用户名: 密码: 验证码:
注蒸汽热采井套管强度理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油开采通常采用热采技术。稠油热采分为蒸汽驱、蒸汽吞吐和火烧油层等方法,其中在蒸汽驱和蒸汽吞吐采油技术中存在的油井套管损坏问题一直是严重影响稠油产量和企业经济效益的大问题。理论上研究稠油热采井套管损坏问题有各种不同的出发点和相应的方法,本文以稠油热采井的实际条件为基础,重点研究了在热采井复杂受力条件下,如何通过降低套管应力来防止套管损坏或降低套管损坏率的问题。论文主要研究内容可概括为如下几个部分:
     (1)在确定了基本研究内容和研究方向的基础上,进行了井筒流体参数计算方法研究,目的是获得井筒内流体参数及其变化规律,并进一步获得套管强度研究所必需的套管温度、井筒压力及水泥环温度等数据。计算过程中将湿蒸汽两相流理论与工程热物理中的流体热物性计算方法有机结合,创造性地解决了井筒流体参数及井筒温度场的计算问题,实现了流体计算过程的连续性,既提高了计算精度,又提高了计算速度。
     (2)根据热采井的工作条件,建立了稠油热采井套管的力学模型,研究了模型中各种内、外力尤其是热应力和外挤压力的计算方法。在套管力学模型中充分考虑了地层与套管的相互作用关系,建立了套管与地层相互作用关系模型。分别计算了蠕变地层、理想刚性地层及弹性地层条件下的套管外挤力。通过计算对比,获得了导致套管柱危险井段损坏各种因素的影响情况信息。模型中关于地层与套管之间作用关系的研究结果,完善了目前理论界对该问题研究的不足。通过系统的研究、计算,明确了造成热采井套管损坏的最重要原因是热应力这一重要结论,指出热采井套管损坏问题研究的重点应该是如何减小热应力。对于普通油井的套管损坏问题,地层的蠕变性则是最重要的原因。由于地层的蠕变特性是无法改变的,因此,应从生产工艺、套管材质及套管质量方面研究普通油井套管损坏的对策。另外,对套管轴向应力的研究表明,预应力固井对热采井套管应力状况具有一定的改善效果,但对于不同的井段,施加预应力的大小及方向需要区别对待。
     (3)为验证本文的计算方法和研究结论,在辽河油田选择了试验井并进行了注蒸汽试验。试验数据处理结果证明,本文的计算方法是正确的,计算结果与试验情况基本相符,同时也符合人们对热采井井筒参数变化规律的一般认识。
     (4)利用本文的计算方法,对辽河油田正在试验中的真空隔热套管从隔热性能和强度两方面进行了评价。评价结论认为,真空隔热套管井筒的隔热性能要好于目前的井筒;在强度方面,真空隔热套管的内管强度余量偏小,尤其是在注入蒸汽压力较高的情况下,内管破坏的可能性很大,而外管的强度余量较大。由于真空隔热套管具有优良的隔热性能和可以简化蒸汽吞吐采油工艺的特点,只要适当提高内管强度,真空隔热套管技术就会具有广阔的发展前景。本文关于隔热套管井筒的评价,在国内外均属首次进行。
     必须指出的是,本文是以一口深1000m的热采井为研究对象的,随着井深的增大,作用于套管的各种力的相对大小将发生变化。因此本文的研究结论具有一定的针对性。
Thermal recovery method, which can be subdivided into steam flooding, steam stimulation, in-situ combustion and so on, is commonly adopted for heavy oil production. When adopting steam flooding or steam stimulation method, the issue of oil well casing damage has been a serious impact on many enterprises' heavy oil production and economic efficiency. Based on actual conditions of heavy oil thermal recovery wells, it is researched in this paper how to reduce well casing's stress to prevent or lighten its damage. Main research work is summarized as follows:
     (1)The calculation methods of well casing fluid parameters are researched to obtain fluid parameters and their variation laws, and further well casing temperature, well casing pressure and cement hoop temperature are obtained to study well casing's strength. Fluid thermo-physical properties in engineering thermal physics and the theory of wet steam two-phase flow are effectively integrated to creatively solve the problem of continuous calculation of fluid parameters. The accuracy and speed of calculation are both increased.
     (2)According to working conditions of the thermal recovery wells, the mechanical model of heavy oil thermal recovery well casing is established. Calculation methods of various internal forces and external forces are researched, especially thermal stress and external squeeze pressure. The interaction between the casing and formation is taken full account of in the mechanical model. External squeezing forces of the casing were separately calculated under the conditions of creep formation, ideal rigid formation and flexibility formation. The information of various influence factors resulting in the dangerous well casing sections' damage are obtained by contrast. The research of interaction between the casing and formation are perfected by this study. It is concluded that thermal stress is the most important reason causing thermal recovery well casing's damage, and so how to reduce the thermal stress should be the emphasis of thermal recovery well casing damage's research. The creep of formation should be the most important reason resulting in well casing's damage for ordinary oil wells. The creep properties of the formation can not be changed. Therefore, the production process, the casing material and the quality of the casing should be researched to prevent ordinary oil well casing's damage. In addition, the improvement of thermal recovery well casing's stress condition resulting from pre-stress is proved by the research on well casing's axial stress. But the magnitude and direction of pre-stress should be distinguished because of different oil wells.
     (3)A steam flooding experiment is carried out in a test well casing in Liaohe oil field to verify calculation methods and conclusions proposed in this paper. Calculation methods and conclusions proposed this paper are proved to be correct.
     (4)The vacuum-insulated casing with excellent insulation properties can simplify the steam stimulation process, so as long as the appropriate increase in the intensity of vacuum insulated casing technology will have broad prospects for development. Based on calculation methods proposed in this paper, the insulation performance and strength of the testing vacuum insulated casing in Liaohe oil field are evaluated. The insulation performance of vacuum insulated casing is better than the current well casing. The strength residue of the internal tube of vacuum insulated casing is small, especially when high-pressure steam is injected, but the strength residue of the external tube is relatively great. The vacuum-insulated casing with excellent insulation properties can simplify the steam stimulation process. So as long as the internal tube's strength is improved, vacuum insulated casing will have broad prospects for development. The evaluation of insulation casing is firstly carried out in the world.
     It should be pointed out that the research conclusion proposed in this paper is based on the study of a thermal recovery well with a depth of 1000 meters and has its applicability. The magnitude of various forces acting on well casing should vary with the increase of well’s depth.
引文
1田春荣. 2001年中国石油进出口状况分析[J].国际石油经济, 2002, (3): 9-16.
    2陈秀芝. 2002年中国石油供需形势回顾与展望[J].中国能源, 2003, (2): 26-28.
    3陈秀芝. 2003年中国石油状况[J].中国能源, 2004, (2): 44-45.
    4马卫锋,王运成,刘莹.构建石油金融体系,中国石油安全战略选择[J].资源科学, 2005, 27 (6): 18-22.
    5刘增洁. 2005年中国石油进出口状况分析[J].国土资源, 2006, (4): 50-51.
    6韩平. 2006我国主要石油石化产品进出口特点分析[J].当代石油石化, 2007, 15(3): 31-36.
    7 Moss. J T, White P D. How to calculate temperature profiles in a water—Injection well[J]. Oil and Gas, 1959, 57(11): 174.
    8 Fokeev. V M, Kapyrin Y V. Calculation of wellbore heat losses and the effect of injection of large quantities of water on the temperature distribution in the romashkin rerervoir[J]. Neftyanoe Khozaistvo, 1961, (12): 33. (in Russian)
    9 Ramey. H J. Wellbore heat transmission[J]. JPT, 1962, 14(4): 427-435.
    10 Squier. D P, Smith D D, Dougherty E L. Calculated temperature behavior of hot-water injection wells[J]. Pet. Tech, 1962, (4): 436-440.
    11 Setter A. Heat losses during flow of steam down a wellbore[J]. JPT, 1965,17(7): 845-851.
    12 Fortanilla. J P, Aziz K. Prediction of bottom-hole conditions for wet steam injection wells[J]. JCPT, 1982, 21(4): 124.
    13 Holst. P H, Flock D L. Wellbore behavior during saturated steam injection[J]. JCPT, 1966, 5(5): 184.
    14 Earlougher. R C Jr. Some practical considerations in the design of steam injection wells[J]. JCPT, 1969, 8(3): 79-86.
    15 Eickmeier.J R, Ersoy D, Ramey H J Jr. Wellbore temperatures and heat looses during production or injection[J]. JCPT, 1970, 9(2): 115.
    16 Farouq. Ali, S M A . Comprehensive wellbore steam water flow model for steam injection and geothermal applications[J]. SPEJ, 1981, (8): 527.
    17 Hasan. A R, Kabir C S. Aspects of wellbore heat transfer during two-phase flow[J]. SPEJ, 1994, (22): 948.
    18徐海明,任瑛,王弥康,等.水平井注蒸汽传热和传质分析[J].石油大学学报, 1993, 17(5): 60-65.
    19 Carslaw. H S, Jaeger J E. Conduction of heat in solids[M]. oxford at clarendon press, 1959: 338.
    20 Babu. B K, Odeh A S. Productivity of a horizontal well[J]. SPEJ Res Eng, 1989, (17): 417-421.
    21王弥康.隔热油管注蒸汽井井筒总传热系数的确定[J].石油钻采工艺, 1985, 8(6): 75-78.
    22胡智勉.确定注蒸汽(热水)井筒总传热系数的工程方法[J].石油钻采工艺, 1985, 8(2): 55-62.
    23王弥康.注蒸汽井井筒热传递的定量计算[J].石油大学学报(自然科学版), 1994, 18(4): 77-82.
    24沈惠芳.稠油蒸汽吞吐井地面管线及井筒热力计算[J].石油钻采工艺, 1990, 13(4): 55-64.
    25 Li jingqin, Chen yanhua, Xiang xinyao. Rational distribution of heat loss in wellbore[J]. China Oil&Gas, 1994, 19(3): 217-217.
    26陈艳华.稠油热采深井井筒热损合理分布的研究[C]//热力学分析与节能论文集,北京:科学出版社, 1997: 69-74.
    27翟建华.垂直管流中两相流压降计算[J].力学与实践, 1985, (2): 32-37.
    28 Aziz. K, Govier. G w, Fogarasi M. Pressure drop in wells producing oil and gas[J]. JCPT, 1972, 11(4): 124.
    29刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社, 1996: 135-176.
    30李敬元,李子丰,马兴瑞,等.热采井注汽管柱力学分析[J].工程力学, 1998, 15(3): 51-60.
    31高学仕,张立新,何牛仔.热采井筒瞬态温度场的数值模拟分析[J].石油大学学报(自然科学版), 2001, 25(2): 65-69.
    32毛东风,崔孝炳,张宏.热采井首次注蒸汽后井筒应力分析[J].石油矿场机械, 1998, 27(2): 21-24.
    33崔孝秉,曹玲,张宏,等.注蒸汽热采套管损坏机理研究[J].石油大学学报(自然科学版), 1997, 21(3): 57-64.
    34 Willhite. G P. Design criteria for completion of steam injection wells[J]. JPT, 1967, (1): 15-21.
    35杨立强. TP100H套管在超稠油热采井中的应用[J].特种油气藏, 2002, 9(6): 48-51.
    36廖润康,刘坤芳.热采水平井套管特殊螺纹的综合评价[R].“八五”国家重点科技攻关项目中期评价材料, 1985: 66- 76.
    37廖润康,刘坤芳.热采水平井技术套管柱强度设计[R].“八五”国家重点科技攻关项目中期评价材料, 1985: 50-58.
    38李子丰,杨敏嘉,李邦达.油井套管损坏机理分析[J].石油钻采工艺, 1985, 7(4): 47-53.
    39赵有芳.国外油田油水井套管损坏问题综述[J].大庆石油地质与开发, 1989, (2): 75-83.
    40李永东.油水井套管损坏的断裂力学机理的研究. [哈尔滨工程大学博士学位论文]. 2001: 2-10
    41艾池.套管损坏机理及理论模型与模拟计算. [大庆石油学院博士学位论文]. 2003: 34-15.
    42窦益华.井下套管受力与变形若干专题研究. [西北工业大学博士学位论文]. 2000:5-10.
    43韩建增.特殊类型井油层套管选择与管柱设计技术研究. [上海交通大学博士学位论文]. 2003. 5-15.
    44刘志刚,刘咸定,赵冠春.工质热物理性质计算程序的编制及应用[M].北京:科学出版社, 1992: 1-60.
    45 Irvine. Jr T F, Liley. P E. Steam and gas tables with computer equations[J]. Academic Press, 1984,(5): 20-25.
    46 Hilsenrath. J, Beckett. C W. tables of thermal properties of gases[M]. NBS (U. S.)Circ, 1955: 564.
    47 Andrews. J R, Biblarz. O. Temperature dependence of gas properties in polynomial form[R]. Naval postgraduate school, Monterey, California, 1981: 67-81.
    48余雷,薄岷.辽河油田热采井套损防治新技术[J].石油勘探与开发, 2005, 32(2): 116-118.
    49袁新强,王友斌.套损低压区压力界限研究[J].石油勘探与开发, 1997, 24(4): 64-67.
    50中华人民共和国石油天然气行业标准—油藏分类SY/T6169-1995[S].北京:石油工业出版社, 1995:1-8.
    51张锐.稠油热采技术[M].北京:石油工业出版社, 1997: 1-3.
    52美H.拉比亚,华仲篪译,套管设计基础[M].北京:石油工业出版社, 1995: 1-10.
    53卢小庆,方华,张冬梅,等.高强度热采井专用套管TP100H的开发[J].钢铁, 2001, (36)10: 32-34.
    54高宝奎.高温引起的套管附加载荷实用计算模型[J].石油钻采工艺, 2002, 24(1): 8-10.
    55 Maceachran. A, Adams A J. Impact on casing design of thermal expansion of fluids in confined annuli[C]. SPE 21911, 1991.
    56 Maharaj. G. Thermal well casing failure analysis[C]. SPE 36143, 1996.
    57 Halal. A S, Mitchell R F, Wagner R R. Multi-string casing design with wellhead movement[C].SPE 37443, 1997.
    58王兆会,高宝奎,高德利.注汽井热应力计算方法对比分析[J].天然气工业, 2005, 25(3): 93-95.
    59 Maharaj. G. Thermal well casing failure analysis[C]. SPE 36143, 1996.
    60 Kazush. M, Masao. O, Yasusuke. I. An experimental study of casing performance under thermal cycling condition[C]. SPE 18776, 1990.
    61 Joao. C R. Stress analysis of casing string submitted to cyclic steam injection[C]. SPE 38978, 1997.
    62李子丰.油气井杆管柱力学[M].北京:石油工业出版社, 1996: 135.
    63李子丰,蒋恕,阳鑫军.油气井杆管柱力学研究现状和发展方向[J].石油机械, 2002, 30(12): 30-33.
    64李子丰,马兴瑞,黄文虎.热采井管柱力学分析[J].工程力学, 1998, 15(2): 19-26.
    65李卫忠.曙光油田超稠油井套管损坏的机理和防治[J].钻采工艺, 2003, 26(2): 55-56.
    66王兆会,高德利.热采井套管损坏机理及控制技术研究进展[J].石油钻探技术, 2003, 31(5): 46-48.
    67 Willhite. G P. Design criteria for completion of steam injection wells[J]. JPT, 1967, (1): 15-21.
    68 Huang. N C, Pattillo. P O. Collapse of oil well casing, PartⅠ[J]. Amoco Production Company , 1980, (4): 25-30.
    69 Krug. C, Marx .C. Collapse resistance of casing under pressure loads[J]. Oil and Gas Journal , 1881, (16): 30-33.
    70 Kunio Nishioke. An experimental study on the critical collapsing pressure of a seamless steel tube for well casing under external pressure[J]. Reprinted from the sumitomo search,1976,15(5): 60-64.
    71贾选红,刘玉.辽河油田稠油井套管损坏原因分析与治理措施[J].特种油气藏, 2003, 10(2): 69-70.
    72余中红,陈延,杨平阁.注蒸汽吞吐井井筒应力数值计算方法[J].石油大学学报(自然科学版), 2004, 28(4): 84-89.
    73 Manttanen.M P. Advances in ice mechanics in fin-land[J]. A pp I Mech Res, 1987, 40(9): 658-665.
    74 Blenkarn. K A. Measurement and analysis of ice forces on cook inlet structures[C]// in: OTCC,1970, 2: 365-378.
    75张万才,马振生,郭丽君,等.热采井套管损坏机理及防治技术—以单家寺油田为例[J].油气地质与采收率, 2005, 12(2): 74-78.
    76李子丰.热采井预压固井技术[J].石油钻探技术, 2005, 33(1): 6-8.
    77 Smith. R J, Alinsangan. N S, Talebi S. Microseismic response of well casing failures at a thermal heavy oil operation[C]// In: Proceedings of the SPE/ISRM Rock mechanics in petroleum Engineering Conference, 2002.
    78孙雪冬.套管热应力补偿器在稠油热采井中的研究与应用[J].中国石油和化工, 2005, (11): 52-54.
    79杨恒林,陈勉,金衍,等.套管水泥环刚度与强度对抗挤性能影响分析[J].天然气工业, 2006, 26(11): 93-96.
    80 Ober. T L, Duvall W I. Rock mechanics and design of structure in rock[M]. John wiley﹠sons, 1967.
    81 Jaeger. J C, Gookn G W. Fundamentals of rock mechanics[M]. Chapman and hall, 1978.
    82宋洵成,赵洪山,管志川.稠油热采井套管的预应力分析[J].石油钻采工艺, 2006, 28(4): 64-67.
    83 Ademar. P Jr, Segen F Estefen, Luiz A B F. Stress analysis of casing string submitted to cyclic steam injection[C]. SPE 38978, 1997.
    84 Waggb, Xie J, Solanki S. Evaluating casing deformation mechanisms in primary heavy oil production[C]. SPE 38978, 1997.
    85 Michael S Bruno. Geomechanical and decision analyses for mitigating compaction– related damage[C]. SPE 79519, 2002.
    86王斌,周小虎,李春福,等.钻井完井高温高压H2S/CO2共存条件下套管、油管腐蚀研究[J].天然气工业, 2007, 27(2): 67-70.
    87 Ikeda. A, Veda M, Mukai S. CO2 behavior of carbon and Cr steels[J]. New Orileans USA NACE, 1984.
    88 Kuzyukov. A N. How hydrogen effects operability of chemical and petrochemical equipment made of carbon and low alloy steel[J]. International journal of hydrogen energy, 2002, (27): 813-817.
    89 Siddiqui. R A. Hydrogen embrittlement in 0.31%carbon steel used for petrochemicalapplications[J]. Journal of materials processing technology, 2005, (17): 430-435.
    90 Crolet. J L, Bonis M R. How to pressurize autoclaves for corrosion testing under carbon dioxide and hydrogen sulfide pressure[J]. Corrosion, 2000, 56(2): 167-182.
    91杨恒林,陈勉,金衍,等.蠕变地层套管等效破坏载荷分析[J].中国石油大学学报(自然科学版), 2006, 30(4): 94-97.
    92 EPSayed. A A H, Fouad khalaf. Resistance of cemented concentric string under non-uniform loading[C]. SPE 17927, 1992
    93 Last. N C, Mujica S, Pattillo P D. Casing deformation in a tectonic setting evaluation, impact and management[C]. SPE 74560, 2002.
    94赵洪山,管志川.严重出砂井中采油套管损坏的力学分析[J].石油钻采工艺, 2005, 27(5): 85-88.
    95冯恩山,朱苏清,黄晓荣.岩石特性与套管损坏关系研究[J].钻采工艺, 2005, 28(3):4-6.
    96李宗田.盐岩蠕变地层的油水井套管损坏机理[J].断块油气田, 2005, 12(3): 35-38.
    97闫相祯,高进伟,杨秀娟.用可靠性理论解析API套管强度的计算公式[J].石油学报, 2007, 28(1): 122-126.
    98黄淳,高连新,张毅.优质高抗挤套管WSP110T的研制[J].钢管, 2005, 34(6): 87-90.
    99赵洪山,管志川.油层出砂引起采油套管损坏的力学分析[J].中国石油大学学报(自然科学版), 2006, 30(5): 54-66.
    100孙军.油田套管抗外挤强度的影响因素[J].油气田地面工程, 2005, 24(9): 47.
    101姚振华.川东地区井下套管损坏的原因分析及对策[J].钻采工艺, 1998, 21(2): 13-14.
    102孙建成,王保新,苗希庆.胜利油田郝科1井套管挤毁的启示[J].石油钻采工艺, 1998, 20(4): 21-27.
    103李昱.油水井套管损坏因素及机理分析[J].断块油气田, 1996, 3(6): 55-59.
    104薛彩军,邱清盈,武建伟.地应力和温度载荷耦合作用下注汽井射孔套管损坏的数值模拟[J].岩石力学与工程学报, 2005, 24(A02): 5716-5720.
    105曾德智,林元华,张莉,等.非均匀地应力下套管受力影响因素研究[J].石油钻采工艺, 2006, 28(5): 7-10.
    106 Han jiangzeng, Shi taihe. Non-uniform loading affects casing collapse resistance[J]. Oil and Gas Joumal, 2001, (6): 45-48.
    107 Wllson. S M, Fossum. A F, Fredr. ICH J T. Assessment of salt loading on well casings[C].SPE 74562, 2002.
    108 Pattllo. P D, Last. N C, Asbll. W T. Effect non-uniform loading on conventional casing collapse resistance[C]. SPE 79871, 2003.
    109张建忠,张志全,于洋洋,等.非均匀地应力下套管水泥环受力研究[J].断块油气田, 2007, (2): 68-70.
    110李金波,郑茂盛,张杰.非均匀外载荷对套管承载能力的影响分析[J].西安石油大学学报(自然科学版), 2007, 22(1): 101-106.
    111 Donlon. W P, Hall. J F. Shaking table study of concrete gravity dam monoliths[J]. Earth quake Eng Sruct Dyn, 1991, 20: 769-786.
    112 Mir. R A, Taylor. C A. An experimental investigation into earthquake induced failure of medium to low height concrete gravity dam[J]. Earth quake Eng Sruct Dyn, 1995, 24: 378-393.
    113 Konagaik, Nogam. I T. Analog circuit to simulate dynamic soil-structure interaction in shaking table test[J]. Soil Dyn Earthquake Eng, 1998, 17: 279-287.
    114 Li C. Performance of multiple tuned mass dampers for attenuating undesirable structures under the ground acceleration[J]. Earth quake Engineering and Structural Dynamics, 2000, 29(9): 1405-1421.
    115曾德智,林元华,李双贵,等.非均匀载荷下厚壁套管抗挤强度分析[J].天然气工业, 2007, 27(2): 60-62.
    116 Eisayed A H, Khalaf F. Resistance of cemented concentric casing strings under non-uniform loading[C]. SPE 17927, 1992.
    117王辉.高抗挤厚壁套管的性能及应用效果评价[J].石油矿场机械, 2006, 35(3): 101-103.
    118姜泽菊,安申法,赵延茹,等.稠油热采井注汽及油层出砂对套管的影响[J].石油机械, 2005, 33(7): 17-20.
    119廉乐明,李力能,吴家正,等.工程热力学[M].北京:中国建筑工业出版社, 2001: 20-45.
    120周强泰.两相流动与热交换[M].北京:水利电力出版社, 1990: 10-42.
    121王志国,马一太,李东明,等.注汽过程井筒传热及热损失计算方法研究[J].特种油气藏, 2003, 10(5): 38-41.
    122王弥康,陈月明,尹凯平,等.热力采油[M].北京:石油工业出版社, 1989: 55-92.
    123王志国.提高稠油开采注汽系统能量利用率的理论分析与试验研究. [津大学博士学位论文]. 2004:2-30. 2004.
    124贾力,方肇洪,钱兴华.高等传热学[M].北京:等教育出版社, 2003: 120-150.
    125万仁溥,罗英俊.采油技术手册[M].北京:石油工业出版社, 2001: 269-344.
    126谢明亮,林建忠.压力梯度对边界层两相流动稳定性的影响[J].应用力学学报, 2007, 24(3): 335-338.
    127王伟强,吴明,王勇,等.油气两温降计算方法的研究[J].辽宁石油化工大学学报, 2007, 27(2): 42-44,49.
    128吕宇玲,杜胜伟,何利民,等.气液两相流持液率及压降特性的试验研究[J].油气储运, 2006, 25(3): 48-51.
    129吴家龙.弹性力学[M].北京:高等教育出版社, 2001: 277-287.
    130殷有泉,陈朝伟,李平恩.套管-水泥环-地层应力分布的理论解[J].力学学报, 2006, 38(6): 835-842.
    131殷有泉,李志明,张广清.蠕变地层套管载荷分析研究[J].岩石力学与工程学报, 2004, 24(14): 2381-2384.
    132李志明,张颜福,王计平,等.蠕变地层中套管的附加载荷[J].石油钻采工艺, 1999, 21(5): 10-13,41.
    133陈朝伟,殷有泉,蔡永恩,等.利用套管变形测井资料反演储层应力场[J].岩石力学与工程学报, 2007, 26(4): 734–739.
    134李平恩,殷有泉,苏先樾.流变地层地应力场中套管载荷的理论解[J].北京大学学报(自然科学版) , 2007, 43(1): 11-16.
    135殷有泉,蔡永恩,陈朝伟.非均匀地应力场中套管载荷的理论解[J].石油学报, 2006, 27(4): 133-138.
    136房军,谷玉洪,米封珍.非均匀载荷作用下套管挤压实效数值分析[J].石油机械, 1999, 27(7): 34-37.
    137房军,赵怀文,岳伯谦.非均匀地应力作用下套管与水泥环的受力分析[J].石油大学学报, 1995, 19(6): 52-57.
    138房军,岳伯谦,赵怀文.非均匀地应力作用下套管与水泥环表面受力特征分析[J].石油大学学报, 1997, 21(1): 46-48.
    139王仲茂.油田油水井套管损坏的机理及防治[M].北京:石油工业出版社, 1994: 25,72.
    140徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社, 1995: 183-230.
    141 Evans.G W, Harriman D W. Laboratory tests on collapse resistance of cemented casing[C]// In:47 th Annual meeting of the society of petroleum engineers of Aime, San Antonio Texas, 1972:20-24.
    142蒸汽热力采油手册编译组.蒸汽热力采油手册[M].北京:石油工业出版社, 1999: 200-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700