I UNIFAC, Fluid phase equilib , 1983, 11:105~126
    [18] Hirotoshi I, Meenakshi G, Mistsuru U et al, Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd complex with diimine ligands, Cat Lett, 2000, 65:57~60
    [19] Dohrn R, Brunner G, High-pressure fluid phase equilibrium: Experimental methods and system investigated, Fluid Phase Equilib., 1995, 106:213~282
    [20] Dohrn R, Bunz A P, Devlieghere F, Experimental measurements of phase equilbria for quaternary systems of glucose, water, CO2 and ethanol with a novel apparatus, Fluid Phase Equilib, 1993, 83:149~158
    [21] Brunner E, Hultenschmidt W, Schlichtharle G, Fluid mixtures at high pressures IV, Isothermal phase equilibria in binary mixtures consisting of (methanol + hydrogen or nitrogen or methane or carbon monoxide or carbon dioxide), J Chem Thermodynamics, 1987,19:273~291
    [22] Brunner E, Hultenschmidt W, Schlichtharle G, Fluid mixtures at high pressures VIII, Isothermal phase equilibria in the binary mixtures: (ethanol - hydrogen or methane or ethane), J Chem Thermodynamics, 1990, 22:73~81
    [23] 马沛生,华超, 夏淑倩, 甲烷在烷烃中溶解性质研究, 高校化学工程学报,2002,16(6):680~685
    [24] 华超, 马沛生, 夏淑倩, 时运杰, 甲烷在烃类中溶解度规律分析, 化学工程与工艺, 2002,19(6):405~410
    [25] 韦园红, 陈小鹏, 童张法, 廖丹葵, 高压相平衡精密实验测定研究, 广西大学学报, 1998, 23: 2~6
    [26] O’Connell J P, Prausnitz J M, Thermodynamics of gas solubility in mixed solvent, Ind Eng Chem Fandam, 1964, 3(4): 347~351
    [27] 夏淑倩, 马沛生, 郭玉高, 华超, 高压下甲烷在环己烷~乙醇及苯~乙醇中的溶解度测定与研究, 石油化工, 2004, 33:4
    [28] Fischer K, Gmehling J, Further development, status and results of the PSRK method for the prediction of vapor-liquid equilib. and gas solubilities, Fluid Phase Equilib, 1996,121:185~206
    [29] Morrison T J, Billett F, The measurement of gas solubilities, J Chem Soc,1948, 3:2033~2035
    [30] 刘凡, 张成芳, 动力学法测定气体的溶解度, 华东化工学院学报, 1983,(1): 22~31
    [31] 卞白桂, 王延儒, 时钧, 氯化氢、氯甲烷在偏三甲苯中的溶解度, 化工学报, 1987,(4):385~393
    [32] 胡英, 徐英年, Prausnitz J M, 气体溶解度的分子热力学(Ⅱ)气体在非极性溶剂中的 Henry 常数, 化工学报, 1987, (1): 22~31
    [33] 徐英年, 胡英, 刘国杰, 气体溶解度的分子热力学(Ⅱ)气体在极性溶剂中的 Henry 常数, 化工学报, 1987, (1): 22~31
    [34] 付晓泰, 薛海涛, 王振平, 甲烷在三元复合液中的溶解度及表观溶解常数研究, 油田化学, 2000, 17(2): 177~180
    [35] O’Connell J P, Some aspects of Henry’s constants and unsymmetric convention activity coefficient, Acs Symposium Series 60, Acs, Washington 1977, 490
    [36] 普劳斯尼茨 J M 等, 用计算机计算多元汽-液和液-液平衡, 陈川美, 盛若瑜等译, 北京: 化学工业出版社, 1987
    [37] Renon H, Prausnitz J M, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J, 1968, 14:135~144
    [38] 普劳斯尼茨 J M, 流体相平衡的分子热力学, 骆赞椿, 吕瑞东, 刘国杰, 谭子明译, 第 2 版, 北京: 化学工业出版社, 1990
    [39] 朱自强, 姚善泾, 金彰礼, 流体相平衡原理及其应用, 第一版, 杭州: 浙江大学出版社,1990
    [40] 秦张峰, 徐英年, 胡英, 气体溶解度的分子热力学 V, 气体在混合溶剂中的Henry 常数, 华东化工学院学报, 1989, 15(5): 586~596
    [41] Zhong C L, Hirokatsu M, Modeling of gas solubilities in polymers cubic equation of state, Fluid Phase Equilib , 1998, 144: 49~57
    [42] Chen J, Lu J F, Li Y, A mixing rule for the size parameter from Carnahan-Starling equation and Boublik-Mansoori equation, Fluid Phase Equilib, 1997, 132:169~186
    [43] Gao J, Li L D, Zhu Z Y et al, Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule, Fluid Phase Equilib, 2004, 224:213~219
    [44] Keshtkar A, Jalali F, Moshfeghian M, Evaluation of vapor-liquid equilibrium of CO2 binary systems using UNIQUAC-based Huron-Vidal mixing rules, Fluid Phase Equilib, 1997, 140:107~128
    [45] Chorng H T, Coon E J, David Bluck et al, Connection between zero-pressure mixing rules and infinite-pressure mixing rules, Fluid Phase Equilib, 1998,153:29~44
    [46] Michael L, Michelsen, Matching equation of state mixing rules to activity coefficient model expressions, Fluid Phase Equilib, 1996, 121:15~26
    [47] Coutsikos P, Nikolaos S, Kalospiros, Dimitrios P, Tassios, Capabilities and limitations of the Wong-Sandler mixing rules, Fluid Phase Equilib, 1995, 108:59~78
    [48] Herbert W, Eugeniusz K, Phase equilibrium by equation of state: A short-cut method allowing for association, Fluid Phase Equilib, 1990, 59:147~169
    [49] Ali A, Shinta, Firoozabadi A, Equation of state representation of aqueous mixtures using an association model, Can J Chem Eng, 1995, 73:367~379
    [50] Chorng H T, Coon E J, Bluck D, Equations of state using an extended Twu-Coon mixing rule incorporating UNIFAC for high temperature and high pressure phase equilibrium predictions, Fluid Phase Equilib, 1997, 139:1~13
    [51] Peng D Y, Robinson D B, A new two-constant equation of state, Ind Eng Chem Fundamentals, 1976,15:59~64
    [52] Stryjek R, Vera J H, PRSV- an improved Peng-Robinson equation of state for pure compounds and mixtures, Can J Chem Eng, 1986, 64:323~333
    [53] Stryjek R, Vera J H, PRSV, An improved Peng-Robinson equation of state with new mixing rules for strongly nonideal mixures, Can J Chem Eng, 1986, 64:334~340
    [54] 吴素芳, 侯虞均, 二次形局部组成混合规则及在 M-H81 状态方程中的应用,浙江大学学报, 2003, 24(2):130~134
    [55] Fischer K, Gmehling J, Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities, Fluid Phase Equilib, 1995, 112:1~22
    [56] Huron M J, Vidal J, New mixing rules in simple equations of state for epresenting vapor-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilib, 1979, 3:255~271
    [57] Kemeny S, Farkas, Deak A, EOS mixing rules and quadratic concentration dependence of the second virial coefficient, Fluid Phase Equilib, 1997,128:131~135
    [58] Nasrifar K, Moshfeghia M, Liquid-liquid equilibria of water-hydrocarbon systems from cubic equations of state, Fluid Phase Equilib, 2002,193 :261~275
    [59] Marco A, Satyro, Mark A, Trebble, A correction to Sandler-Wong mixing rules, Fluid Phase Equilib, 1998, 143:89~98
    [60] Yang T, Chen J , Yan W et al , Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region, Chem Eng J, 1997, 67:27~36
    [61] Cyrus G, Vera H J, Performance of three mixing rules using different equations of state for hard-spheres, Fluid Phase Equilib, 2001, 187:321~336
    [62] Chorng H T, Sim D W, Vince Tassone, A versatile liquid activity model for SRK, PR and a new cubic equation of state TST, Fluid Phase Equilib, 2002, 194: 385~399
    [63] Ohta T, Representation of excess enthalpies by the PRSV equation of state with the modified Huron- Vidal first order and Wong-Sandler mixing rules, Fluid Phase Equilib, 1997, 129: 89~103
    [64] Gmehling J, Onken U, Vapor-liquid equilibrium data collection, DECHEMA, Frankfurt, Part, 2c, Alcohols and Phenols, Supplement 1, 1982
    [65] Smirno va N A, victorov V A I, Kuranov G L, New applications of equations of state in molecular models of complex fluid mixtures, Fluid Phase Equilib, 1998, 150:161~171
    [66] Cha S B, Fenghour A, Saville G et al, Two-fluid corresponding states model: a new mixing rule approximation, Fluid Phase Equilib, 1996, 125:33~43
    [67] Shaolei W, Changjun P, Jibin S et al, Equation of state for chain-like molecules using mixing rule based on two-fluid theory, Fluid Phase Equilib, 2003, 213: 99~113
    [68] Kristian M, Guo T M, The MKS-EOS with new mixing rules: the MKS/1 model, Fluid Phase Equilib, 1995, 112:199~215
    [69] Vassiliki L, Dimitrios T, Vapor-liquid equilibrium in polymer-solvent systems with a cubic equation of state, Fluid Phase Equilib, 2000, 168:165~182
    [70] Fernando J, Bazua-Rueda E, A local composition extension of the van der Waals mixing rule for PR cubic equation of state, Fluid Phase Equilib, 2005, 227: 97~112
    [71] Thomson G, Brobst K, Hankinson R, An improved correlation for densities of compressed liquids and liquid mixtures, AIChE J, 1982, 28(4): 671~676
    [72] Chang C H, Zhao X, A new generalized equation for predicting volumes of copressed liquids, Fluid Phase Equlibria, 1990, 58:231~238
    [73] Aalto M, Keskinen K I, Aittamaa J et al, An improved correlation for compressed liquid densities of hydrocarbons, Part 1, pure compound, Fluid Phase Equillibria, 1996, 114:1~19
    [74] Aalto M, Keskinen K I, Liquid densities at high pressures, Fluid Phase Equillibria, 1999,166:183~205
    [75] 马沛生著, 化工数据, 北京: 中国石化出版社, 1993, 198-274
    [76] Hankinson R, Thomson G, A new correlation for saturated densities of liquids and their mixtures, 1979, AIChE J, 25(4):653~663
    [77] Spencer C, Danner R, Improved equation for prediction of saturated liquid density, J Chem Eng Data, 1972, 17(2):236~241
    [78] Shaver R, Robinson R, Gasem K, A framework for the prediction of saturation properties: liquid densities, Fluid Phase Equilib, 1992, 78:81~98
    [79] Chen J, JianGuo M, Kwong Y C, Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard-Jones mixtures, Fluid Phase Equilib, 2001, 178:87~95
    [80] Bunz A P, Braun B, Janowsky R, Quantitative structure-property relationships and neural networds: correlation and prediction of physical properties of pure components and mixtures from molecular structure, Fluid Phase Equilib, 1999,158(1):367~374
    [81] Satyro M A, Trebble M A, On the applicability of the Sandler-Wong mixing rules for the calculation of thermodynamic excess properties-VE, HE, SE, CpE, Fluid Phase Equilib, 1996, 115:135~164
    [82] Djordjevic D B, Mirjana L et al, Simultaneous presentation of V , HE and CpE by the PRSV equation of state with the modified van der Waals one-fluid and Huron-Vidal-Orbey-Sandler mixing rules, Fluid Phase Equilib, 1999, 155:205~218
    [83] Kim S, Lee Y G, Park Y O, New local composition model and mixing rule for the mixtures asymmetric both in size and energy, Fluid Phase Equilib, 1997, 140:1~16
    [84] 杜治平、王越、王公应,碳酸乙烯酯与苯酚酯交换反应的热力学分析,天然气化工,2005,30(1):21-26
    [85] Chorng H T, Sim D W, Vince T, Liquid activity coefficient model for CEOS/AE mixing rules, Fluid Phase Equilib., 2001, 138(1):65~74
    [86] Orbey H, Sandler I S, A comparison of Huron-Vidal type mixing rules of mixtures of compounds with large size differences,and a new mixing rule, Fluid Phase Equilibria, 1997, 132:1~14
    [87] 李楠楠, 马沛生, 夏淑倩, 高压下 CO 在甲醇-碳酸二甲酯中的溶解度测定, 石油化工, 2005, 34: 60~64
    [88] 郭大庆, 高军, 孙大平, 郭天民, 高温高压下气体在水/地层水中的溶解度 实验装置的建立与校核, 高校化学工程学报, 1996, 1: 59~63
    [89] 吕秀阳, 吴兆立, 常温高压下气体在液体中溶解度测定装置的研制, 高校化学工程学报, 1992, 6(2): 132~136
    [90] 陈福明, 于磊, 四维基团溶解度参数及其与分子溶解度参数的关联, 清华大学学报, 2000, 40 : 6~10
    [91] 周金汉, 王成习, 二氧化碳在乙醇水溶液中的溶解度, 化学工程, 1996, 24(1): 63~67
    [92] 宋航, 刘国杰, 胡英, 氢气在混合溶剂丙酮-水中的溶解度, 1988, 4(3): 285~289
    [93] 刘华兵, 吴勇强, 张成芳, MDEA-PZ-H2O 溶液中 CO2 溶解度及其模型, 华东理工大学学报, 2000, 26: 2~6
    [94] Xuan A G, Wu Y X, Ma P S et al, Measurements of Multicomponent Gas-Liquid Equilibrium and Modeling for CO-C2H5OH-C6H5OH Systems at High Pressure,19th International Symposium on Chemical Reaction Engineering, DECHEMA e.V., Frankfurt, 2006, 215~216
    [95] IUPAC, Kertes A S, Solubility data series, Pergamon, Oxford, 1987. Vol 2: 27-28, Vol 7:270-276
    [96] Poling B E, Prausnitz J M, O’Connell J P, The properties gases and liquids(赵红玲、王风坤、陈圣坤等译), 北京: 化学工业出版社, 2006, 1~164
    [97] Prausnitz J M, Lichtenthaler R N, Edmundo G D A, Molecular thermodynamics of fluid-phase equilibria (陆小华、刘洪来译), 北京:化学工业出版社, 2006, 75~450
    [98] Stephen H, Solubilities of inorganic and organic compounds, Vol 1, part 2:946
    [99] 罗明检, 马沛生, 夏淑倩, 超额Gibbs自由能-状态方程模拟计算和预测相平衡的进展, 石油化工, 2005, 34: 7~11
    [100] 陈开周, 最优化计算方法, 第一版, 西北电讯工程学院出版社, 1985, 260
    [101] Nelder J A, Mead R, A simplex method for function minimization, Comput J, 1965, 18: 308~313
    [102] 徐辉林, 陈健, 唐宏青, 多相平衡的状态方程一步算法研究, 化工学报, 2003,31,5
    [103] Navin C, Patel, Vitaly Abovsky, Suphat Watanasiri, Calculation of vapor-liquid equilibria for a 10 components system: comparision of EOS, EOS-GE and GE-Henry’s law models, Fluid Phase Equilib, 2001,185:397~405
    [104] Ghotbi C, Vera J H, Performance of three mixing rules using different equations of state for hard- spheres, Fluid Phase Equilib, 2001,187:321~336
    [105] Krichevsky I R, Kasarnovsky Y S, Thermodynamics of calculations of solubilities of nitrogen and hydrogen in water at high pressures, J Am Chem Soc, 1935,57: 2168~2171
    [106] Aalto M, Keskinen K I, Aittamaa J et al, An improved correlation for compressed liquid densities of hydrocarbons, Part 2, mixtures, Fluid Phase Equillib, 1996, 114: 21~35
    [107] Puri P, Ruether J A, Additive excess free energy model for predicting gas solubilities in mixed solvents, Can J Chem Eng, 1974, 52:636~640
    [108] Suppes G J, Mchugh M A, Phase behavior of carbon dioxide-styrene system, J Chem Eng Data, 1989, 34:310~312
    [109] 蔡振云, 吴兆立, 含 CO2 体系高压相平衡测定和关联, 化学工程, 1996, 24(4): 71~73
    [110] 翁孟炎, CO-CO2-CH3OH 体系气液平衡研究, 化工学报, 1990, (4):503~507
    [111] Marianne C, Christian A, Claude-Gilles D, Prediction of gas solubilities in pure and mixed solvents using a group contribution method, Ind Eng Chem Res, 1993, 32: 2193~2198
    [112] Saghafi A, Moshfeghian M, Evaluation of vapor-liquid equilibrium of ethane binary systems using UNIQUAC-based mixing rules and its extension to multicomponent systems, Fluid Phase Equilib, 2000, 169:31~47
    [113] Kikic I, Alessi P, Rasmussen P, Fredenslund A, On the combinatorial part of the UNIFAC and UNIQUAC methods, Can J Chem Eng, 1980, 58:253~258
    [114] 马沛生主编, 化工热力学, 北京: 化学工业出版社, 2005, 1~100
    [115] Novenario R C, Caruthers M J, Chao K C, Chain-of-rotators equation of state for polar and non-polar substances and mixtures, Fluid Phase Equilib, 1998, 142:83~100
    [116] Kato P, Gmehling J, Systems with ionic liquids: Measurement of VLE and γ∞ data and prediction of their thermodynamic behavior using original UNIFAC and COSMO-RS(0l), J Chem Thermodynamics, 2005, 35:603~619
    [117] Hernandez G O, Fernando Garcia S, Evelyne N, Generalization of composition -dependnet mixing rules for multicomponent systems: prediction of vapor-liquid and liquid-liquid equilibria, Chemical Engineering J, 2001, 84:283~294
    [118] Valderrama O J, Roboes A P, Thermodynamic consistency of high pressure ternary mixtures containing a compressed gas and solid solutes of different complexity, Fluid Phase Equilib, 2006, 242:93~102
    [119] Yang C S, Xu W, Ma P S, Thermodynamic properties of binary of p-xylene with cyclohexane, heptane, octane, and n-methy 1-2-pyrrolidone at several temperatures, J Chem Eng Data, 2004, 49,1794~1801
    [120] Li J D, Isabelle V, Suyu Y, Carrier H, Pierre X, Prediction of the solubility and gas-liquid equilibria for gas-water and light hydrocarbon-water systems at high temperatures and pressures with a group contribution equation of state, Fluid Phase Equilib, 1997, 131:107~118
    [121] Chung T H, Chorng H T, A simplified CEOS/AE mixing rule and its applications for vapor-liquid and liquid equilibrum predictions, Fluid Phase Equilib, 2001,191:1~14
    [122] Chongli Z, Hirokatsu M, An EOS/GE type mixing rule for perturbed hard-sphere equation of state and its application to the calculation of solid solubility of state and its application to the calculation of solubility in supercritical carbon dioxide, Fluid Phase Equilib, 1997, 141:13~23
    [123] 李楠楠, 马沛生, 金会义, 杨长生, 碳酸二甲酯相关二元体系粘度和密度的测定及关联, 高校化学工程学报, 2004, 18(6):766~772
    [124] Dunnebeil S, Sadowski G, Arlt W, Comparison of two predictive gE models for vapor-liquid equilibrium calculation, The Chemical Engineering J, 1996, 61:21~26
    [125] Orbey H, Sandler I S, On the combination of equation of state and excess free energy models, Fluid Phase Equilib, 1995, 111:53~70
    [126] Gabriele R, Jurgen K, Phase equilibria in the system nitrogen-ethane and their prediction using cubic equations of state with different types of mixing rules, Fluid Phase Equilib, 2004, 221(1):3~9
    [127] Chaikunchuensakun S, Tanthapanichakoon W, Critical points calculation with a cubic equation of state and excess free energy mixing rules, Fluid Phase Equilib, 2003, 209:113~129
    [128] Chorng H T , Coon E J et al, CEOS/AE mixing rules from infinite pressure to zero pressure and then to no reference pressure, Fluid Phase Equilib, 1999,158(1):271~28
    [129] Pardo J, Mainar A M, Lopez M C et al, Solubility of gases in butanols IV, Solubilities of nonpolar gases in 2-methy1-2propanol at 303.15K and 101.33kPa partial pressure of gas, Fluid Phase Equilib, 1999, 155:127~137
    [130] Ervinsz, K, Gyorgy F, Andras D, Solute-solvent interaction parameters by gas chromatography, J of Chromatography A, 2004, 1046:185~202
    [131] Fang W, Wang H, Zhihong X, Wang W C, Perturbed hard-sphere-chain theory modeling of vapor-liquid equilib. of high concentration polymer and copolymer system, Fluid Phase Equilib, 2001, 184(1):99~109
    [132] Scalabrin G, Cristofoli G, Grigiante M, Prediction of halocarbon mixture thermodynamics using an innovative gE –EOS mixing rule in a hree-parameter CS framework, Fluid Phase Equilib, 2000, 174:143~164
    [133] Andreas H, Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids, A review, J Chem Thermodynamics , 2005, 37 :525~535
    [134] Jacek K, Alvaro P , Kamps S, Ilina U et al , Solubility of oxygen in the ionic liquid [bmim][PF6]: Experimental and molecular simulation results, J Chem Thermodynamics, 2005, 37 :595~602
    [135] Arnaud J F, Ungerer P, Behar E et al, Excess volumes and saturation pressures for the system methane + n-tetracosane at 374K, Representation by improved EOS mixing rules, Fluid Phase Equilib, 1996, 124:177~207
    [136] Socrates I, Knox E D, Vapor-liquid equilibria prediction of hydrogen- hydrocarbon mixtures with the Huron-Vidal mixing rule, Fluid Phase Equilib, 1999, 165:23~40
    [137] Slobodan P, Serbanovic M L et al, Effect of temperature on the excess molar Volumes of some alcohol - aromatic mixtures and modeling by cubic EOS mixing rules, Fluid Phase Equilib, 2006, 239:69~82
    [138] Heidemann A R, Excess free energy mixing rule for cubic equations of states, Fluid Phase Equilib,1996, 116: 454~464
    [139] Rida M, Abdel G ,Heidemann A R, Comparison of △G excess mixing rules for multi-phase equilibria in some ternary systems, Fluid Phase Equilib,1996, 116: 495~502
    [140] Solorzano Z M, Barragan A F, Bazua E R, Comparative study of mixing rules for cubic equations of state in the prediction of multicomponent Vapor-liquid equilib., Fluid Phase Equilib, 1996, 122: 99~116
    [141] Chen J, Fischer K, Gmehling J. Modification of PSRK mixing rules and results for Vapor-liquid equilibria, enthalpy of mixing and activity coefficients, Fluid Phase Equilib, 2002, 200: 411~429
    [142] Fischer K, Gmehling J, Further development,status and results of PSRK method for the prediction of vapor-liquid equilibria and gas solubilities, Fluid Phase Equilib, 1996, 121:185~206
    [143] Georgios K F, Samer O D, Michelsen L M et al, Recent applications of the cubic-plus-association (CPA) equation of state to industrially important systems, Fluid Phase Equilib, 2005, 228:121-126
    [144] Tingxun L, Kaihua G, Ruzhu W et al, Calculation of NARM’s equilibrium with Peng Robinson equation of state, J of Thermal Science, 2001, 10 : 2~8
    [145] Wang P, Springer R D, Anderko A et al, Modeling phase equilibria. and speciation in mixed-solvent electrolyte systems, Fluid Phase Equilib, 2004, 222:11~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700