用户名: 密码: 验证码:
乙二撑二甲酰胺塑化热塑性淀粉性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,传统塑料面临石油原料日益枯竭的资源问题和塑料废弃物污染的环境问题。淀粉是一种来源广泛,价格低廉、可资源再生的原料,热塑性淀粉材料可以替代源于石油产品的传统塑料,被认为是最具发展前景的生物降解材料之一。
     本文在查阅大量文献基础上,设计用简单易得原料乙二胺和甲酸乙酯合成出一种含有双酰胺键的小分子化合物:乙二撑二甲酰胺,将其用于热塑性淀粉的制备,系统研究了乙二撑二甲酰胺塑化热塑性淀粉(EPTPS)的性能。与传统甘油塑化热塑性淀粉(GPTPS)相比,EPTPS具有较大的断裂伸长率,较好的耐水性能,但拉伸强度下降;研究发现塑化剂含量为30%时,所得热塑性淀粉材料的力学性能较好;对其耐回生性能研究发现乙二撑二甲酰胺可以抑制淀粉的重结晶,但是由于乙二撑二甲酰胺熔点较高,易结晶析出,所以导致了EPTPS在保存一段时间之后的性能变差。对不同原始含水量的淀粉所制备热塑行淀粉研究表明,材料的力学性能与淀粉原始含水量有较大关系,当原始含水量为13%左右时,所得EPTPS的综合力学性能最好。
     EPTPS虽然具有较大的断裂伸长率,但拉伸强度较低,在EPTPS中加入微晶纤维素,可以加强热塑性淀粉的力学强度;由于微晶纤维素是一种疏水性物质,所以微晶纤维素增强热塑性淀粉的耐水性能得到进一步提高;然而,微晶纤维素的加入并不能抑制塑化剂的析出。
     将乙二撑二甲酰胺与山梨醇混合作为塑化剂来制备热塑性淀粉(ESPTPS),实验结果证明混合塑化剂可以有效地抑制淀粉回生,由于塑化剂之间在热加工过程中相互作用,当塑化剂比例合适时,塑化剂将不再结晶析出。另一方面,混合塑化剂比EPTPS具有较大的拉伸强度,其综合力学性能优于单一塑化剂塑化热塑性淀粉,耐水性能与GPTPS相比得到进一步改善。
Much effort has recently been made to develop biodegradable materials because of the worldwide environment and resources problems resulted from petroleum- derived plastics. Starch, a natural renewable polysaccharide obtained from a great variety of crops, is one of the promising raw materials for the production of biodegradable plastics.
     Based on the references reported previously, a novel plasticizer contain two acyl-amine group named ethylenebisformamide is synthesized and used to the preparation of EPTPS. The properties of EPTPS are investigated in detail. The elongation at break and water resistance of EPTPS are better than that of the conventional glycerol plasticized starch (GPTPS), however, the tensile stress of which decrease. EPTPS with 30% plasticizer content will give better mechanical properties. Ethylenebisformamide can restrain the retrogradation of starch, however, the mechanical properties of EPTPS are worsened after conditioned for a period of time because of the separation of the plasticizer out of the TPS matrix. Water represent an important role on TPS and the moisture content in starch affect significantly the properties of TPS. From our research, EPTPS prepared with original water content of 13% possess of good mechanical properties.
     The elongation at break of EPTPS is higher than that of conventional GPTPS, however, the tensile stress of which is rather low. As reported before, celluouse can reforce the polymers. In our investigation, we choose microcrystalline cellulose to reforce EPTPS. SEM micrograph shows the dispersion of microcrystalline cellulose in TPS and a good adhesion between starch and microcrystalline cellulose. The mechanical properties of EPTPS are reinforced with the introduction of microcrystalline cellulose to the TPS matrix. The water resistance of microcrystalline cellulose reinforced EPTPS is ameliorated because of the hydrophobic character of microcrystalline cellulose.
     The addition of microcrystalline cellulose can reforce the EPTPS in some extent, however, the separation of plasticizer is not restrained. The combination of two different plasticizers may be give good results. The mixture of ethylenebisformamide and sorbitol is used to the preparation of ESPTPS. The result reveals that this mixed plasticizer can also restrain the retrogtadation of the starch. It is hypothesized that strong interaction between ethylenebisformamide and sorbitol occurs, which restrain the separation of plasticizer out of the TPSs matrix when the proportion of these two plasticizer is appropriate. On the other hand, the mixed plasticizer (ethylenebisformamide and sorbitol) plasticized starch possess of better mechanical properties than the single plasticizer (including glycerol, ethylenebisformamide and sorbitol) plasticized ones. The water resistance of EPTPS is also better than that of the conventional GPTPS.
引文
[1] 廖正品, 加强国际交流合作促进塑料工业发展, 中国经济信息, 2002, 13: 32~33
    [2] 唐赛珍, 陶欣, 我国可降解塑料的研究与发展,现代化工, 2002, 22(1): 2~7
    [3] Franchetti S M, Marconato J C, Biodegradable polymers-A partial way for decreasing the amount of plastic waste. Quimica Nova, 2006, 29 (4): 811~816
    [4] 朱清时, 绿色化学的进展, 大学化学, 1997, 12(6): 7~11
    [5] 闵恩泽, 傅军,绿色化学的进展,化学通报,1999, 1: 10~15
    [6] Klemchuk P P, Degradable plastics: a critical review, Polymer Degradation and Stability, 1990, 27(2): 183~202
    [7] 张钦, 赵裕荣, 可完全生物降解塑料,化工新型材料, 1999, 27(6): 3~8
    [8] 高建平, 生物降解热塑性淀粉材料及转变机理研究: [博士学位论文], 天津;天津大学, 1998
    [9] Chiellini E, Cinelli P, Chiellini F, et al, Environmentally Degradable Bio-Based Polymeric Blends and Composites, Macromolecular Bioscience, 2004, 4(3): 218~231
    [10] 杨惠娣, 生物降解塑料开发现状与发展趋势, 中国塑料, 1996, 10(4): 1~9
    [11] 张元琴, 黄勇, 国内外降解塑料的研究进展, 化学世界, 1999, 1: 3~8
    [12] 高建平, 王为, 淀粉基生物降解塑料材料, 高分子材料科学与工程, 1998, 14(4): 16~20
    [13] Dolz M, Hernández M J, Casanovas A, et al, Analysis of stability of food emulsions by Eyring's theory: Influence of different biopolymers, Journal of Applied Polymer Science, 2004, 92(4): 2653~2657
    [14] 朝阳, “走出去”解决石油安全危机, 市场周刊. 新物流, 2003, (3): 33~33
    [15] R?per H, Renewable Raw Materials in Europe-Industrial Utilisation of Starch and Sugar. Starch/St?rke, 2002, 54: 89~99.
    [16] Leloup V M, Colonna P, Ring S G, α-Amylase adsorption on starch crystallites, Biotechnology and Bioengineering, 1991, 38(2): 127~134.
    [17] 惠斯特勒 R L,贝密勒 J N,帕斯卡尔 E F 著. 王雒文,闵大铨,杨家顺等译. 淀粉的化学与工艺学. 北京:中国食品出版社,1988: 289~333
    [18] 张力田. 变性淀粉. 广州:华南理工大学出版社,1992, 6: 9
    [19] Zobel H F, Starch crystal transformations and their industrial importance, Starch/St?rke, 1988, 40: 1~7
    [20] Elsenhaber F, and Schulz W, Monte carlo simulation of the hydration shell of double-helical amylose: a left-handed antiparallel double helix fits best into liquid water structure. Biopolymers,1992, 32: 1643~1664
    [21] 刘延奇,酸酶催化水解对淀粉结晶结构与性质的影响研究:[博士学位论文],天津;天津大学,2004
    [22] Christine G, Sylvia R, Horst A, et al. Crystalline parts of three different conformations detected in native and enzymatically degraded starches. Starch/st?rke, 1993, 45(9): 309~314
    [23] Nashed G, Rutgers R P G, Sopade P A, The plasticization effect of glycerol and water on the gelatinization of wheat starch. Starch/starke, 2003, 55: 131~137
    [24] Zhou J, Hanna M A, Extrusion of starch acetate with mixed blowing agents. Starch/starke, 2004, 56: 484~494
    [25] Sanchez~Tovar S A, Salazar-Zazuet A, Mena-Iniesta B, et al. Viscoamylographic studies on zea mays [Mexican white Tuxpeno Maize] partial gelatinization with calcium hydroxide. Starch/starke, 2004, 56: 526~534
    [26] Ayoub A, Berzin F, Tighzert L, et al. Study of the thermoplastic wheat starch cationisation reaction under molten condition. Starch/starke, 2004, 56: 513~519
    [27] Dole P, Joly C, Espuche E, et al. Gas transport properties of starch based films. Carbohydrate Polymers, 2004, 58: 335~343
    [28] Kuutti L, Peltonen J, Myllarinen P, et al. AFM in studies of thermoplastic starches during ageing. Carbohydrate Polymers, 1998, 37: 7~12
    [29] Souza R C R, Andrade C T, Inverstigation of the Gelatinization and extrusion processed of corn starch. Advances in Polymer Technology, 2002, 21(1): 17~24
    [30] Tan I, Wee C C, Sopade P A, et al. Estimating the specific heat capacity of starch-water-glycerol systems as a function of temperature and compositions. Starch/starke, 2004, 56: 6~12
    [31] Sitohy M Z, Ramadan M F, Dgradability of different phosphorylated starches and thermoplastic films prepared from corn starch phosphomonoesters. Starch/starke, 2001, 53: 317~322
    [32] Thuwall M, Boldizar A, Rigdahl M, Extrusion processing of high amylose potato starch materials. Carbohydrate Polymers, 2006, 65: 441~446
    [33] Smits A L M, Hulleman S H D, Wan Soest J J G, et al. The influence of Polyols on the molecular organization in starch~based plastics. Polymers for Adevanced Technologies, 1999, 10: 570~573
    [34] Baek M H, Yoo B, Lim S T, Effects of sugars and sugar alcohols on thermal transition and cold stability of corn starch gel. Food Hydrocolloids, 2004, 18: 133~142
    [35] Grondahl M, Eriksson Lisa, Gatenholm P,Material Properties of Plasticized HardwoodXylans for Potential Application as Oxygen Barrier Films. Biomacromolecules, 2004, 5: 1528~1535
    [36] Zhang P, Whistler R L, Mechanical Properties and Water Vapor Permeability Thin Film from Corn Hull Arabinoxylan. Journal of Applied Polymer Science, 2004, 93: 2896~2902
    [37] Arvanitoyannis I, Biliaderis C G, Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 1999, 38: 47~58
    [48] Farhat I A, Mousia Z, Mitchell J R, Structure and thermomechanical properties of extruded amylopectin–sucrose systems. Carbohydrate Polymers, 2003, 52: 29~37
    [39] DaRoz A L, Carvalho A J F, Gandini A, et. al. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 2006, 63: 417~424
    [40] Ma X F, Yu J G, Wan J J, Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydrate Polymers, 2006, 64: 267~273
    [41] Van Soest J J G, S. Hulleman H D, Vliegenthart J F G, Crystallinity in Starch Bioplastics. Industrial Crops and Products, 1996, 5: 11~12
    [42] Van Soest J J G, Vliegenthart J F G, Crystallinity in starch plastics: consequences for material properties. Trends in Biotechnology, 1997, 15(6): 208~213
    [43] Ma X F, Yu J G, the Plasticizers Containing Amide Groups for Thermoplastic Starch. Carbohydrate Polymers, 2004, 57: 197~203
    [44] Stein T M, Greene R V, Amino acids as plasticizers for starch~based plastics. Starch/St?rke, 1997, 49(6): 245~249
    [45] 马骁飞,于九皋, 甲酰胺塑化热塑性淀粉的性能研究,高分子学报,2004, 2: 240~245.
    [46] Ma X F, Yu J G, Urea and Formamide as a Mixed Plasticizer for Thermoplastic Starch. Polymer International, 2004, 53: 1780~1785.
    [47] Yu J G, Gao J P, Lin T, Biodegradable Thermoplastic Starch. Journal of Applied Polymer Science, 1996, 62: 1491~1494
    [48] Van Soest J J G, Borger D B, Structure and Properties of Compression-Molded Thermoplastic Starch Materials from Normal and High-Amylose Maize Starches. Journal of Applied Polymer Science, 1997: 631~644
    [49] Robbert A G, Andre P K, Léon P B et al. Material Properties and Glass Transition Temperatures of Different Thermoplastic Starches After Extrusion Processing. Starch/St?rke, 2003, 55: 80~86
    [50] Van Soest J J G, Hulleman S H D, Vliegenthart J F G, Changes in the Mechanical Properties of Thermoplastic Potato Starch in Relation with Changes in B-type Crystallinity. Carbohydrate Polymers, 1996, 29: 225~232
    [51] Angela L M S, Stephan H D H, Van Soest J J G, et al. The Influence of Polyols on the Molecular Organization in Starch-based Plastics. Polymers for Advanced Technologies. 1999, 10: 570~573
    [52] Kazuo O, Isao Y, Toshiaki Y, et al. Bull Chem Society of Jap, 1998, 71: 1095~1100
    [53] Kazuo O, Kenji A, Shin O, et al, Effects of the noncyclic cyanamides on the retrogradation of waxy corn starch, Bulletin of Chemical Society of Japan, 2000, 73: 1283~1284
    [54] Ma X F, Yu J G, Formamide as the Plasticizer for Thermoplastic Starch. Journal of Applied Polymer Science, 2004, 93: 1769~1773
    [55] Van Soest J J, Benes G K, the Influence of Starch Molecular Mass on the Properties of Extruded Thermoplastic Starch. Polymer, 1996, 37(16): 3543~3522
    [56] Van Soest J J G, Kortleve P M, The Influence of Maltodextrins on the Structure and Properties of Compression~Molded Starch Plastic Sheets. Journal of Applied Polymer Science, 1999, 74: 2207~2219
    [57] Van Soest J J G, Vliegenthart J F G, Crystallinity in starch plastics: consequences for material properties, Trends in Biotechnology, 1997, 15(6): 208~213
    [58] Teramoto N, Motoyama T, Yosomiya R, et al. Synthesis and properties of thermoplastic propyl~etherified Amylose. European Polymer Journal, 2002, 38: 1365~1369
    [59] Fringant C, Desbrières J, Rinaudo M, Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymer, 1996, 37(13): 2663~2673
    [60] Copinet A, Bliard C, Onteniente J P, et al, Enzymatic degradation and deacetylation of native and acetylated starch~based extruded blends, Polymer Degradation and Stability, 2001, 71(2): 203~212
    [61] Funke U, Lindhauer M G, Effect of Reaction Conditions and Alkyl Chain Lengths on the Properties of Hydroxyalkyl Starch Ethers. Starch/St?rke, 2001, 53: 547~554
    [62] Sitohy M Z, Ramadan M F, Degradability of Different Phosphorylated Starches and Thermoplastic Films Prepared from Corn Starch Phosphomonoesters. Starch/St?rke, 2001, 53: 317~322
    [63] Karina P, Nielsen P V, Bertelsen G, et al, Potential of biobased materials for food packaging. Trends in Food Science & Technology, 1999, 10(2): 52~68
    [64] Simon J, Müller H P, Koch R, et al, Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 1998, 59(1-3): 107~115
    [65] Alvarez Vera A, Kenny J M, Vazquez A, Creep Behavior of Biocomposites Based on Sisal Fiber Reinforced Cellulose Derivatives/Starch Blends. Polymer Pomposites, 2004, 25(3): 280~288
    [66] Ganjyal G M, Reddy N, Yang Y Q, et al. Biodegradable Packaging Foams of Starch AcetateBlended with Corn Stalk Fibers. Journal of Applied Polymer Science, 2004, 93: 2627~2633
    [67] Romhany G, Karger-Kocsis J, Czigany T, Tensile Fracture and Failure Behavior of Thermoplastic Starch with Unidirectional and Cross-Ply Flax Fiber Reinforcements. Macromol. Mater. Eng. 2003, 288: 699~707
    [68] Cinelli P, Chiellini E, Gordon S H, et al. Characteristics and Degradation of Hybrid Composite Films Prepared from PVA, Starch and Lignocellulosics. Macromol. Symp. 2003, 197: 143~155
    [69] Avérous L, Fringant C, Moro L, Plasticized starch-cellulose interactions in polysaccharide composites. Polymer, 2001, 42(15): 6565~6572
    [70] Herrmann A S, Nickel J, Riedel U, Construction materials based upon biologically renewable resources-from components to finished parts. Polymer Degradation and Stability, 1998, 59(1-3): 251~261
    [71] Funke U, Bergthaller W, Lindhauer M G, Processing and characterization of biodegradable products based on starch. Polymer Degradation and Stability, 1998, 59(1-3): 293~296
    [72] Avérous L, Fringant C, Moro L, Starch-Based Biodegradable Materials Suitable for Thermoforming Packaging. Starch/St?rke, 2001, 53: 368~371
    [73] Curvelo A A S, Carvalho A J F, Agnelli J A M, Thermoplastic starch~cellulosic fibers composites: preliminary results. Carbohydrate Polymers, 2001, 45: 183~188
    [74] Wollerdorfer M, Bader H, Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial Crops and Products, 1998, 8: 105~112
    [75] Aveous L, Fringant C, Moro L, Plasticized Starch~Cellulose Interactions in Polysacchzride Composites. Polymer, 2001, 42: 6565~6572
    [76] Carvalho A J F, Zambon M D, Curvelo A A S, et al. Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content. Polymer Degradation and Stability, 2003, 79: 133~138
    [77] Puglia D, Tomassucci A, Kenny J M, Processing, Properties and Stability of Biodegradable Composites Based on Mater~Bi1 and Cellulose Fibres. Polymers for Advanced Technologies, 2003, 14: 749~756
    [78] Ganjyal G M, Reddy N, Yang Y Q, et al. Biodegradable Packaging Foams of Starch Acetate Blended with Corn Stalk Fibers. Journal of Applied Polymer Science, 2004, 93: 2627~2633
    [79] 徐国财,张立德,纳米复合材料,北京:化学工业出版社,2002. 6~22
    [80] 邱海霞,多糖与蒙脱土的纳米插层及其在吸水树脂中的应用, 博士学位论文,天津大学,2004
    [81] Ray S S, Okamoto M, Polymer/layered silicate nanocomposites: a review from preparation toprocessing. Progress in Polymer Science, 2003, 28: 1539~1561
    [82] 漆宗能,尚文宇,聚合物/层状硅酸盐纳米复合材料理论与实践,化学工业出版社,2002, 9~15
    [83] 柯杨船,[美] 皮特·斯壮,聚合物─无机纳米复合材料,化学工业出版社,2003, 3~55
    [84] Alexandre M, Dubois P, Polymer-layered silicate nanocomposites: preparation, tproperties and used of a new class of materials. Materials Science and Engineering, 2000, 28: 1~63
    [85] Pandey J K, Reddy K R, Kumar A P, et al. An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability, 2005, 88: 234~250
    [86] Park H M, Misra M, Drzal L T, et al, “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of Eco-Friendly triethyl citrate plasticizer. Biomacromolecules, 2004, 5(6): 2281~2288
    [87] Park H M, Li X C, Jin C Z, et al. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromolecular Materials and Engineering, 2002, 287: 553~558
    [88] Park H M, Lee W K, Park C Y, et al, Environmentally friendly polymer hybrids Park 1 Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. Journal of Materials Science, 2003, 38: 909~915
    [89] Pandey J K, Singh R P, Green Nanocomposites from Renewable Resources: Effect of Plasticizer on the Structure and Material Properties of Clay~filled Starch. Starch/St?rke, 2005, 57: 8~15
    [90] Carvalhoa A J F, Curveloa A A S, Agnelli J A M, a First Insight on Composites of Thermoplastic Starch and Kaolin. Carbohydrate Polymers, 2001, 45: 189~194
    [91] Huang M F, Yu J G, Ma X F, et al. High performance biodegradable thermoplastic starch~EMMT nanoplastics. Polymer, 2005, 46(9): 3157~3162
    [92] Huang M F, Yu J G, Ma X F, et al. High mechanical performance MMT-urea and formamide-plasticized thermoplastic starch biodegradable nanocomplastic. Carbohydrate Polymers, 2005, 61(4): 516~522
    [93] Huang M F, Yu J G, Ma X F, Studies on the properties of montmorillo-nite-reinforced thermoplastic starch composites. Polymer, 2004, 45 (20): 7017~7023
    [94] Souza R C R, Andrade C T, Processing and Properties of Thermoplastic Starch and its Blends with Sodium Alginate. Journal of Applied Polymer Science, 2001, 81: 412~420
    [95] Souza Rosa R C R, Andrade C T, Effect of Chitin Addition on Injection-Molded Thermoplastic Corn Starch. Journal of Applied Polymer Science, 2004, 92: 2706~2713
    [96] Arvanitoyannis I, Biliaderis C G, Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry, 1998, 62 (3): 333~342
    [97] Arvanitoyannis I, Atsuyoshi N, Sei-ichi A, Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 1998, 36 (2-3): 105~119
    [98] Arvanitoyannis I S, Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: Preparation, physical properties, and potential as food packaging materials. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1999, 39(2): 205~271
    [99] Coffin D R, Fishman M L, Viscoelastic properties of pectin/starch blends. Journal of Agricultural and Food Chemistry, 1993, 41(8): 1192~1197
    [100] Coffin D R, Fishman M L, US AGRICULTURE, Films fabricated from mixtures of pectin and starch, US Patent 5,451,673, 1995~09~19
    [101] Fishman M L, Coffin D R, Unruh J J, Pectin/starch/glycerol films: Blends or composites. Journal of Macromolecular Science: Pure and Applied Chemistry, 1996, A33 (5): 639~654
    [102] Coffin D R, Fishman M L, Physical and mechanical properties of highly plasticized pectin/ starch films. Journal of Applied Polymer Science, 1994, 54(9): 1311~1320
    [103] 倪秀元, 胡建华, 府寿宽, 可生物降解的高分子材料, 自然杂志, 1998, 20(6): 339~341
    [104] 曾祥成, 刘白玲, 李坤福, 高速搅拌对淀粉/聚乙烯醇共混物薄膜性能的影响, 高分子材料科学与工程, 1998, 14(6): 125~128
    [105] 杨光, 张俐娜, 再生纤维素/聚乙烯醇共混膜的研究, 高分子学报, 1994, 2: 176~181
    [106] 邱威扬, 邱贤华, PVA/Starch 共混体系的形态, 结构和性能, 材料研究学报, 1995, 9(5): 463~467
    [107] Simmons S, Thomas E L, the Use of Transmission Electron Microscopy to Study the Blend Morphology of Starch/Poly(ethylene-co-vinyl alcohol) Thermoplastics. Polymer, 1998, 39(23): 5587~5599
    [108] Okaya T, Kohno H, Terada K, et al, Specific interaction of starch and polyvinyl alcohols having long alkyl groups. Journal of Applied Polymer Science, 1992, 45(7): 1127~1134
    [109] Nakashima T, Xu C, Bin Y, et al, Morphology and mechanical properties of poly(vinyl alcohol) and starch blends prepared by gelation/crystallization from solutions, Colloid and Polymer Science, 2001, 279(7): 646~654
    [110] Sousa R A, Mano J F, Reis R L, et al. Mechanical Performance of Starch Based Bioactive Composite Biomaterials Molded With Preferred Orientation. Polymer Engineering and Science, 2002, 42(5): 1032~1045
    [111] Fang Q, Hanna M A, Characteristics of biodegradable Mater-Bi (R)-starch based foams as affected by ingredient formulations. Industrial Crops and Products, 2001, 13(3): 219~227
    [112] Odusanya O S, Ishiaku U S, Azemi B M N, On Mechanical Properties of SagoStarch/Poly(ε-caprolactone) Composites. Polymer Engineering and Science, 2000, 40(6): 1298~1305
    [113] Ishiaku U S, Pang K W, Lee W S, et al. Mechanical Properties and Enzymic Degradation of Thermoplastic and Granular Sago Starch Filled Poly(ε-caprolactone). European Polymer Journal, 2002, 38: 393~401
    [114] Averous L, Moro L, Dole P, et al. Properties of thermoplastic blends: starch-polycaprolactone. Polymer, 2000, 41(11): 4157~4167 [1115] Denise C, Li N, Ramani N, et al. Maleation of polylactide (PLA) by reactive extrusion. Journal of Applied Polymer Science, 1999, 72(4): 477~485
    [116] Choi E J, Kim C H, Park J K, Structure-property relationship in PCL/starch blend compatibilized with starch-g-PCL copolymer. Journal of Polymer Science: Part B: Polymer Physics, 1999, 37(17): 2430~2438
    [117] Kim C H, Choi E J, Park J K, Effect of PEG molecular weight on the tensile toughness of starch/PCL/PEG blends. Journal of Applied Polymer Science, 2000, 77(9): 2049~2056
    [118] Martin O, Averous L, Poly(lactic acid): Plasticization and Properties of Biodegradable Multiphse systems. Polymer, 2001, 42: 6211~6219.
    [119] Ke T, Sun X, Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. Journal of Applied Polymer Science, 2001, 81(12): 3069~3082
    [120] Karina P, Nielsen P V, Bertelsen G, et al, Potential of biobased materials for food packaging. Trends in Food Science & Technology, 1999, 10(2): 52~68
    [121] Imam S H, Chen L, Gordon S H, et al, Biodegradation of injection molded starch-poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blends in a natural compost environment. Journal of Environmental Polymer Degradation, 1998, 6(2): 91~98
    [122] Godbole S, Gote S, Latkar M, et al. Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresource Technology, 2003, 86: 33~37
    [123] Ratto J A, Stenhouse P J, Auerbach M, et al, Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. 1999, 40(24): 6777~6788
    [124] Ratto J A, Stenhouse P, Investigation of biodegradable thermoplastic polyester starch blends. Annual Technical Conference - ANTEC, Conference Proceedings, 1995, 53(2): 1824~1828
    [125] 由英才, 朱常英, 张自强, 淀粉与聚丁二酸己二醇脂的反应及其生物降解性研究, 离子交换与吸附, 2000, 16(1): 41~46
    [126] Mani R, Bhattacharya M, Properties of injection moulded blends of starch and modified biodegradable polyesters. European Polymer Journal, 2001, 37(3): 515~526
    [127] Averous L, Fauconnier N, Moro L, et al, Blends of thermoplastic starch and polyesteramide:processing and properties. Journal of Applied Polymer Science, 2000, 76(7): 1117~1128
    [128] 牟立, 刘孝波, 聚酯酰胺/淀粉接枝 ε-己丙酯/淀粉三元共混物的制备及相容性研究, 合成化学, 2001, 9(2): 127~130
    [129] Bayer A G, BIOTEC BIOLOG NATURVERPACK (DE), Biodegradable polymeric mixtures based on thermoplastic starch. DE19624641, 1998-01-08
    [130] Sachetto J P, WARNER LAMBERT CO (US), Polymer base blend compositions containing destructurized starch. EP0409789, 1991-01-23
    [131] Grigat E, Dujardin R, BAYER AG (DE), Use of thermoplastic poly(ester~urethane) as a compostable plastic. EP 0,593,975, 1994-04-27
    [132] Sedenstücker T, Fritz H G, Innovative biodegradable materials based upon starch and thermoplastic poly(ester~urethane) (TPU). Polymer Degradation and Stability, 1998, 59(1~3): 279~285
    [133] Wu Q X, Zhang L N, Structure and properties of casting films blended with starch and waterborne polyurethane. Journal of Applied Polymer Science, 2001, 79(11): 2006~2013
    [134] Walia P S, Lawton J W, Shogren R L, et al, Effect of moisture level on the morphology and melt flow behavior of thermoplastic starch/poly (hydroxy ester ether) blends. Polymer, 2000, 41(22): 8083~8093
    [135] Lawton J W, Willett J L, The mechanical properties of modified starch filled poly~(hydroxy ester ether) composites. Polymer Preprints, 2001, 42(2): 44~45
    [136] Lawton J W, Shogren R L, US AGRICULTURE, Enhanced water resistance of starch~based materials. US Pat. 5,756,194, 1998-05-26
    [137] Keoning M F, Huang S J, Evaluation of crosslinked poly (caprolactone) as a biodegradable, hydrophobic coating. Polymer Degradation and Stability, 1994, 45(1): 139~144
    [138] Martin O, Schwach E, Averous L, et al, Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch/St?rke, 2001, 53(8): 372~380
    [139] Kalambur S, Rizvi S S H, Biodegradable and Functionally Superior Starch–Polyester Nanocomposites from Reactive Extrusion. Journal of Applied Polymer Science, 2005, 96: 1072~1082
    [140] Vargha V, Truter P, Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly(vinyl acetate) and poly(vinyl acetate-co-butyl acrylate). European Polymer Journal, 2005, 41: 715~726
    [141] Denise C, Li N, Ramani N, et al, Maleation of polylactide (PLA) by reactive extrusion. Journal of Applied Polymer Science, 1999, 72(4): 477~485
    [142] Avérous L, Biodegradable multiphase systems based on plasticized starch: A review. Journalof Macromolecular Science Part C—Polymer Reviews, 2004, C44 (3): 231~274
    [143] Forssell P M, Mikkil? J M, Moates G K, et al. Phase and Glass Transition Behavior of Concentrated Barley Starch~Glycerol~Water Mixtures, a Model for Thermoplastic Starch. Carbohydrate Polymers, 1998, 34: 275~282
    [144] Fishman M L, Coffin D R, Konstance R P, et al. Extrusion of Pectin/Starch Blends Plasticized with Glycerol. Carbohydrate Polymers, 2000, 41: 317~325
    [145] Liu Z Q, Yi X S, Feng Y, Effects of Glycerin and Glycerol Monstearate on Performance of Thermoplastic Starch. Journal of Material Science, 2001, 36: 1809~1815
    [146] Wang L, Shogren R L, Carriere C, Preparation and Properties of Thermoplastic Starch~Polyester Laminate Sheets by Coextrusion. Polymer Engineering and Science, 2000, 40: 499~506
    [148] Barret A, Kaletunc G, Rosenburg S, et al. Effect of Sucrose on the Structure, Mechanical Strength and Thermal Properties of Corn Extrudates. Carbohydrate Polymers, 1995, 26: 261~269
    [149] Ma X F, Yu J G, Studies on the Properties of Formamide Plasticized~Thermoplastic Starch. Acta Polymerica Sinica, 2004, 2: 240~245
    [150] Ma X F, Yu J G, Urea and Formamide as a Mixed Plasticizer for Thermoplastic Starch. Polymer International, 2004, 53 (11): 1780~1785
    [151] Ma X F, Yu J G, The Plasticizers Containing amide Groups for Thermoplastic Starch. Carbohydrate Polymers, 2004, 57 (2): 197~203
    [152] Sidney V L, Clifford M M, Harry M B, Extent of Formaldehyde Reaction with Selected Amides. Journal of Organic Chemistry, 1962, 27 (6): 2067~2070
    [153] 刘泽华, 热塑性淀粉材料的增强及其老化性能研究:[博士学位论文],天津;天津大学, 2002
    [154] Aoi K, Takasu A, Okada M, New Chitin-based Polymerhybrids, 3. Miscibility of Chintin-Graft-Poly (2-ethyl-2-oxazoline) with Poly (vinyl alcohol). Macromolecular Chemistry and Physics, 1998, 199 (12): 2805~2811
    [155] Pawlak A, Mucha M, Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 2003, 396(1~2): 153~166
    [156] Fang J M, Fowler P A, Tomkinson J, et al. The Preparation and Characterisation of a series of chemically modified Potato Starches, Carbohydrate Polymers, 2002, 47 (3): 245~252
    [157] Lourdin D, Coignard L, Bizot H, et al. Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer 1997, 38 (21): 5401~5406
    [158] Mathew A P, Dufresne A, Plasticised waxy maize starch: effect of polyols and relativehumidity on material properties. Biomacromolecules, 2002, 3 (5): 1101~1108
    [159] Van Soest J J G, Knooren N, Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. Journal of Applied Polymer Science, 1997, 64 (6): 1411~1422
    [160] 吴人洁,现代分析技术在高聚物中的应用,上海科学技术出版社,1987,597
    [161] Bikiaris D, Panayiotou C, LDPE/starch blends compatibilized with PE-g-MA copolymers. Journal of Applied Polymer Science, 1998, 70 (8): 1503~1521
    [162] Lourdin D, Bizot H, Colonna P, Antiplasticization in starch-glycerol films. Journal of Applied Polymer Science, 1997, 63 (8): 1047~1053
    [163] Onteniente J P, Abbès B, Safa L H, Fully Biodegradable Lubricated Thermoplastic Wheat Starch: Mechanical and Rheological Properties of an Injection Grade. Starch/St?rke, 2000, 52(4): 112~117
    [164] Chinnaswamy R, Hanna M A, Macromolecular, Functional Properties of Native Extrusion-cooked Corn Starch. Cereal Chemistry, 1990, 67: 490~499
    [165] Myllymaki O, Eerikainen T, Forssell P, et al. Depolymerization of Barley Starch during Extrusion in Water Glycerol Mixtures. Lebensmittel-Wissenschaft und Technologie, 1997, 30: 351~358
    [166] Lin J H, Chang Y H, Effects of Type and Concentration of Polyols on the Molecular Structure of Corn Starch Kneaded with Pullulanase in Farinograph. Food Hydrocolloids, 2006, 20: 340~347
    [167] Martin O, Avérous L, Poly(lactic acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer, 2001, 42: 6209~6219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700