用户名: 密码: 验证码:
沥青系多孔炭的结构及其电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔炭是炭材料的一个重要的分支,传统的多孔炭已经实现产业化并应用到化工、环境保护、食品等行业;新型多孔炭如高比表面积活性炭、中孔炭等具有极大的发展潜质和提升空间,在催化剂载体、双电层电容器、储氢等高科技含量技术领域发挥着重要的作用。针对多孔炭的形成机理、优化制备条件、扩大应用范围进行研究与探讨,具有十分重要的理论意义和实用价值。
     本论文以沥青系前驱体的结构特征作为切入点,考察前驱体之间内部微结构存在的差异对多孔炭材料最终性能的影响。实验发现,各向同性前驱体微晶结构缺陷较多,非晶碳或边缘碳含量高,反应活性较强,容易与活化剂发生更为充分的化学反应而制造更多的孔隙,在碱/炭比为4:1时形成“双峰型”孔径分布,比表面积高达2913m2/g。以中间相炭微球为前驱体进行系统的活化实验工作,探寻前驱体结构特性、热处理条件、多孔炭微结构及吸附性能之间存在的客观规律,组装的双电层电容器比电容高达271F/g。实验从前驱体内部结构缺陷和活化反应两方面进行活化机理的探讨,可以将各向异性碳质前驱体在相对缓和的条件下(碱/炭比为2:1)制备成高比表面积(2412m2/g)、高中孔率(41.5%)多孔炭材料;以活性中间相炭微球作为原料、膨胀石墨作为模板进行多孔炭/膨胀石墨复合材料的制备,从膨胀石墨特有的结构为出发,研究如何利用固体空间网络结构的搭建为电子的传导提供良好的通道,从而在不改变多孔炭孔结构的前提下提高电极材料的双电层电容性能,复合材料的双电层比电容较纯多孔炭电极提高20-30F/g。
     本论文以前驱体结构为出发点,在前驱体内部人为地制造结构缺陷,为活化反应充分地进行创造有利条件;将传统的化学活化与催化活化制备方法相结合,采用新型的化学-催化活化方法制备高比表面积、高中孔率的多孔炭材料;将中间相炭微球以化学活化方法制备活性炭微球,应用于双电层电容器电容特性的研究,拓宽了中间相炭微球的应用研究领域。
Activated carbon is an important branch of carbonaceous materials. Activated carbon products made with traditional activation methods were used in chemical engineering, environment protection and food purification. Meanwhile, new activated carbons with high surface area or high mesopore content had more potential for development, which play an important role in catalytic support, electrical double-layer capacitor and hydrogen storage. It is significant for theory and practice to study on the mechanism of etching, preparation conditions and application of activated carbons.
     In this paper, relationship between performance of activated carbon and structure of precursors was investigated from the structural characteristics. Isotropic precursor with more noncrystal or edge carbons can be etched by KOH easily and became high surface (2913m2/g) activated carbon with double peaks type pore size distribution. Mesocarbon microbeads were utilized to be precursors for activation and the impersonality among structure characteristics of precursors, heat treatment conditions and microstructure and adsorption abilities of activated carbons was discussed. Electrical double-layer capacitors using activated mesocarbon microbeads as electrode were taken shape and the max specific capacitance reached 271F/g. Activation mechanism was explained by structural defects and chemical etching. Activated carbon with high surface area (2412m2/g) and high mesopore content (41.5%) was gained under lower KOH/C ratio (2:1) from anisotropic precursor. Activated mesocarbon microbeads/expanded graphite composites were prepared and specific capacitance was discussed. Conductivity was increased through establishing the solid-network without changing the adsorption abilities of activated mesocarbon microbeads. The specific capacitances of pure porous carbons were increased about 20-30F/g, respectively.
     In this paper, chemical activation took advantage of man-made structural defects and porous carbon with higher performance was gained with novel chemical-catalytic activation method. Activated carbons made from mesocarbon microbeads were put into the investigating of electric double layer capacitor and the application of mesocarbon microbeads was widened.
引文
[1] 扬绍斌,胡浩权,大比表面积炭质吸附剂的表面及孔隙发展,燃料化学学报,2000, 28 ( 5): 473~477
    [2] 宋燕,李开喜,杨常玲等,石油焦制备高比表面积活性炭的研究,石油化工,2002, 31 (6): 431~435
    [3] A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 1996, 34 (4):471~479
    [4] 罗功宇,刘成明,黄子强等,贵州无烟煤制取颗粒活性炭的研究,贵州林业科技,1999, 27 (4): 46~49
    [5] 解强,张双全,制备高比表面积煤基活性炭的理论基础,炭素技术,2002, 12 (2): 24~27
    [6] J. Hayashi, T. Horikawa, I. Takeda, et al, Preparing activated carbon from various nutshells by chemical activation with K2CO3, Carbon, 2002,40 (13): 2381~2386
    [7] A. G. Pandolfo, M. Amini-amoli, J. S. Killingley, Activated carbons prepared from shells of different coconut shell, Carbon, 1994, 32(5): 1015~1019
    [8] Yupeng Guo, Kaifeng Yu, Zichen Wang, et al, Effects of activation conditions on preparation of porous carbon from rice husk, Carbon, 2000, 41:1645-1648
    [9] F. Suarez-Garcia, A Martinez-Alonso, J. M. D. Tascon, Porous texture of activated carbons prepared by phosphoric acid of apple pulp, Carbon, 2001, 39 (4):559~567
    [10] Issa I. Salame, Teresa J. Bandosz, Comparision of the surface features of two wood-based activated carbon, Ind. Eng. Chem. Res., 2000, 39 (2): 30-~306
    [11] Cunliffe A M, Williams P T, Influence of process conditions on the rate of activation of chars derived from pyrolysis of the used tires, Energy Fuels, 1999, 13 (1): 66~69
    [12] Ariyadejwanich P, Tanihapanichakoon W, Preparation and characterization of mesoporous activated carbon from waste tire, Carbon, 2003, 41 (157~161)
    [13] Hsisheng Teng, Sheng-Chi Wang, Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation, Carbon, 2000,38 (6): 817~824
    [14] Hsisheng Teng, Sheng-Chi Wang, Influence of oxidation on the preparation of porous carbons from phenol-formaldehyde resins with KOH activation. Ind. Eng. Res., 2000, 39(30: 673~678
    [15] 薛锐生,沈曾民,不同 KOH 配比对中间相活性炭微球结构形态的影响,材料科学与工艺,2002, 10 (4): 346~351
    [16] 薛锐生,沈曾民,活化条件对活性炭微球结构与性能的影响,炭素,2001, 4 (3): 3~7
    [17] Stoeckli F, Ballerini L, Evolution of microporosity during activation of carbon, Fuel, 1991, 70: 557~559
    [18] Kuhl H, Kashani-Motlagh M M, Muhlen H J, et al, Controlled gasfication of different carbon materials and development of pore structure, Fuel, 1992, 71: 879~882
    [19] Ryu S K, Jin H, Gondy D, et al, Activation of carbon fibers by steam and carbon dioxide, Carbon, 1993, 31: 841~842
    [20] Benssant G A R, Walker P L, Activation of anthracite using carbon dioxide versus air, Carbon,1994, 32: 1171~1176
    [21] Wigmans T, Industrial aspects of production and usd of activated carbon, Carbon, 1989, 27: 13~22
    [22] 李梦青,范壮军,周亚平等,椰壳炭制备高比表面积活性炭活化方法比较,天津大学学报,2000, 33 (1): 45~49
    [23] K. Kierzek, E. Frackowiak, G. Lota, et al, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochimica, Acta, 2004, 49: 515~523
    [24] E. Mora, C. Blanco, J. J. Pajares, et al, Chemical activation of carbon mesophase pitches, Colloid and Interface Science, 2006, 298: 341~347
    [25] Hsisheng Teng, Yao-Jen Chang, Chien-To Hsieh, Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 2001, 39: 1981~1987
    [26] Jie Yang, Zengmin Shen, Zibiao Hao, Preparation of highly microporous and mesoporous carbon from the mesophase pitch and its carbon foams with KOH, Carbon, 2004, 42:1872~1875
    [27] Zhonghua Hu, M. P. Srinivasan, Preparation of high-surface-area activared carbons from coconut shell, Microporous and Mesoporous Materials, 1999, 17: 11~18
    [28] T. OTOWA, Y. NOJIMA, T. MIUAZAKI, Development of KOH activated high surface area carbon and its application to drinking water purification, Carbon, 1997, 35 (9): 1315~1319
    [29] Zhonghua Hu, M .P. Srinivasan, Yaming Ni, Noval activation process for prepaing highly microporous and mesoporous activated carbons, Carbon, 2001 (39): 877~886
    [30] Zhonghua Hu, M .P. Srinivasan, Mesoporous high-surface-area activated carbon, Microporous and Mesoporous Materials, 2001, 43: 267~275
    [31] 吴铭铂,化学活化法制备活性炭的研究进展,炭素技术,1999 (4): 19~15
    [32] 刘海燕,凌立成,刘植昌等,甲烷在高比表面积活性炭上的脱附行为的研究,新型炭材料,1999, 14 (2): 21~26
    [33] Valix Cheung W H, Mckay G, Preparation of activated carbon using low temperature carbonization and physical activation of high ash bagasse for acid dye adsortptions, Chemosphere, 2004, 56 (5): 493~498
    [34] 张引枝,樊彦贞,添加剂种类对活性炭纤维中孔结构的影响,炭素技术,1997 (4): 11~15
    [35] 梅建庭,白雪莲,齐雷,煤沥青制备高性能活性炭,石油化工,2000, 29: 171~175
    [36] 刘植昌,凌立成,乔文明等,添加二茂铁制得的沥青基球状活性炭对VB12吸附性能的研究,离子交换与吸附,1999, 15 (5): 391~396
    [37] Hsin-Yu Liu, Kai-Ping Wang, Hsisheng Teng, A simplified preparation of mesoporous carbon and the wxamination of the carbon accessibility for electric double layer formation, Carbon, 2005, 43: 559~566
    [38] Gunter Hermann,Klaus J.Huttinger,Carbon,1986,24(4):429~436
    [39] Marsh H, Diez M A, Kou K, Lahaye J, P et al, Fundamental issues in control of carbon gasification reactivity. Kluwer Academic Publishers, 1991, 205~206
    [40] Zhichang Liu, Licheng Ling, Wenming Qiao, et al, Preparation of pitch-based spherical activated carbon with developed mesopore by the aid ferrocene, Carbon, 1999, 37: 663~667
    [41] 刘植昌,凌立成,乔文明等,铁微粒的存在对沥青基球状活性炭微孔形成过程的影响,炭素技术,1999 (3): 10~14
    [42] 杨俊兵,康飞宇,凌立成等,从铁状态的变化研究球形活性炭中孔形成机理,离子交换与吸附,2001,17 (2): 104~109
    [43] Haoshen Zhou, Shenmin Zhu, Mitsuhiro Hibino,et al, Electrochemical capacitance of self-ordered mesoporous carbon, Power Sources, 2003, 122: 219~223
    [44] Ozakl J, Endo X, Ohizumi W, et al, Novel preparation method for the production of mesopoeous carbon fiber from polymer blend, Carbon, 1997, 35 (7): 1031~1036
    [45] Yasuda E. Carbon alloys. Tanso, 1995, 170: 317~320
    [46] Verma S K, Walker P L, preparation of carbon molecular sieves by propylene pyrolysis over microporous carbons, Carbon, 1992, 30 (6): 829~836
    [47] 黄正宏,康飞宇,梁开明,碳合金-一个新兴的研究领域,材料科学与工程,1999, 17 (2): 58~62
    [48] Bansal R C, Bala S, Sharma N, preparation of carbon molecular sieves by pore blocking, Indian Journal of Technology, 1989, 27 (4): 206~210
    [49] Kawabuchi Y, Oka H, Kawano S, et al, The modification of pore size in acrivated carbon fibers by chemical vapor deposition and its effect on molecular sieve selectivity, Carbon, 1998, 36 (4): 377~382
    [50] Kamegawa K, Yoshida H, Preparation and characterization of swelling porous carbon beads, Carbon, 1997, 35 (5):631~639
    [51] Kawabuchi Y, Kawano S, Mochida I, Molecular sieving selectivity of active carbons and active carbon fibers imoroved by chemical vapor deposition of benzene, Carbon, 1996, 34 (6):711~717
    [52] 魏娜,赵乃勤,贾威等,利用除尘灰分制备活性炭的工艺研究,天津大学硕士学位论文,2004
    [53] Parra J B, Pis J J, De Souda J C, et al. Effect of coal preoxidation on the development of micro porosity in activated carbons. Carbon, 1996, 34 (6): 783~787
    [54] Torregroda-Macia R, Martin-Martinez J M, Mittelmeijer-Hazeleger M C, Porous texture of activated carbons modified with carbohydrates, Carbon, 1997, 35 (4):447 ~453
    [55] Polovina M, Babic B, Kaluderovic B, et al, Surface characterization of oxidized activated carbon cloth, Carbon, 1997, 35 (8): 1047~4052
    [56] 吴新华,活性炭生产工艺原理与设计,北京:中国林业出版社,1994:59
    [57] Zhou Li, Guo Wencai, Zhou Yaping, A feasibility study of separating CH4/N2 by adsorption, Chinese J. Chem. Eng., 2002, 10 (5): 558~561
    [58] Yuhang Hu, Eli Ruckenstein, The catalytic reaction of NO over Cu supported on meso-carbon mictobeads of ultrahigh surface area, Catalysis, 1997, 172 (1): 110~117
    [59] Shaobin Yang, Haoquan Hu, Guohua Chen, Preparation of carbon adsorbents with high surface area and a model for calculating surface area, Carbon, 2002, 40 (1): 307~372
    [60] S. J. Gregg, K. S. W. Sing, Adsorption surface area and porosity. 2nd ed. Suffolk: St Edmundsbury Press, 1982, 25
    [61] J. Laine, A. Calafat, M. Labady, Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid, Carbon, 1989, 37 (2): 191~195
    [62] M. A. Lillo-Rodenas, D. Lozano-Castello, D. Cazorla-Amoros, et al, Preparation of activated carbons from Spanish anthracite Ⅱ, Activation by NaOH, Carbon, 2001, 39 (5): 751~759
    [63] H. Teng, T. S. Yeh, L. Y. Hsu, Preparetion of activated carbon from bituminous coal with phosphoric acid activation, Carbon, 1998, 36 (9): 1387~1395
    [64] R. K. Agarwal, J. S. Noh, J. A. Schwarz, et al, Effect of surface acidity of activated carbon on hydrogen storage, Carbon, 1987, 25 (2):219~226
    [65] B. S. Grigis, S. S. Yunis, A. M. Soliman, et al, Characteristics of activated carbon from peanut hulls in relation to conditions of preparation, Materials Letters, 2002, 51 (1): 164~172
    [68] 吴人洁,现代分析技术-在高聚物中的应用,上海:上海科学出版社,1987,140
    [69] Mochida I, Ku CH, Korai Y,Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic itches, Carbon, 2001, 39: 399~410
    [70] T. Ohkubo, T. Iiyama, K. Kaneko, Organized structures of methanol in carbon nanospaces at 303K studies with in situ X-ray diffraction, Chem. Phys. Letters, 1999, 312 (2): 191~195
    [71] F. Rouquerol, J. Rouqerol, K. Sing, Adsorption by powders and porous dolids. London: Academic Press, 1999, 165~179
    [72] K. S. W. Sing, Adsorption methods for the characterization of porous materials, J. Coll. Int. Sci., 1998, 76 (1): 3~11
    [73] 严继民,张启元,高敬琮,吸附与凝聚:固体的表面与孔,北京:科学出版社,1986:150~161
    [74] A. P. Terzyk, P. A. Gauden, P. Kowalczyk, What kong of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation. Carbon, 2002, 40 (15): 2879~2886
    [75] S. A. Korili, A. Gil, On the application of various methods to evaluate the microporous properties of activated carbons, Adsorption, 2001, 7 (3): 249~264
    [76] S. Gavalda, K. Kaneko, K. T. Thomson, et al, Molecular modeling of carbon aerogels, Colloids and Surfaces A, 2001, 187: 531~538
    [77] Zhemyu, Ryu, Jingtang Zheng, Maozhang Wang, et al, Characterization of pore size distributions on carbonaceous adsorbents by DFT, Carbon, 1999, 37: 1257~1264
    [78] H. I. Becker, Low voltage electrolytic capacitor, U. S. Patent 2800616, 1957
    [79] R. A. Rightmire, Electrical energy storage apparatus. U. S. Patent 3288641, 1966
    [80] D. L. Boos, Electrolytic capacitor having carbon paste electrodes, U. S. patent 353694, 1970
    [81] B. E. Conway, 陈艾等(译),电化学超级电容器-科学原理及技术应用,北京:化工出版社,2005, 95~109
    [82] M. J. Sparnaay, The electric double layer, Sydney: Pergamon Pres Pty. Ltd., 1972: 4~16
    [83] M.Matsumoto, Electrical phenomena at interfaces: fundamentals, measurements, and applications, vol. 76, Surfactent science series, New York: Marcel Dekker, Inc., 1998: 87~99
    [84] S. Sarangapani, B. V. Tilak, C. P. Chen, Materials for electrochemical capacitors, Electrochem. Soc., 1996, 143 (11): 3791~3799
    [85] T.C. Weng, H. Teng, Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors, Electrochem. Soc., 2001, 148 (4): A368~A373
    [86] 王晓峰,王大志,梁吉,5V 活性炭基电容器的研制,电子元件与材料,2003, 22 (1): 25~27
    [87] Morimoto, T., Hiratsuka K., Sanada Y., et al, Electric double-layer capacitor using organic electrolyte, J. Power Soureces, 1996, 60: 239~247
    [88] K. A. Kobe, T. K. Osaka, Y. I. Suita, Double layer capacitor with hifh capacitance carbonaceous material electrodes, U. S. Patent: 5430606, 1995
    [89] 何月德,刘洪波,张洪波,煤基活性炭用作双电层电容器材料,电源技术,2003, 23 (4): 1~6
    [90] 孟庆函,李开喜,宋燕,石油焦基活性炭电极的电容特性研究,新型炭材料,2001, 4 (16): 18~26
    [91] H. Teng, Y. I. Yang, C. T. Hsieh, Performance of electric doublie-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 2001, 39: 1987~1987
    [92] H. Nakagawa, A. Shudo, K. Miura, High –capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes, Electrochen, Soc., 2000, 147 (1): 667~674
    [93] K. Miura, H. Nakagawa, H. Okamoto, Production of high density activated carbon fiber by a hot briquetting method, Carbon, 2000, 38: 119~125
    [94] 吴海芳,胡中华,活性炭纤维制备双电层电容器,炭素技术,2004, 1 (23): 12~16
    [95] R. W. Pekala, J. C. Farmer, C. T. Alviso, et al, Carbon aerogels for electrochemical applications, Non-Crystalline Solids, 1998, 225: 74~80
    [96] H. Probstle, C. Schmitt, J. Feicke, Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources, 2002, 105: 189~194
    [97] R. Saliger, U. Fischer, C. Herta, et al, High surface area carbon aerogels for supercapacitors, Non-Crystalline Solids, 1998, 225: 81~85
    [98] 张拴勤,王玉,周斌等,CRF 气凝胶的电化学性能测试研究,同济大学学报,2000, 28 (2): 250~252
    [99] E. Frackkowiial, L. Metenier, V. Beragna, et al, Supercapacitot electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 2000, 77 (15): 2421~2423
    [100] Lijima S. Growth of carbon nanotubes, Mater. Sci. Eng. B, 1993, 19: 172~180
    [101] Niu C. M., Enid K. Schel, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70 (11): 1480~1482
    [102] 孟庆函,张睿,李开喜等,金属 Cu 的负载方法对活性炭电极电化学性能的影响,无机材料学报,2003, 18 (5): 1027~1032
    [103] 郭 春雨,王成扬,陈静远. 膨胀石墨复合活性炭制备超级电容器电极研究,电源技术,2006(11):929~932
    [104] 张琳,常俊玲,刘洪波等,基于竹节的双电层电容器用高比表面积活性炭的研究,炭素,2001, (1): 11~15
    [105] 孟庆函,刘玲,宋怀河,石油焦基活性炭孔结构及电化学性能,石油学报,2004, 20 (4): 61~66
    [106] 张琳,刘洪波,李步广等,酚醛树脂为原料制备双电层电容器用电极材料的工艺研究,炭素,2004, 23 (4): 1~6
    [107] Shi H., Activated carbon and double layer capacitor, Electro-Chemical Acta, 1996, 41: 1633~1639
    [108] Satoshi mitani, Sang-Ick Lee, Activation of raw pitch coke with alkali hydroxide to prepare high performance for electric double layer capacitor, J. Power Sources, 2004, 133: 298~301
    [109] 张家棣,碳材料工程基础,鞍山:冶金出版社,1991,106
    [110] 李同起,王成扬,郑嘉明等, 非均相成核中间相炭微球的形成过程及结构演变,新型炭材料,2004, 19 (4):281~288.
    [111] 李同起,王成扬,中间相炭微球研究进展, 炭素技术,2002,(3):22~27.
    [112] BROOKS J. D., TAYLOR G. H., The Formation of graphitizing carbons from the liquid phase, Carbon, 1965, 3: 185~193
    [113] 王茂章,有机化合物的液相炭化化学,化学通报,1990, 12: 22~28
    [114] Yoon SH., Korai Y., Mochida I., Axial nano-scale microstructures in graphitized fiber inherited from liquid crystal mesophase pitch, Carbon, 1996, 34 (1): 597~600
    [115] Roriguez—Reinoso F., Lahaye J., Ehrburgor P., et al, Fundamental issues in control of gasification reactivity, Kluwer Academic Publishers, 199l, 533~534
    [116] YANG Jun-bing, KANG Fei-yu, LING Li-cheng, et al. An investigation on mesopore evolution mechanism of activated carbon spheres by examining the change of iron state, Ion Exchange and Adsorption, 2001, 17 (2): 104~109
    [117] LIU Zhi-chang, LING Li-cheng, LV Chun-xiang, et al, Study on mechanism of mesopore formation of pitch-based spherical activated carbon using iron as catalyst, Journal of Fuel Chemistry and Technology, 2000, 28 (4): 320~323
    [118] A. Aygu, S. Yenisoy-Karakas, I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and mesoporous Materials, 2003, 66: 189~195
    [119] Jie Yang, Zengmin Shen, Zibiao Hao, Preparation of highly microporous and mesoporous carbon from the mesophase pitch carbon foams with KOH, Carbon, 2004, 42: 1872~1875
    [120] Ewa Lorenc-Grabowska, Grazyna Gryglewicz, Stanislaw Gryglewicz, Development of mesoporosity in activated carbons via coal modification using Ca- and Fe-exchange. Microporous and mesoporous Materials, 2004, 76: 193~201
    [121] P. Ariyadejwanich, W. Tranthapanichakoon, K. Nakagawa, et al, Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 2003, 41:157~164
    [122] A. Celzard, M. Krzesinska, D. Begin, et al, Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites, Carbon, 2002, 40: 557~566
    [123] Wenge Zheng, Shing-Chung Wong, Electrical conducticity and dielectric properties of PMMA/expanded graphite composites, Composites Science and Technology, 2003, 63: 225~235
    [124] A. Celzard, S. Schneider, J. F. Mareche, Densification of expanded graphite, Carbon, 2002, 40: 2185~2191
    [125] Fawn M., Uhl, Qiang Yao,et al, Expandable graphite/polyamide-6 nanocomposites, Polymer Degradation and Stability, 2005, 89: 70~84
    [126] Zhengguo Zhang, Xiaoming Fang, Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energy Conversion and Management, 2006, 47: 303~310
    [127] Marta Krzesinska, Influence of the raw material on the pore structure and elastic propertied of compressed expanded graphite blocks, Materials Chemistry and Physics, 2004, 87: 336~344
    [128] F. Vieta, I. Cisneros, M. T. C. Sansiviero, et al, Preparation processes and properties of expanded graphite for alkaline batteries, J. Physics and Chemistry of Solids, 2006 (67): 1208~1212
    [129] Marta Krzesinska, Andrzej I. Lachowski, Elastic properties of monolithic porous blocks of compressed expanded graphite related to their specific surface area and pore diameter, Materials Chemistry and Physics, 2004 (86:) 105~111
    [130] 陈翔峰,陈国华,吴大军等, 聚合物/石墨纳米复合材料研究进展, 高分子通报,2004, (4): 39~47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700