用户名: 密码: 验证码:
新型渗透蒸发膜分离乙二醇水溶液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗透蒸发以其绿色、高效、节能的突出特点在乙二醇脱水中具有良好的应用前景,渗透蒸发技术的核心是高性能渗透蒸发膜的研制。本论文以聚乙烯醇(PVA)为主体膜材料,制备了PVA-氧化硅(SiO2)高分子-无机杂化膜、表面交联改性PVA膜和以聚砜或聚醚砜为基膜,交联PVA为活性层的复合膜。针对乙二醇-水-膜之间的氢键作用,考察了乙二醇和水之间的耦合效应对PVA膜溶胀吸附性能和渗透蒸发性能的影响。针对乙二醇物性,系统考察了进料温度、进料流速等工艺条件的改变对渗透蒸发分离性能的影响。
     以PVA高分子为主体材料,基于硅烷结构不同导致水解-缩聚速率差异的特性,以有机取代基具有网络形成作用的GPTMS原位生成改性TEOS水解缩聚产物,制备PVA-SiO2杂化膜。基于酸碱催化硅烷水解-缩聚产物结构的差异,以有机取代基具有网络修饰作用的MPTMS原位生成带有巯基的PVA-SiO2杂化膜。系统研究了有机硅氧烷含量和催化剂的改变,对杂化膜结构形态及物理化学性质的影响,以及对渗透蒸发分离性能的影响。
     考虑到乙二醇和水对PVA膜均有较强的塑化作用,首次采用表面交联法改性PVA膜分离乙二醇/水体系。该改性法将反应限制在膜表面,在膜表面形成均匀的交联层,有效地抑制了膜的溶胀,提高了膜的稳定性。所制备的表面交联改性PVA膜对乙二醇/水(80wt% EG)混合物的渗透通量和分离因子分别为211 gm -2h-1和934。通过溶胀平衡实验及渗透传质结果分析,乙二醇和水之间的耦合效应阻止了乙二醇在膜内的吸附和扩散,且这种影响随着原料液中水含量的增加而增加。乙二醇具有极低的饱和蒸汽压,因此进料温度对乙二醇的渗透影响较大。
     采用界面反应吸附的方法制备了表面交联PVA/PES(PS)复合膜。结果表明,支撑层经界面反应交联剂硼砂处理后,与PVA界面作用力明显增强,从而快速形成超薄、均质的活性分离层。当硼砂浓度为0.1wt%,铸膜液中PVA含量为2wt%,浸涂两次可制得活性分离层厚度为1-1.5μm的表面交联PVA/PES复合膜,其对乙二醇/水(80wt% EG)混合物的渗透通量和分离因子分别为427gm -2h-1和438。通过60h工艺条件的考察,PVA/PES(PS)复合膜的渗透蒸发分离性能没有改变,显示出较好的稳定性。
Pervaporation process will find promising applications in dehydration of ethylene glycol (EG), due to its inherent green, efficient and energy-saving characteristics. The core of pervaporation process is the development of appropriate membrane material. In this dissertation, Poly(vinyl alcohol) (PVA) was selected as main membrane material. PVA-SiO2 hybrid membranes, surface crosslinked PVA membranes and surface crosslinked PVA/PES (or PS) composite membranes were prepared. The coupling effect was investigated in consideration of the hydrogen-bonding interaction among ethylene glycol, water and PVA membrane. In addition, the optimization of process conditions was carried out systematically.
     PVA-SiO2 hybrid membranes were prepared by sol-gel process using PVA as the host material, tetraethoxysilane (TEOS) andγ-glycidyloxypropyltrimethoxysilane (GPTMS) as mixed silica precursors based on the different hydrolysis-condensation rate of siloxane with different structures. The organic functional group of GPTMS has the function of network former, which can in situ modify the product of TEOS. Mercapto PVA-SiO2 hybrid membranes were prepared by in situ sol-gel reaction ofγ-mercaptopropyltrimethoxysilane (MPTMS) with organic functional group as network modifier and PVA based on the different hydrolysis-condensation structure of alkoxyorganosilane under acidic or basic conditions. The effects of alkoxyorganosilane content and preparation conditions on the structure, physical and chemical properties of hybrid membranes, as well as pervaporation performance were systemically investigated.
     Considering the strong plasticizing effect of water and EG on PVA membrane, dehydration of EG aqueous solution by pervaporation was studied by surface crosslinked PVA membrane for the first time, the homogeneous and stable crosslinking structure surpressed the swelling of PVA membrane and showed desirable stability. The surface crosslinked PVA membrane exhibited good separation performance with a separation factor of 934 and a permeation flux of 211 gm-2h-1 for 80wt% EG in feed at 70℃. The results of swelling, sorption measurments and the permeation and diffusion data indicated that there exists strong coupling effect between water and EG, which inhibited the sorption and diffusion of EG within membrane. The feed temperature is dominant factor of EG permeation because of the low saturated vapor pressure of EG.
     Interfacial reaction technique has been employed to fabricate PVA/PES (or PS) thin film composite membrane. The results indicated that dispersion of the interfacial crosslinking agent borax in the support layer intensified the interface interaction between the PVA layer and PES (PS) support layer. A homogeneous, defect-free thin film of PVA on the support layer produced due to a strong interaction between the thin PVA layer and the support layer. The PES support layer was treated with 0.1wt% borax aqueous solution, and then the dried support layer was immersed into 2wt% PVA aqueous solution. The PVA separating layer with an approximate thinkness of 1-1.5μm was formed through two time’s dip-coating process. The permeation flux and separation factor is 427 gm-2h-1 and 438 for 80wt% EG in feed at 70℃, respectively. The surface crosslinked PVA/PES (or PS) composite membrane showed desirable stablily and separation performance for EG/water mixture during the investigation of process conditions for 60h. The structural stability of the composite membrane is satisfactory.
引文
[1] Wijmans J G, Smolders C A, The solution-diffusion model:a review, J. Membr. Sci., 1995, 107:1~21
    [2] Jonquières A, Clément R, Lochon P, Néel J, Dresch M, Chrétien B, Industrial state-of-the-art of pervaporation and vapour permenation in the western countries, J. Membr. Sci., 2001, 206: 87~117
    [3] Zhang S, Drioli E, Review: Pervaporation membranes, Sep. Sci. Tech., 1995, 30(1): 1~31
    [4] 陈镇,秦培勇,陈翠仙,渗透汽化和蒸汽渗透技术的研究、应用现状及发展,膜科学与技术,2003,23:103~107
    [5] Lipnizki P, Field R W, Ten P K, Pervaporation-based hybrid process: A review of process design, applications and economics, J. Membr. Sci., 1999, 153: 183~210
    [6] Feng X, Huang R Y M, Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res., 1997, 36: 1048~1066
    [7] 陈翠仙,余立新,祁喜旺,渗透汽化膜分离技术的进展及在石油化工中的应用,膜科学与技术,1997,17:14~18
    [8] Hoof V V, Abeele L V, Buekenhoudt A, Dotremont C, Leysen R, Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol, Sep. Purif. Tech., 2004 37: 33~49
    [9] 梅香银,2005 年国内外乙二醇供需分析及预测,中国石油和化工经济分析,2006,15:34~37
    [10] 于力,乙二醇市场供需分析,化工科技,2005,13(1):1~4
    [11] 崔小明,乙二醇生产现状及市场分析,石油化工技术经济,2005, 2(21):32~38
    [12] 朱培玉,李扬,王永宏,乙二醇生产新技术研究进展,化工进展,2002, 10(21):713~717
    [13] Chen F R, Chen H F, Pervaporation separation of ethylene glycol-water mixtures using cross-linked PVA-PES composite membranes. Part I. Effect of membrane preparation conditions on pervaporation performances, J. Membr. Sci., 1996, 109: 247~256
    [14] Chen F R, Chen H F, A diffusion model of the pervaporation separation of ethylene glycol-water mixtures through crosslinked poly(vinyl alcohol) membrane, J. Membr. Sci., 1997, 139: 201~209
    [15] 陈俸荣,陈洪钫,交联聚乙烯醇膜渗透蒸发分离乙二醇/水混合物的溶解选择性与渗透选择性的关系,高校化学工程学报,1996,10(2):190~195
    [16] 陈俸荣,陈洪钫,渗透蒸发均质膜在二元醇/水溶液中的溶胀平衡模型,化工学报,1996,47(4):466~472
    [17] Bartels C R , Reale J, Dehydration of glycols, U.S. Patent 4,802,988, 1989
    [18] Burshe M C, Sawant S B, Joshi J B, Pangakar V G, Dehydration of ethylene glycol by pervaporation using hydrophilic IPNs of PVA, PAA and PAAM membranes, Sep. Puri, Tech., 1998, 13: 47~56
    [19] Feng X, Huang R Y M, Pervaporation with chitosan membranes. I. Separation of water from ethylene glycol by a chitosan/polysulfone composite membrane, J. Membr. Sci., 1996, 116: 67~76
    [20] Nam S Y, Lee Y M, Pervaporation of ethylene glycol-water mixtures I. Pervaporation performance of surface crosslinked chitosan membranes, J. Membr. Sci., 1999, 153: 155~162
    [21] Chou K J, Method of dehydrating organic oxygenates, U.S. Patent 5,456,839, 1995
    [22] Pasternak M, Reale J, Dewatering of concentrated aqueous solutions by pervaporation, U.S. Patent 5,182,022, 1993
    [23] Huang R Y M, Shao P, Feng X, Anderson W, Separation of ethylene glycol-water mixtures using sulfonated poly (ether ether ketone) pervaporation membranes: membrane relaxation and separation performance analysis, Ind. Eng. Chem. Res., 2002, 41: 2957~2965
    [24] Shao P, Huang R Y M, Feng X, Anderson W, Pal R, Burns C M, Composite membranes with an integrated skin layer: preparation, structural characteristics and pervaporation performance, J. Membr. Sci., 2005, 254: 1~11
    [25] Jelena S, Johan E, Elshof T, Blank D H A, Selective pervaporation of water through a nonselective microporous titania membrane by a dynamically induced molecular sieving mechanism. Langmuir, 2005, 21: 508~510
    [26] Shimidzu T, Yoshikawa M, Synthesis of novel copolymer membranes for pervaporation. In Pervaporation Membrane Separation Processes; Huang R Y M, Ed, Elsevier: Amsterdam, 1991, 321~361
    [27] Mulder M, Franken T, Smolders C A, Perferential sorption versus prefertial permeability in pervaporation, J. Membr. Sci., 1985, 22: 155~173
    [28] Mulder M H V, Kruitz F, Smolders C A, Separation of isomeric xylenes by pervaporation through cellulose ester membranes, J. Membr. Sci., 1982, 11: 349~363
    [29] 邹健,孙本惠,陈翠仙,聚电解质渗透汽化膜,高分子通报,2001,10: 44~52
    [30] Semenova S I, Ohya H, Soontarapa K, Hydrophilic membranes for pervaporation: An analytical Review, Desalination, 1997, (110): 251~286
    [31] Yu J, Lee C H, Hong W H, Performances of crosslinked asymmetric poly(vinyl alcohol) membranes for isopropanol dehydration by pervaporation, Chem. Eng. Process., 2002, 41(8): 693~698
    [32] Devi D A, Smitha B, Sridhar S, Aminabhavi T M, Dehydration of 1,4-dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation, J. Membr. Sci., 2006, 280: 138~147
    [33] 蔡邦肖,张佩琴,聚乙烯醇渗透汽化分离膜的研究进展,华东理工大学学报(自然科学版),2006,32(2):235~240
    [34] Chanachai A, Jiraratananon R, Uttapap D, Moon G Y, Anderson W A, Huang R Y M, Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes, J. Membr. Sci., 2000, 166: 271~280
    [35] Dubey V, Pandey L K, Saxena C, Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosan-poly(vinyl alcohol) blends, J. Membr. Sci., 2005, 251: 131~136
    [36] Huang R Y M, Pal R, Moon G Y, Crosslinked chitosan composite membrane for the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan/polysulfone composite membranes, J. Membr. Sci., 1999, 160: 17~30
    [37] Devi D A, Smitha B, Sridhar S, Aminabhavi T M, Novel crosslinked chitosan/poly (vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique, J. Membr. Sci., 2006, 280: 45~53
    [38] Lee Y M, Nam Y N, Woo D J, Pervaporation of ionically surface crosslinked chitosan composite membranes for water-alcohol mixtures, J. Membr. Sci., 1997, 133: 103~110
    [39] Won W Y, Feng X, Lawless D, Separation of dimethyl carbonate/methanol /water mixtures by pervaporation using crosslinked chitosan membranes, Sep. Purif. Tech., 2003, 31: 129~140
    [40] Liu Y L, Yu C H, Lee K R, Lai J Y, Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes, J. Membr. Sci, 2007, 287(2): 230~236
    [41] Saracco G, Vesteeg G F, Van Swaaij W P M, Current hurdles to the success of high-temperature membrane reactors, J. Membr. Sci., 1994, 95:105~123
    [42] Breck D W, Zeolite Molecular Sieves: Structure, Chemistry and Use, Wiley, New York, 1974: 83~90
    [43] Jafar J J, Budd P M, Separation of alcohol/water mixtures by pervaporation through zeolite A membranes, Microporous. Mater., 1997, 12 : 305~311
    [44] Kondo M, Komori M, Kita H, Okamoto K, Tubular-type pervaporation module with zeolite NaA membrane, J. Membr. Sci. 1997, 133: 133~141
    [45] Okamoto K, Kita H, Korii K, Tanaka K, Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res., 2001, 40: 163~175
    [46] Richter H, Voight I, Fischer P, Puhlfur B P, Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries, Sep. Purif. Tech., 2003, 32: 133~138
    [47] Shah D, Kissick K, Ghorpade A, Hannah R, Bhattacharyya D, Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results, J. Membr. Sci. 2000, 179: 185~205
    [48] Ahn H, Lee H, Lee S-B, Lee Y,Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes, Desalination, 2006, 193: 244~251
    [49] Noack M, K¨olsch P, Caro J, Schneider M, Toussaint P, Sieber I, MFI membranes of different Si/Al ratios for pervaporation and steam permeation, Microporous Mesoporous Mater., 2000, 253: 35~36
    [50] Lin X, Kikuchi E, Matsukata M, Preparation of mordenite membranes on α-alumina tubular supports for pervaporation of water isopropyl alcohol mixtures, Chem. Commun., 2000, 957~958
    [51] Verkerk A W, Male P V, Vorstman M A G, Keurentjes J T F, Description of dehydration performance of amorphous silica pervaporatin membranes, J. Membr. Sci., 2001, 193: 227~238
    [52] Renate M, Verweij H, Improved performance of silica membranes for gas separation, J. Membr. Sci., 1998, 143: 37~51
    [53] Van Veen H M, Delft Y C, Engelen C W R, Pex P P A C, Dewartering of organics by pervaporation with silica membranes, Sep. Purif. Tech., 2001, (22~23): 361~366
    [54] Verkerk A W, Male P V, Vorstman M A G, Keurentjes J T F, Properties of high flux ceramic pervaporatin membranes for dehydration of alcohol/water mixtures, Sep. Purif. Tech., 2001, (22-23): 689~695
    [55] Sanchez C, Ribot F, Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry, New J. Chem., 1994 18(10): 1007~1047
    [56] Kickelbick G, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Pro. Polym. Sci., 2003, 28: 83~114
    [57] Chistian G, Alain B, Mihail B, Nadine H, Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies, Sep. Purif. Tech., 2001, 25: 167~180
    [58] Eckert H, Ward M, controlling the length scale through “soft” chemistry: form organic-inorganic nanocomposites to functional materials, Chem. Master., 2001, 13(10): 3059~3060
    [59] 王铀,沈静姝,制备聚合物纳米复合材料展望,化工新型材料,1998,26 (1):8~12
    [60] 郭卫红,唐颂超,周达飞,徐种德,纳米SiO 在MMA单体中在位分散聚合的研究,材料导报,2000,10:71~72
    [61] Landry J T C, Coltrain B K, A W Jeffrey, Zumbulyadis N, Lippert J L, In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions, Polymer, 1992, 33: 1496~1506
    [62] Ruckenstein E, Hong L, Oxide-Carbon Composites and Porous Metal Oxides Prepared via Water-Swellable Polymer Networks, Chem Mater., 1996, 8: 546~553
    [63] Corriu R J P, Moreau J J E, Thepot P, Wong Chi Man M, Hybrid Silica Gels Containing 1,3-Butadiyne Bridging Units. Thermal and Chemical Reactivity of the Organic Fragment, 1996, 8: 100~106
    [64] Gao Z, Yue Y, Li W, Application of zeolite-filled pervaporation membrane, Zeolites, 1996, 16: 70~74
    [65] Huang Z, Guan H M, Tan W L, Qiao X Y,Kulprathipanja S,Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes: Effect of zeolites, J. Membr. Sci., 2006, 276: 260~271
    [66] Kariduraganavar M Y, Kittur A A, Kulkarni S S, Ramesh K, Development of novel pervaporation membranes for the separation of water-isopropanol mixtures using sodium alginate and NaY zeolite, J. Membr. Sci., 2004, 238: 165~175
    [67] Bhat S D, Naidu B V K, Shanbhag G V, Halligudi S B, Sairam M, Aminabhavi T M, Mesoporous molecular sieve (MCM-41)-filled sodium alginate hybrid nanocomposite membranes for pervaporation separation of water-isopropanol mixtures, Sep. Purif. Tech., 2006, 49: 56~63
    [68] Yeh J M, Yu M Y, Liou S J, Dehydratin of water-alcohol mixtures by vapor permeation through PVA/Clay nanocomposite membrane, J. Appl. Poly. Sci., 2003, 89: 3632~3638
    [69] Wang Z H, Fan S C, Lee K R, Li C L, Huang S H, Tsai H A, Lai J Y, Polyamide/SDS-clay hybrid nanocomposite membrane application to water-ethanol mixture pervaporation separation, J. Membr. Sci., 2004, 239:219~226
    [70] Uragami T, Okazaki K, Matsugi H, Miyata T, Structure and permeation characteristics of an aqueous ethanol solution organic-inorganic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysilane, Macromolecules, 2002, 35: 9156~9163
    [71] Kulkarni S S, Kittur A A, Aralaguppi M I, Kariduraganavar M Y, Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isoproanol mixtures, J. Appl. Polym. Sci., 2004, 94: 1304~1315
    [72] Kariduraganavar M Y, Kulkarni S S, Kittur A A, Pervaporation separation of water-acetic mixtures through poly(vinyl alcohol)-silicone based hybrid membranes, J. Membr. Sci., 2005, 246: 83~93
    [73] Zhang Q G, Liu Q L, Jiang Z Y, Chen Y, Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci., 2007, 287: 237~245
    [74] Liu Y L, Su Y H, Lee K R, Lai J Y, Crosslinked organic-inorganic hybrid chistoan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability, J. Membr. Sci., 2005, 251: 233~238
    [75] Lua Z H, Liu G J, Duncan S, Poly(2-hydroxyethyl acrylate-co-methylacrylate)/SiO2/TiO2 hybrid membranes, J. Membr. Sci., 2004, 239:219~226
    [76] Yeom C K, Lee K H, Pervaporation separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde, J. Membr. Sci., 1996, 109: 257~265
    [77] Gohil J M, Bhattacharya A, Ray P, Studies on the crosslinking of poly(vinyl alcohol), J. Polym. Res., 2006, 13: 161~169
    [78] Yeom C K, Lee K H, Characterization of Sodium Alginate and Poly (vinyl alcohol) Blend Membranes in Pervaporation Separation, J. App. Polym. Sci., 1998, 67: 949~959
    [79] L.G. Wu, C.L. Zhu, M. Liu, Study of a new pervaporation membrane Part I. Preparation and characteristics of the new membrane, J. Membr. Sci., 1994, 90: 199~205
    [80] Kariduraganavar M Y, Kulkarni S S, Kittur A A, Pervaporation separation of water-acetic acid mixtures through poly(vinylalcohol)-silicone based hybrid membranes, J. Membr. Sci., 2005, 246: 83~93
    [81] Alghezawi N, Sanl? O, Aras L, Asman G, Separation of acetic acid-water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation, Chem. Eng. Process., 2005, 44: 51~58
    [82] Upadhyay D J, Bhat N V, Pervaporation studies of gaseous plasma treated PVA membrane, J. Membr. Sci., 2004, 239: 255~263
    [83] Miranda T M, Goncalves A R, Amorim M P, Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra, Polym. Int., 2001, 50: 1068~1072
    [84] Is?klan N, Sanl? O, Separation characteristics of acetic acid-water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid, Chem. Eng. Process., 2005, 44: 1019~1027
    [85] 余立新,陈翠仙,张立平,蒋维钧,二醛交联 PVA/PAN 复合膜的渗透汽化脱水性能,膜科学与技术,2000,20(2):23~25
    [86] Rhim J W, Yeom C K, Kim S W, Modification of poly(vinyl alcohol) membranes using sulfur-succinic acid and its application to pervaporation separation of water-alcohol mixtures, J. Appl. Polym. Sci., 1998, 68: 1717~1723
    [87] Burshe M C, Sawant S B, Joshi J B, Pangarkar V G, Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifunctional crosslinking agents, Sep. Purif. Tech., 1997, 12: 145~156
    [88] Lee, Y K, Sohn, I S, Jeon, E J, Kim S C, IPN membranes for the pervaporation of ethanol-water mixture, Polym. J., 1991, 23: 427~433
    [89] Rhim J, Yoon S, Kim S-W, Lee K, Pervaporation separation and swelling measurement of acetic acid-water mixtures using crosslinked PVA membranes, J. Appl. Polym. Sci., 1997, 63: 521~527
    [90] Yeom C K, Lee K H, Characterization of sodium alginate and poly(vinyl alcohol) blend membranes in pervaporation sepatration, J. Appl. Polym. Sci., 1998, 67: 949~959
    [91] Wu L G, Zhu C L, Liu M, Study of a new pervaporation membrane: part I. Pervaporation and characteristics of the new membrane, J. Membr. Sci., 1994, 90: 199~212
    [92] Ping Z, Nguyen Q T, Neel J, Investigation of poly(vinyl alcohol): poly(N-vinyl-2)-pyrolidone blends. 3. Permeation properties of polymer blend membranes, Macromol. Chem. Phys., 1994, 195: 2107~2116
    [93] 李效东,彭平,黄小忠,廖杰,张丽琴,PVA/PEG 共混渗透蒸发膜的盐水分离机理研究,离子交换与吸附,1999,15(5):403~410
    [94] Sridhar S, Smitha B, Reddy A A, Separation of 2-butanol–water mixtures by pervaporation through PVA–NYL 66 blend membranes, Colloids and Surfaces A: Physicochem. Eng. Aspects 280 (2006) 95~102
    [95] Chiang W Y, Huang C C, Separation of liquid mixtures by using polymer membranes. IV:Water-alcohol separation by pervaporation through modified acrylonitrile grafted polyvinyl alcohol copolymer (PVA-G-AN) membranes, J. App. Polym. Sci., 1993, 48: 199~203
    [96] Chiang W Y, Hu C M, Separation of liquid mixtures by using polymer membranes. I. Water-alcohol separation by pervaporation through PVA-G-MMA: MA membrane, J. Appl. Polym. Sci., 1991, 43: 2005~2012
    [97] Gholap S G, Jog J P, Badiger M V, Synthesis and characterization of hydrophobically modified poly(vinyl alcohol) hydrogel membrane, Polymer, 2004, 45: 5863~5873
    [98] Gimenez V, Mantecon A, Ronda J C, Cadiz V, Poly(vinyl alcohol) modified with carboxylic acid anhydrides: crosslinking through carboxylic groups, J. Appl. Polym. Sci., 1997, 65: 1643~1651
    [99] 张静,涂伟萍,夏正斌,聚乙烯醇改性研究进展,合成纤维工业,2005,28(1):57~60
    [100] Chiang W Y, Lin Y H, Properties of modified poly(vinyl alcohol) membranes prepared by the grafting of new polyelectrolyte copolymers for water-ethanol mixture separation, J. Appl. Polym. Sci., 2002, 86: 2854~2859
    [101] Chiang W Y, Chen C L, Separation of water-alcohol mixture by using polymer membranes 6.Water-alcohol pervaporation through terpolymer of PVA grafted with hydrazine reacted SMA, Polymer, 1998, 39: 2227~2233
    [102] Xiao S, Robert Y M H, Feng X, Preparation and properties of trimesoyl chloride crosslinked poly(vinyl alcohol) membranes for pervaporation dehydration of isopropanol, J. Membr. Sci., 2006 286: 245~254
    [103] Yeom C K, Lee S H, Lee J M, Pervaporative Permeations of Homologous Series of Alcohol Aqueous Mixtures through a Hydrophilic Membrane, J. Appl. Polym. Sci., 2001, 79: 703~713
    [104] Yong S K, Sang W L, Un Y K, Jyong S S, Pervaporation of water-ethanol mixtures through crosslinked and surface-modified poly (vinyl alcohol) membrane, J. Membr. Sci., 1990, 51: 215~226
    [105] Bhat N V, Wavhal D S, Characterization of plasma-polymerized thiophene onto cellulose acetate membrane and its application to pervaporation, Sep. Sci. Tech., 2000, 35: 227~242
    [106] Rafik M, Mas A, Guimon M F, Guimon C, Elharfi A, Schue′ F, Plasma-modified poly(vinyl alcohol) membranes for the dehydration of ethanol, Polym. Int., 2003, 52: 1222~1229
    [107] Kaba M, Raklaoui N, Guimon M F, Mas A, Improvement of the water selectivity of ULTEM poly (ether imide) pervaporation films by an allylamine-plasma-polymerized layer, J. Appl. Polym. Sci., 2005, 97: 2088~2096
    [108] Heinzelmann W, Fabrication methods for pervaporation membranes. In Proc. 5th Int. Conf. Pervaporation Processes in Chem.Ind.; Bakish, R, Ed.; Bakish Materials Corp.: Englewood, NJ,1991: 22~30
    [109] Yano S, Iwata K, Kurita K, Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process, Mater. Sci. Eng. C., 1998, 6: 75~90
    [110] Winter R, Hua D W, Song X, Mantulin W, Jonas J, Structural and dynamical properties of the sol-gel transition, J. Phys. Chem., 1990, 94: 2706~2113
    [111] Loy D A, Baugher B M, Baugher C R, Schneider D A, Rahimian K, Substituent Effects on the Sol-Gel Chemistry of Organotrialkoxysilanes, Chem. Mater., 2000, 12: 3624~3632
    [112] Abdelmouleh M, Boufi S, Salah A B, Interaction of Silane Coupling Agents with Cellulose, Langmuir, 2002, 18: 3203~3208
    [113] Li X C, Ling T A, Spectroscopic studies of sol-gel-derived organically modified silicates, J. Non-Cryst. Solids., 1996, 204: 235~242
    [114] 沈淑坤,胡道道,宋少飞,有机修饰及有机物对硅氧烷溶胶-凝胶过程的影响,化学通报, 2006,69:1~9
    [115] Templin M, Wiesner U, Spiess H W, Multinuclear solid-state-NMR studies of hybrid organic-inorganic materials, Adv. Mater., 1997, 9: 814~817
    [116] Innocenzi P, Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview, J. Non-Cryst. Solids., 2003, 316: 309~319
    [117] Gomes D, Nunes S P, Peinemann K V, Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites, J. Membr. Sci., 2005, 246: 13~25
    [118] Pedroso M A S, Dias M L, Azuma C, San Gil R A S, Mothe C G, Hydrocarbon dispersion of nanospherical silica by a sol-gel process. 2. Alkoxysilane copolymerization, Colloid. Polym. Sci., 2003, 281: 19~26
    [119] Sekulic J, Ten Elshof J E, Blank D H A., Selective pervaporation of water through a nonselective microporous titania membrane by a dynamically induced molecular sieving mechanism, Langmuir, 2005, 21: 508~510
    [120] Liu Y L, Su Y H, Lai J Y, In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent, Polymer, 2004, 45: 6831~6837
    [121] Wu F C, Chen T Y, Wan C C, Wang Y Y, Lin T L, Catalyst Improvement of Utilization for Direct Methanol Fuel Cell Using Silane Coupling Agents, Electrochem. Solid-State Lett., 2006, 12: A549~A551
    [122] Peng F B, Lu L Y, Sun H L, Wang Y Q, Liu J Q, Jiang Z Y, Hybrid Organic-Inorganic Membrane: Solving the Tradeoff between Permeability and Selectivity, Chem. Mater., 2005, 17: 6790~6796
    [123] Shang X Y, Li X H, Xiao M, Meng Y Z, Synthesis and characterization of sulfonated fluorine-containing poly(arylene ether ketone) for high temperature proton exchange membrane, Polymer, 2006, 47: 3807~3813
    [124] Munakata H, Chiba H, Kanamura K, Enhancement on proton conductivity of inorganic-organic composite electrolyte membrane by addition of sulfonic acid group, Solid State Ionics., 2005, 176: 2445 ~ 2450
    [125] Margolese D, Melero J A, Christiansen S C, Chmelka B F, Stucky G D, Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chem. Mater., 2000, 12: 2448~2459
    [126] Nagarale R K, Gohil G S, Shahi V K, Rangarajan R, Organic-Inorganic Hybrid Membrane: Thermally Stable Cation-Exchange Membrane Prepared by the Sol-Gel Method, Macromolecules, 2004, 37: 10023~10030
    [127] 余桂郁,杨南如,溶胶―胶法简介:第三讲 溶胶-凝胶法工艺过程,硅酸盐通报,1993,(6):60~65
    [128] 黄伟,黄英,余云照,原硅酸乙酯的水解缩聚,有机硅材料及应用,1999,3:10~12
    [129] Mat jka L, Dukh O, Brus J, Simonsick Jr W J,Meissner B, Cage-like structure formation during sol-gel polymerization of glycidyloxypropyltrimethoxysilane, J. Non-Cryst. Solids., 2000, 270: 34~47
    [130] Mat jka L, Dukh O, Hlavata D, Meissner B, Brus J, Cyclization and Self-Organization in Polymerization of Trialkoxysilanes, Macromolecules, 2001, 34: 6904~6914
    [131] Innocenzi P, Brusatin G, Babonneau F, Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials, Chem. Mater., 2000, 12: 3726~3732
    [132] Zera T W, Artaki I, Jonas J, Study of polymerization processes in acid and base catalyzed silica sol-gels, J. Non-Cryst. Solids., 1986, 80: 365~379
    [133] Mauritz K A, Warren R M, Microstructural Evolution of a Silicon Oxide Phase in a Perfluorosulfonic Acid Ionomer by an in Situ Sol-Gel Reaction. 1. Infrared Spectroscopic Studies, Macromolecules, 1989, 22(4): 1730~1734
    [134] Robertson M A F, Mauritz K A, Infrared investigation of the silicon oxide phase in [Perfluoro-carboxylate/sulfonate (Bilayer)]/[Silicon Oxide] nanocomposite membranes, J. Polym. Sci. Part B: Polym. Phys., 1998, 36: 595~606
    [135] Holland B J, Hay J N, The thermal degradation of poly(vinyl alcohol), Polymer, 2001, 42 (16): 6775~6783
    [136] Cano-Serrano E, Blanco-Broeva G, Campos-Martin J M, Fierro J L G., Acid-functionalized amorphous silica by chemical grafting-quantitative oxidation of thiol groups, Langmuir, 2003, 19: 7621~7627
    [137] Evans P J, Slade R C T, Varcoe J R, Young K E, Realisation of siloxane ionomers by mild oxidation of alkylmercaptosiloxanes, J. Mater. Chem., 1999, 9: 3015~3021
    [138] Mulder M H V, Smolders C A,On the mechanism of separation of ethanol/water mixtures by pervaporaiton I. Calculations of concentration profiles, J. Membr.Sci., 1984 17: 289~307
    [139] Wind J D, Sirard S M, Paul D R, Green P F, Johnston K P, Koros W J, Carbon dioxide-induced plasticization of Polyimide membranes: Pseuo~equilibrium relationships of diffusion, sorption and swelling. Macromolecules, 2003, 36: 6433~6441
    [140] Lipnizki1 F, Hausmanns S, Hydrophobic Pervaporation of Binary and Ternary Solutions: Evaluation of Fluxes, Selectivities, and Coupling Effects, Separa. Sci. & Techno., 2004, 39: 2235~2259
    [141] M. She, Hwang S T, Effects of concentration, temperature, and coupling on pervaporation of dilute flavor organics, J. Membr. Sci., 2006, 271: 16~28
    [142] Uchytil P, Nguyen Q T, Clement R, Grosse J M, Essamri A, Diffusion of acetic acid and water through Poly(vinylalcohol) membranes. Coupling effects, Polymer, 1996, 37: 93~100
    [143] Ni X Y, Sun X H, Ceng D, Coupled diffusion of water and ethanol in a polyimide membrane, Poly. Engine. & Sci., 2001, 41: 1441~1447
    [144] Ren J Z, Jiang C Z, The coupling effect of the thermodynamic swelling process in pervaporation, J. Membr. Sci., 1998, 140: 221~223
    [145] Semenova S I, Ohya H, Smirnov S I, Physical transitions in polymers plasticized by interacting penetrant, J. Membr. Sci., 1997, 136: 1~11
    [146] Park J S, Park J W, Ruckenstein E, A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinylalcohol)/methylcellulose blends, J. App. Polym. Sci., 2001, 80: 1825~1834
    [147] Devi D A, Smitha B, Sridhar S, Aminabhavi T M, Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes, J. Membr. Sci., 2005, 262: 91~99
    [148] Flory P J, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953, Chaps. 12 and 13.16
    [149] Chen F R, Chen H F, Pervaporation separation of ethylene glycol/water mixtures using cros-linked PVA/PES composite membranes. Part II. The swelling equilibrium model of the dense active layer in ethylene glycol/water mixtures, J. Membr. Sci., 1996, 118: 169~176
    [150] Anderson T F, Prausnitz J M, Appication of the UNIQUAC equation to calculation of multicomponent phase equilibria. 1. Vapor-liquid equilibria. Ind. Eng. Chem. Process, Des. Dev., 1978, 17: 552~562
    [151] Gmeling J, Onken U, Rarey-Nies J R, Vapor-liquid equilibrium data collection: Aqueous systems (supplement 2), Dechema, Frankfurt/Main, Germany, 1988
    [152] Peng F B, Jiang Z Y, Hu C L, Wang Y Q, Xu H Q, Liu J Q, Removing benzene from aqueous solution using CMA-filled PDMS pervaporation membranes, Sep. Purif. Tech., 2006, 48: 229~234
    [153] Yang C S, Ma P S, Jing F M, Tang D Q, Excess molar volumes, viscosities, and heat capacities for the mixtures of ethylene glycol + water from 273.15 K to 353.15 K, J. Chem. Eng. Data., 2003, 48: 836~840
    [154] Feng X F, Huang R Y M, Concentration polarization in pervaporation separation processes, J. Membr. Sci., 1994, 92: 201~208
    [155] Gekas V, Hallstrom B, Mass transfer in the membrane concentration polarization layer underturbulent cross flow. I. Critical literature review and adaption of existing Sherwood correlations to membrane operations, J. Membr. Sci., 1987, 30: 153~170
    [156] Favre E, Temperature polarization in pervaporation, Desalination, 2003, 154: 129~138
    [157] Fontalvo J, Vorstman M A G, Wijers J G, Keurentjes J T F, Heat supply and reduction of polarization effects in pervaporation by two-phase feed, J. Membr. Sci., 2006, 279: 156~164
    [158] Wang X P, Modified alginate composite membranes for the dehydration of acetic acid, J. Membr. Sci., 2000, 170: 71~79
    [159] Yeom C K, Kim C U, Kim B S, Kim K J, Lee J M, Recovery of anionic surfactant by RO process. Part II. Fabrication of thin film composite membranes by interfacial reaction, J. Membr. Sci., 1999, 156:197~210
    [160] Jonsson A, Jonsson B, The influence of nonionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes, J. Membr. Sci., 1991, 56: 49~76
    [161] Masakazu Y, Keisuke T, Michael D G, Gilles P. R, Modified Polysulfone Membranes. III. Pervaporation Separation of Benzene-Cyclohexane Mixtures through Carboxylated Polysulfone Membranes, J. Appl. Poly. Sci., 1999, 74: 407~412
    [162] Belfer S, Fainchtain R, Purimson Y, Kedem O, Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled, J. Membr. Sci., 2000, 172: 113~124
    [163] Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R, Low temperature plasma treatment of polysulfone membrane for permanent hydrophilic surface modification, J. Membr. Sci., 2001, 188: 97~144
    [164] Kim K J, Fane A G, Fell C J D, The performance of ultrafiltration membranes pretreated by polymers, Desalination, 1988, 70: 229~249
    [165] Brink L E S, Romijn D J, Reducing the protein fouling of polysulfone surfaces and polysulfone ultrafiltration membranes optimization of the type of presorbed layer, Desalination, 1990, 78: 209~233
    [166] Huang R Y M, Pal R, Moon G Y, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane, J. Membr. Sci., 2000, 167: 275~289
    [167] Jiraratananon R, Sampranpiboon P, Uttapap D, Huang R Y M, Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes, J. Membr. Sci., 2002, 210: 389~409
    [168] Lipnizki F, Olsson J, Wu P, Weis A, Tragardh G, Field R W, Hydrophobic pervaporation: influence of the support layer of composite membranes on the mass transfer, Sep. Sci. Tech., 2002, 37: 1747~1770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700