用户名: 密码: 验证码:
二氧化碳部分氧化异丁烷耦合“催化—分离”反应催化剂和膜反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用表面改性和等体积浸渍法制备了Pd/VSiO和Pd/MgO/VSiO催化剂,采用BET、XRD、TEM、XPS、TPD、化学吸附-红外光谱(IR)和微反技术对催化剂的比表面积、晶相结构、价态、异丁烷的化学吸附性能和CO_2部分氧化异丁烷制异丁烯的催化性能进行了研究。结果表明:Pd/VSiO催化剂中的钒以V5+形式存在,在催化剂表面形成活性位V=O,其中V=O晶格氧与i-C4H10分子的-CH3和-CH中的H产生化学吸附作用;催化剂中金属Pd与V4+协同作用使CO_2在催化剂上产生了卧式吸附态;晶格氧参加了催化氧化反应,催化剂中V5+←→V4+变化构成了催化反应的氧化还原过程。向Pd/VSiO催化剂中引入碱性助剂MgO可以提高V2O5和金属Pd在载体SiO_2表面的分散度,MgO的供电子效应使催化剂表面V=O中晶格氧的电子云密度增大,i-C4H10分子-CH3和-CH中的H更易吸附在V=O中晶格氧上活化,从而提高i-C4H10转化率和i-C4H8的选择性。
     采用液态亚胺化法,利用4,4’-六氟亚异丙基-邻苯二甲酸酐、2,4,6-三甲基-1,3-苯二胺和3,5-二氨基苯甲酸合成了具有大量功能支链羧酸基的可溶性聚酰亚胺。通过溶胶-凝胶法将聚酰亚胺溶于溶剂中分别与不同量的SiO_2、TiO_2和SnO_2溶胶杂化,涂敷在以TiO_2为过渡层的硅藻土-莫来石陶瓷膜管支撑体上制备了不同无机氧化物含量的聚酰亚胺/SiO_2、聚酰亚胺/TiO_2和聚酰亚胺/SnO_2杂化膜反应器。采用FTIR、TG/DTA、DSC、SEM、TEM、XPS、BET和气体渗透测定对各膜反应器进行了表征和测试。结果表明:各个膜反应器的膜层成膜情况良好,层间结合紧密,顶层杂化膜具有良好的有机无机兼容性和热稳定性;杂化膜材料中聚酰亚胺亚胺化完全,聚酰亚胺高分子通过支链羧酸基与无机相(SiO_2、TiO_2和SnO_2)发生化学键连;聚酰亚胺高分子膜和含不同无机氧化物的杂化膜均对水蒸气和CO_2有较好的选择分离作用;聚酰亚胺/SnO_2杂化膜对CO也具有较好的分离作用,且随着SnO_2含量的增加分离效果增强。
     应用上述制备的三种膜反应器,以Pd/MgO/VSiO为催化剂,分别研究了CO_2部分氧化i-C4H10制i-C4H8的反应性能。在P=0.1Mpa、T=400℃、SV =1200 h-1、V (CO_2) / V (i-C4H10) =1和CO_2吹扫气流速为40ml/min的操作条件下,在三种膜反应器中催化反应分别取得了i-C4H10转化率9.32%、9.83%和10.45%以及i-C4H8选择性96.44%、96.78%和97.14%的优良结果,而在此条件下常规反应i-C4H10转化率和i-C4H8选择性却仅有7.54%和95.71%。
In this paper, Pd/VSiO and Pd/MgO/VSiO catalysts were prepared by the methods of surface modification and incipient impregnation. Their structures, valence states, chemisorption properties of isobutane and carbon dioxide and catalytic behavior for isobutane partial oxidation with CO_2 were characterized by BET, XRD, TEM, XPS, TPD, IR and micro-reactor techniques. The results showed that the lattice oxygen of V=O is the active site on the Pd/VSO catalyst, and the valence of vanadium in the V=O is positive 5. Isobutane was chemisorbed on the lattice oxygen of V=O through the H atoms in -CH3 and–CH. and carbon dioxide was chemisorbed horizontally on the Pd metallic and V4+ through their synergetic effect. The V5+-V4+ couple plays a key role in the redox mechanism of the catalytic reaction. MgO introduced promoted the dispersion of V2O5 and Pd metallic on the surface of silica. The addition of MgO could improve conversation of i-C4H10 and selectivity of i-C4H8 because electrophobic effect of MgO to lattice oxygen of V=O could promote the chemisorption and activation of the H atoms in -CH3 and–CH.
     A new kind of soluble polyimide with plenty of carboxyl along the polyimide backbone was solution imidized employing 4, 4’-hexafluoroisopropylidenediphthalic anhydride, 2, 4, 6-trimethyl-1, 3-phenylenediamine and 3, 5-diaminobenzoic acid. The different kinds of membrane reactors of polyimide/-inorganic, SiO_2, TiO_2 and SnO_2 supported on TiO_2/kieselguhr-mullite were prepared. Their morphologies, chemical structures, thermal performances, pore distribution and gas permeability were characterized by methods of SEM, FTIR, XPS, TG/DTA, DSC, BET and gas permeability measurement. The results showed that the morphology of the supported membranes was quite homogeneous and the layers of each membrane were coupled tightly and naturally. The hybrid membranes possess higher thermal stability and compatibility between the organic and inorganic components. The hybrid membranes possess the space networks with regular pores formed by the connection between the polyimide and inorganic phases via the carboxyls along the polyimide backbone. The pure polyimide and each hybrid membrane showed separation properties for CO_2 and H2O. The polyimide-SnO_2 hybrid membranes have fine separation properties for CO, and the separation function was increased with the increasing of SnO_2 contents.
     The conversional catalytic reaction and membrane catalytic reaction for i-C4H10 partial oxidation with CO_2 were studied over Pd/MgO/VSiO catalyst in the polyimide-inorganic, SiO2, TiO2 and SnO2, hybrid membranes reactors. Under the conditions of 400°C, 0.1MPa, mixed gas space velocity of 1200h-1 and CO2 / i-C4H10 ratio of 1, the isobutane conversion of 9.32%, 9.83%, 10.45% and isobutene selectivity of 96.44%, 96.78%, 97.14% are achieved. However, under the same conditions, the isobutane conversion and isobutene selectivity of the conversional catalytic reaction were 7.54% and 95.71%, respectivly.
引文
[1] 吴雪妹,膜催化反应器及其应用研究,浙江化工,2002,33(4):12~14
    [2] 杜长海,吴树新,高伟民,等,膜催化技术的研究进展,长春工业大学学报,2003,24(1):19~23
    [3] 童淮荣,无机膜催化反应的研究进展,化学反应工程与工艺,2005,21(4):345~352
    [4] 庞先燊,膜反应器的开发与应用,精细石油化工,1993,(5):56~64
    [5] 周忠清,膜催化技术进展,现代化工,1994,6:17~23
    [6] 钟顺和,李传峰,孙宏伟,等,膜反应器中Ni-Cu催化剂上CO加氢合成乙烯的研究,催化学报,2002,23(1):91~94
    [7] 刘春青,刘韧,刘菁,等,中空纤维催化膜反应器中环戊二烯的选择加氢反应,催化学报,1997,18(4):302~305
    [8] 李青,钟顺和,CO2氧化乙烷脱氢制乙烯膜催化反应的研究,催化学报,2000,21(2):183~185
    [9] 郭杨龙,卢冠忠,陈荣,等,钯复合膜反应器中异丁烷催化脱氢反应,化工学报,2000,51(4):572~575
    [10] 张雄福,王金渠,刘海鸥,等,沸石膜反应器乙苯脱氢反应性能,高等化学工程学报,2001,15(2):121~126
    [11] 吴泽彪,盛梅,朱毅青,等,膜反应器中甲苯部分氧化制苯甲醛,高等化学工程学报,1999,13(5):485~488
    [12] 王海辉,丛铀,杨维慎,等,在透氧膜反应器中进行甲烷氧化偶联反应的研究,催化学报,2003,24(3):169~174
    [13] 周勤,叶代启,黄仲涛,膜催化氧化正丁烷制顺酐,石油化工,1995,24(12):875~878
    [14] 时钧,徐南平,无机膜与无机膜催化反应,化学进展,1995,7(3):167~172
    [15] Nourbakhsh N, Champagnie A, Tsotsis T.T, et al, Transport and reaction studies using ceramic membranes, AIChE Symp Ser, 1989, 85(268): 75~84
    [16] Zaspalis V T, van Praag W, Keizer K, et al, Reactions of methanol over catalytically active alumina membranes, Appl Catal, 1991, 74(2): 205~222
    [17] Zaspalis V T, van Praag W, Keizer K, et al, Reactor studies using alumina separation membranes for the dehydrogenation of methanol and n-butane, 1991, 74(2): 223~234
    [18] 邓娟利,胡小玲,管萍,等,分离用无机膜的制备方法及研究展望,材料导报,2005,19(10):40~43
    [19] 李旭祥,分离膜制备与应用,北京:化学工业出版社,2004,1~10
    [20] 孙宏伟,钟顺和,硅藻土微孔陶瓷膜管的制备与性能,硅酸盐通报,1997,4:53~58
    [21] 李青,钟顺和,硅藻土-莫来石复合陶瓷膜管的制备和表征,催化学报,1999,20(1):41~44
    [22] 邵怀启,钟顺和,挤出成型法制备莫来石-硅藻土陶瓷膜管的研究,硅酸盐通报,2004,4:25~28
    [23] 贺连星,温廷琏,吕之弈,流延法制膜技术,化学通报,1996,11:19~22
    [24] Meng G Y, Gu Y F, Wang H T, et al, Preparation of ceramic membrane by polymer- adid processings, in Proceedings of the first China International Conference on High-performance Ceramics, Beijing, Oct 31-Nov 3, 1998
    [25] Brinker C J, Scherer G W. Sol-gel science: The Physics and Chemistry of Sol-Cel Processing, New York: Academic Press, 1990, 63
    [26] Anderson M A, Gieselmann M J, Xu Q, Titania and alumina ceramic membranes, J Membr Sci, 1988, 39(3): 243~258
    [27] Leenaars A F M, Burggraaf A J, The preparation and characterization of alumina membranes with ultra-fine pores, J Membr Sci, 1985, 24: 261~270
    [28] Gab-Jin H, Jong-Won K, Ho-Sang C, et al, Stability of a silica membrane prepared by CVD using γ- and α-alumina tube as the support tube in the HI-H2O gaseous mixture, J Membr Sci, 2003, 215:293~302
    [29] Meng G Y, Song H Z, Wang H B, et al, Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques, Thin Solid Films, 2002, 40: 105~111
    [30] Eguchi K, Tanaka H, Yazawa T, et al, Chemically durable porous glass and process for its manufacture, EP-A220764, 1987
    [31] 韩春芬,雷新荣,多孔无机膜的制备和应用,化工新型材料,2005,32(8),5~8
    [32] Mustoa P, Ragosta G, Scarinzi G, et al, Toughness enhancement of polyimides by in situ generation of silica particles, Polymer, 2004,45: 4265~4274
    [33] Odegard G M, Clancy T C, Gates T S, Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer, 2005,46: 553~562.
    [34] Wang Z D, Lu J J, Li Y, et al, Studies on thermal and mechanical properties of PI/SiO2 nanocomposite films at low temperature, Composites: Part A, 2006, 37: 74~79
    [35] Lin B P, Tang J N, Liu H J, et al, Structure and infrared emissivity of polyimide/ mesoporous silica composite films, J Solid State Chem, 2005,178: 650~654
    [36] 张军丽,叶文玉,溶胶凝胶法聚合物/无机复合材料的研究与应用,云南化工,2005,32(4):43~46
    [37] Joly C, Goizet S, et al., Sol-gel polyimide-silica composite membrane: gas transport properties, J Membr Sci, 1997,130: 63~74
    [38] Kuntman A, Kuntman H, A study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications, Microelectronics J, 2000, 31: 629~634
    [39] Chang C C, Chen W C, Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films, Chem Mater, 2002, 14: 4242-4248
    [40] Kim H, Jang J, Corrosion protection and adhesion promotion for polyimide/copper system using silane– modified polymeric materials, Polymer, 2000, 41: 6553~6561
    [41] Stefanini G, Progress in the ALICE silicon pixel detector, Nucl Instr and Meth A, 2004, 530: 77~81
    [42] Moaddeb M, Koros W J, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, J Membr Sci, 1997, 125: 143~163
    [43] Li C F, Zhong S H, Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu–KF/MgSiO catalyst, Catal Today, 2003, 82: 83~90
    [44] 秦家强,顾宜,聚酰亚胺/无机粒子复合材料制备过程中的形态控制,材料导报,2005,19(9):41~43
    [45] Andrei J, Alina B, Calin D, et a1, Comparative study of the sol-gel processes starting with different substituted Si-alkoxides, J Non Cryst Solid, 2003, 319: 263~279
    [46] Schmidt H, Jonschker G, Goedicke S, et al, the sol-gel process as a basic technology for nanopartic1e-dispersed inorganic-organic composites, J Sol-Gel Sci Technol, 2000, 19: 39~43
    [47] 柯昌美,汪厚植,赵惠忠,等,聚合物基有机-无机杂化材料的制备研究,武汉科技大学学报,2005,28(3):231~234
    [48] Cornelius C, Hibshman C, Marand E, Hybrid organic-inorganic membranes, Sep Purif Technol, 2001, 25: 181~193
    [49] 顾宜,范浩军,黄毅,等,聚酰亚胺侧链功能化研究进展,化工新型材料,2004,32(11):10~14
    [50] 吴崇浩,王世敏,赵雷,等,溶胶-凝胶法制备无机/有机聚合物杂化材料的进展,胶体与聚合物,2003,21(1):39~42
    [51] Morikawa A, Iyoku Y, Kakimoto M, et al, Preparation of new polyimide-silica hybrid materials via the sol-gel process, J Mater Chem, 1992,2 (7):679~690
    [52] 乔放,李强,漆宗能,等,聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究,高分子通报,1997,(3):135~143
    [53] 肖泳,胡克鳌,吴人沽,聚环氧乙烷/LixMoO3纳米复合材料的制备及表,功能高分子学报,2000,13(4):372~374。
    [54] 易昌风,朱严瑾,徐祖顺,有机-无机杂化材料的制备方法,材料导报,2004,(18):2~5
    [55] Wen J, Wikes G L, Organic/inorganic Hybrid Network Materials by the Sol-Gel Approach, Chem Mater, 1996, 8: 1667~1681
    [56] Chris J C, Eva M, Hybrid inorganic-organic materials based on a 6FDA-6FpDA- DABA polyimide and silica: physical characterization studies, Polymer, 2002, 43:2385~2400
    [57] Yano S, Iwata K, Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process, Mater Sci Eng, 1998, C6: 75~90
    [58] Xenopoulos C, Mascia L, Shaw S J, Variables analysis in the gelation of alkoxysilane solutions for the production of polyimide-silica hybrids, Mater Sci Eng, 1998, C6: 99~114
    [59] 李传峰,钟顺和,溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜,高分子学报,2002,(3):326~330
    [60] Yen C T, Chen W C, Liaw D J, et al, Synthesis and properties of new polyimide-silica hybrid films through both intrachain and interchain bonding, Polymer, 2003, 44: 7079~7087
    [61] 杨金田,计兵,可溶性聚酰亚胺的分子设计和合成探索,湖州师范学院学报,2005,27(2):43~47
    [62] 葛建芳,卢风纪,可溶性聚酰亚胺研究新进展,绝缘材料通报,1999,(6):22~27
    [63] 尹大学,李彦锋,张树江,等,聚酰亚胺材料溶解性能的研究进展,2005,(8):576~584
    [64] Imai Y, Recent advances in synthesis of high-temperature aromatic polymers, React Funct Polym, 1996, 30: 3~15
    [65] 孙自淑,江天,马家举,等,聚酰亚胺的改性及应用进展,化工科技,2005,13(5):54~58
    [66] 李传峰,钟顺和,有机无机杂化膜材料的制备技术,化学进展,2004,16(1):83~89
    [67] 吴崇浩,王世敏,赵雷,等,溶胶-凝胶法制备无机/有机聚合物杂化材料的进展,胶体与聚合物,2003,21(1):39~42
    [68] Wu J H, Lerner M M, Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers, Chem Mater, 1993, 5(6): 835~838
    [69] Vaia R A, Ishii H, Giannelis E P, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem Mater, 1993, 5(12): 1694~1696
    [70] 章永化,许德雄,钟伟东,等,功能化聚乙烯蜡/有机蒙脱土插层复合母粒的研制,中国塑料,2003,17(1):30~34
    [71] Colvin V L, Goldstein A N, Alivistos A P, Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers, J Am Chem Soc, 1992, 114: 5221~5230
    [72] Caruso F, Lichtenfeld H, Giersig M, et al, Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particle, J Am Chem Soc, 1998, 120: 8523~8524
    [73] Krylov O V, Mamedov A K, Mirzabekova S R, The regularities in the interaction of alkanes with CO2 on oxide catalysts, Catal Today, 1995, 24: 371~375
    [74] Shaobin W, Murata K, Hayakawa T, et al, Oxidative dehydrogenation of ethane by carbon dioxide over sulfate-modified Cr2O3/SiO2 catalysts, Catal Lett, 1999, 63: 59~64
    [75] Nakagawa K, Kajita C, Ikenaga N, et al, Oxidized diamond:a novel support for catalytic dehyogenation, Chem Lett, 2000, 1100~1101
    [76] Shamsi A, Johnson C, Effect of pressure on the carbon deposition route in CO2 reforming of 13CH4, Catalysis Today, 2003, 84(1-2): 17~25
    [77] Zhang Jun-Qi, Zhang Jin-Song, Yang Yong-Jin, et al, Oxidative coupling and reforming of methane with carbon dioxide using a pulsed microwave plasma under atmospheric pressure, Energy and Fuels, 2003, 17(1): 54~59
    [78] Ge X, Zhu M, Shen J, Catalytic performance of silica-supported chromium oxide catalysts in ethane dehydrogenation with carbon dioxide, React Kinet Catal Lett, 2002, 77(1): 102~108
    [79] Michorczyk P, Ogonowaski J, dehydrogenation of propane in the presence of carbon dioxide over oxide-based catalysts, React Kinet Catal Lett, 2003, 78(1): 41~47
    [80] Nakagawa K, Kajita C, Ide Y, et al, Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts, Catal Lett, 2000, 64: 215~221
    [81] Nishi K, Satsuma A, Hattori T, et al, Oxide-zeolite composite catalysts for the reduction of carbon dioxide with simultaneous aromatization of propane, Energy Conversion Management, 1995, 36(6-9): 645~648
    [82] Mimura N, Saito M, Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide, Catalysis Today, 2000, 55(1): 173~178
    [83] 葛欣,沈俭一,逆水煤气变换耦合乙烷脱氢制备乙烯反应的研究,高等学校化学学报,2001,22(12):2085~2090
    [84] 徐龙伢,王昌东,贾继飞,等,乙烷与CO2制乙烯反应的热力学和动力学研究,催化学报,1998,19(6):506~509
    [85] 李青,钟顺,CO2氧化乙烷脱氢制乙烯膜催化反应的研究, 催化学报,2000,21(2):183~185
    [86] Nakagawa K, Okamura M, Ikenaga N, et al, Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide, Chem Commun, 1998: 1025~1026
    [87] Shaobin W, Murata K, Hayakawa T, et al, Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts, Appl Catal A:gen, 2000, 196: 1~8
    [88] Shaobin W, Murata K, Hayakawa T, et al, Effect of promoter on catalytic performance of Cr/SiO2 catalysts in oxidative dehydrogenation of ethane with carbon dioxide, Catal Letters, 2001, 73, 2-4: 2~4
    [89] Mirzabekova S R, Mamedov A Kh, Aliev V S, et al, Converdion of C1-C2 alkanes over manganese catalysts reoxidized by carbon dioxide and oxygen, React Kinet Catal Lett, 1992, 47(2): 159~166
    [90] 徐龙伢,王清遐,林励吾,等,CO2加氢制低碳烯烃Fe/Silicalite-2催化剂研究Ⅲ.K-Fe-MnO/Silicalite-2催化剂性能考察,天然气化工,1997,22:14~17
    [91] 徐龙伢,王清遐,林励吾,等,CO2加氢制低碳烯烃Fe/Silicalite-2催化剂研究,Ⅱ .催化剂制备研究,天然气化工,1997,22:10~13
    [92] Takahara I, Masahiro S, Promoting effects of carbon dioxide on dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst, Catal Lett, 1996, 973~974
    [93] Takahara I, Chang W C, Mimura N, et al, Promoting effects of CO2 On dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst, Catal Today,1998, 45: 55~59
    [94] Dale B F, Emeson H L, Min-Hon R, et al, Carbon dioxide as hydrogen acceptor in dehydrogenation of alkanes, Ind Eng Chem Res Develop, 1972, 11(4): 444~446
    [95] 伊藤伸一,石黑慎太郎,里泽优敏,等,Dehydrogenation of propane over Rh-added V2O5/SiO2 catalysts,日本化学会志,1999,(8):553~555
    [96] Dury F, Gaigneaux E M, Ruiz P, The active role of CO2 at low temperature in oxidation processes: the case of oxidative dehydrogenation of propane on NiMoO4 catalysts, Appl Catal A:Gen, 2003, 242: 187~203
    [97] Shimada H, Akazawa T, Ikenaga N, et al, Dehydrogenation of isobutane to isobutene with iron-loaded activated carbon catalyst, Appl Catal A, 1997, 157: 105~116
    [98] Bi Y L, Zhen K J, Valenzuela R X, et al, Oxidative dehydrogenation of sobutene over LaBaSm oxide catalyst Influence of the addition of CO2 in the feed, Catal Today, 2000, 61: 369~375
    [99] Ge S, Liu C, Zhang S, et al, Effect of carbon dioxide on the reaction performance of oxidative dehydrogenation of n-butane over V-Mg-O catalyst, Chem Eng J, 2003, 94: 121~126
    [100] Burch R, Crittle D J, Hayes, M. J, C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts, Catal. Taday, 1999, 47: 229~234
    [101] Busca G, Finocchio E, Lorenzelli V, et al, IR studies on the activation of C-H hydrocarbon bonds on oxidation catalysts, Catal. Today, 1999, 49: 453~465
    [102] Sokolovskii V D, Catalyst properties and direction of selective oxdative transformations of C1-C3 paraffins, Catal.Taday, 1995, 24: 377~381
    [103] Carpenter C J, Koppen P A M, Bovers M T, Details of potential energy surfaces involving C-Cbond activation, J Am Chem Soc, 1995, 117:10976~10985
    [104] Yoon Y S, Fujikawa N, Ueda W, et al, Propane oxidation over various metal molybdate catalysts, Catal Taday, 1995, 24: 327~333
    [105] Busca G, Centz G, Trifivo F, n-Butane Selective Oxidation on Vanadium-Based Oxide Dependence on Catalyst Microstructure, Appl Catal, 1986, 25: 265
    [106] Tessier L, Bordes E, Gubelimann M, Active Specie an Vanadium-Contain Catalysts for Oxidation of Ethane to Acetic Acid, Catal Today, 1995, 24: 335~340
    [107] Bettahar M M., Costentin G, Savary L, on the partial oxidation of propane and propylene on mixed metal oxide catalysts, Appl Catal, 1996, 145: 1~48
    [108] W 凯姆,C1化学中的催化,北京:化学工业出版社,1989,109
    [109] Peyerimhoff S D, Bunker R J, Whitten J L, Linearstretch in polyatomic molecules: accurate self-consistent field molecular orbital wavefunctions for carbon dioxide and beryllium fluoride, Chem Phys, 1967, 46:17071
    [110] Adachi H, Zairyo R, Nyumon K, Introduction to Quantum Material Chemistry, Tokyo: sankyoshuppan,1991, 75
    [111] 王建伟,钟顺和,CO2吸附活化的研究进展,化学进展,1998,10(4):374~380
    [112] 傅钢,吕鑫,徐昕,等,CO2在金属表面活化的能学方法研究,分子催化,2001,15(6):484~486
    [113] 黎汉生,钟顺和,金属表面上CO2化学吸附研究最新进展,天然气化工,2001,25(6):39~44
    [114] Berko A, Solymosi F, Effects of potassium on the chemisorption of CO2 and CO on the Pd(100) surface, Surf Sci, 1986, 171: L 498~502
    [115] Berko A., Solymosi F, Structure and properties of potassium on Pd(100) surface, Surf Sci, 1987, 187: 359~371
    [116] Berko A, Tasrnoczi T I, Solymosi F, Interaction of CH3OH with K-dosed Rh(111) surfaces at 300 K, Surf Sci, 1987, 189-190: 238~244
    [117] Kiss J, Revesz K, Solymosi F, Photoelectron spectroscopic studies of the adsorption of CO2 on potassium-promoted Rh(111) surface, Surf Sci, 1988, 207: 36~54
    [118] Paul J, Hoffmann F M, Robbins J L, Carbon monoxide and carbon dioxide decomposition on bulk polycrystalline alkali metals, J Phys Chem, 1988, 92(24): 6967~6969
    [119] Rodriguez J A, Clendening W D, Campbell C T, Adsorption of carbon monoxide carbon dioxide on clean and cesium-covered copper(110), J Phys Chem, 1989, 93(13): 5238~5248
    [120] Wambach J, Kuhlenbeck H, Neumann M, et al, Influence of alkali co-adsorption on the adsorption and reaction of CO2 on Pd(111), Surf Sci, 1989, 209: 159~172
    [121] Solymosi F, Kiss J, The effect of boron impurity on the adsorption and dissociation of CO2 on Rh surfaces, Chem Phys Lett, 1984, 110: 639~642
    [122] Henderson M A, Worley S D, An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts, J Phys Chem, 1985, 89(8): 1417~1423
    [123] 邵宇,VSO、MoSO 负载 Pd、Cu 催化剂的制备及其 CO2 选择氧化 C2H6 反应性能的研究:[硕士学位论文],天津;天津大学,1997
    [124] Inumaru K, Misono M, Okuhara T, Structure and catalysis of vanadium oxideoverlayers on oxide supports, Appl Catal, 1997, 149: 133~149
    [125] Patil K R, Hwang Y K, Kim M J, et al, Preparation of thin films comprising palladium nanoparticles by a solid–liquid interface reaction technique, J Colloid Interface Sci, 2004, 276: 333~338
    [126] Manoj M K, James G G, George M, Characterization of silica and alumina-suported vanadia catalysts using temperature programmed reduction, J Catal, 1994, 148: 369~377
    [127] 柯以侃,董慧茹,分析化学手册第三分册,北京:化学工业出版社,1998,595~600
    [128] 陶跃武,钟顺和,钒钼复合氧化物表面上激光促进异丁烷选择氧化制甲基丙烯酸,应用化学,2001,18(1):16~20
    [129] Gulkova D, Solcova O, Zdrazil M, Preparation of MgO catalytic support in shaped mesoporous high surface area form, Micropor Mesopor Mater, 2004, 76, 137~149
    [130] 李传峰,钟顺和,负载型TiO2复合陶瓷膜的制备与表征,硅酸盐通报,2002,2:19~22
    [131] Racheva T M, Critchlow G W, SnO2 thin films prepared by the sol-gel process, Thin Solid Film, 1997, 292: 299~302
    [132] Huang R A, Hou L S, Zhao Q T, et al, Study of the Gelling Process for the Preparation of Tin Oxide Materials Based on Tin Tetrabutoxide, Chinese J Proc Eng, 5(2):152~156
    [133] Hu Q, Marand E, Dhingra S, et al, Poly(amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization, J Membr Sci, 1997, 135, 65~79
    [134] Liu L, Lu Q H, Yin J, et al, Photosensitive polyimide (PSPI) materials containing inorganic nanoparticles (I)PSPI/TiO2 hybrid materials by sol–gel process, Mater Chem Phys, 2002, 74, 210~213
    [135] Zhang J, Wang B J, Ju X, et al, New observations on the optical properties of PPV/TiO2 nanocomposites, Polymer, 2001, 42, 3697~3702
    [136] Guo H X, Zhao X P, Ning G H, et al, Synthesis of Ni/Polystyrene/TiO2 Multiply Coated Microspheres, Langmuir, 2003, 19: 4884~4888
    [137] Chiang P C, Whang W T, The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films, Polymer, 2003, 44: 2249~2254
    [138] Hu Q, Marand E, In situ formation of nanosized TiO2 domains within poly(amide–imide) by a sol–gel process, Polymer, 1999, 40: 4833~4843
    [139] Luo M L, Zhao J Q, Tang W, et al, Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Appl Surf Sci, 2005,249: 76~84
    [140] Loridant S, Determination of the Maximum Vanadium Oxide Coverage on SnO2 with a High Surface Area by Raman Spectroscopy, J Phys Chem B, 2002, 106, 13273~13279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700